peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/manifold
/_isomap.py
| """Isomap for manifold learning""" | |
| # Author: Jake Vanderplas -- <vanderplas@astro.washington.edu> | |
| # License: BSD 3 clause (C) 2011 | |
| import warnings | |
| from numbers import Integral, Real | |
| import numpy as np | |
| from scipy.sparse import issparse | |
| from scipy.sparse.csgraph import connected_components, shortest_path | |
| from ..base import ( | |
| BaseEstimator, | |
| ClassNamePrefixFeaturesOutMixin, | |
| TransformerMixin, | |
| _fit_context, | |
| ) | |
| from ..decomposition import KernelPCA | |
| from ..metrics.pairwise import _VALID_METRICS | |
| from ..neighbors import NearestNeighbors, kneighbors_graph, radius_neighbors_graph | |
| from ..preprocessing import KernelCenterer | |
| from ..utils._param_validation import Interval, StrOptions | |
| from ..utils.graph import _fix_connected_components | |
| from ..utils.validation import check_is_fitted | |
| class Isomap(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator): | |
| """Isomap Embedding. | |
| Non-linear dimensionality reduction through Isometric Mapping | |
| Read more in the :ref:`User Guide <isomap>`. | |
| Parameters | |
| ---------- | |
| n_neighbors : int or None, default=5 | |
| Number of neighbors to consider for each point. If `n_neighbors` is an int, | |
| then `radius` must be `None`. | |
| radius : float or None, default=None | |
| Limiting distance of neighbors to return. If `radius` is a float, | |
| then `n_neighbors` must be set to `None`. | |
| .. versionadded:: 1.1 | |
| n_components : int, default=2 | |
| Number of coordinates for the manifold. | |
| eigen_solver : {'auto', 'arpack', 'dense'}, default='auto' | |
| 'auto' : Attempt to choose the most efficient solver | |
| for the given problem. | |
| 'arpack' : Use Arnoldi decomposition to find the eigenvalues | |
| and eigenvectors. | |
| 'dense' : Use a direct solver (i.e. LAPACK) | |
| for the eigenvalue decomposition. | |
| tol : float, default=0 | |
| Convergence tolerance passed to arpack or lobpcg. | |
| not used if eigen_solver == 'dense'. | |
| max_iter : int, default=None | |
| Maximum number of iterations for the arpack solver. | |
| not used if eigen_solver == 'dense'. | |
| path_method : {'auto', 'FW', 'D'}, default='auto' | |
| Method to use in finding shortest path. | |
| 'auto' : attempt to choose the best algorithm automatically. | |
| 'FW' : Floyd-Warshall algorithm. | |
| 'D' : Dijkstra's algorithm. | |
| neighbors_algorithm : {'auto', 'brute', 'kd_tree', 'ball_tree'}, \ | |
| default='auto' | |
| Algorithm to use for nearest neighbors search, | |
| passed to neighbors.NearestNeighbors instance. | |
| n_jobs : int or None, default=None | |
| The number of parallel jobs to run. | |
| ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. | |
| ``-1`` means using all processors. See :term:`Glossary <n_jobs>` | |
| for more details. | |
| metric : str, or callable, default="minkowski" | |
| The metric to use when calculating distance between instances in a | |
| feature array. If metric is a string or callable, it must be one of | |
| the options allowed by :func:`sklearn.metrics.pairwise_distances` for | |
| its metric parameter. | |
| If metric is "precomputed", X is assumed to be a distance matrix and | |
| must be square. X may be a :term:`Glossary <sparse graph>`. | |
| .. versionadded:: 0.22 | |
| p : float, default=2 | |
| Parameter for the Minkowski metric from | |
| sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is | |
| equivalent to using manhattan_distance (l1), and euclidean_distance | |
| (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. | |
| .. versionadded:: 0.22 | |
| metric_params : dict, default=None | |
| Additional keyword arguments for the metric function. | |
| .. versionadded:: 0.22 | |
| Attributes | |
| ---------- | |
| embedding_ : array-like, shape (n_samples, n_components) | |
| Stores the embedding vectors. | |
| kernel_pca_ : object | |
| :class:`~sklearn.decomposition.KernelPCA` object used to implement the | |
| embedding. | |
| nbrs_ : sklearn.neighbors.NearestNeighbors instance | |
| Stores nearest neighbors instance, including BallTree or KDtree | |
| if applicable. | |
| dist_matrix_ : array-like, shape (n_samples, n_samples) | |
| Stores the geodesic distance matrix of training data. | |
| n_features_in_ : int | |
| Number of features seen during :term:`fit`. | |
| .. versionadded:: 0.24 | |
| feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
| Names of features seen during :term:`fit`. Defined only when `X` | |
| has feature names that are all strings. | |
| .. versionadded:: 1.0 | |
| See Also | |
| -------- | |
| sklearn.decomposition.PCA : Principal component analysis that is a linear | |
| dimensionality reduction method. | |
| sklearn.decomposition.KernelPCA : Non-linear dimensionality reduction using | |
| kernels and PCA. | |
| MDS : Manifold learning using multidimensional scaling. | |
| TSNE : T-distributed Stochastic Neighbor Embedding. | |
| LocallyLinearEmbedding : Manifold learning using Locally Linear Embedding. | |
| SpectralEmbedding : Spectral embedding for non-linear dimensionality. | |
| References | |
| ---------- | |
| .. [1] Tenenbaum, J.B.; De Silva, V.; & Langford, J.C. A global geometric | |
| framework for nonlinear dimensionality reduction. Science 290 (5500) | |
| Examples | |
| -------- | |
| >>> from sklearn.datasets import load_digits | |
| >>> from sklearn.manifold import Isomap | |
| >>> X, _ = load_digits(return_X_y=True) | |
| >>> X.shape | |
| (1797, 64) | |
| >>> embedding = Isomap(n_components=2) | |
| >>> X_transformed = embedding.fit_transform(X[:100]) | |
| >>> X_transformed.shape | |
| (100, 2) | |
| """ | |
| _parameter_constraints: dict = { | |
| "n_neighbors": [Interval(Integral, 1, None, closed="left"), None], | |
| "radius": [Interval(Real, 0, None, closed="both"), None], | |
| "n_components": [Interval(Integral, 1, None, closed="left")], | |
| "eigen_solver": [StrOptions({"auto", "arpack", "dense"})], | |
| "tol": [Interval(Real, 0, None, closed="left")], | |
| "max_iter": [Interval(Integral, 1, None, closed="left"), None], | |
| "path_method": [StrOptions({"auto", "FW", "D"})], | |
| "neighbors_algorithm": [StrOptions({"auto", "brute", "kd_tree", "ball_tree"})], | |
| "n_jobs": [Integral, None], | |
| "p": [Interval(Real, 1, None, closed="left")], | |
| "metric": [StrOptions(set(_VALID_METRICS) | {"precomputed"}), callable], | |
| "metric_params": [dict, None], | |
| } | |
| def __init__( | |
| self, | |
| *, | |
| n_neighbors=5, | |
| radius=None, | |
| n_components=2, | |
| eigen_solver="auto", | |
| tol=0, | |
| max_iter=None, | |
| path_method="auto", | |
| neighbors_algorithm="auto", | |
| n_jobs=None, | |
| metric="minkowski", | |
| p=2, | |
| metric_params=None, | |
| ): | |
| self.n_neighbors = n_neighbors | |
| self.radius = radius | |
| self.n_components = n_components | |
| self.eigen_solver = eigen_solver | |
| self.tol = tol | |
| self.max_iter = max_iter | |
| self.path_method = path_method | |
| self.neighbors_algorithm = neighbors_algorithm | |
| self.n_jobs = n_jobs | |
| self.metric = metric | |
| self.p = p | |
| self.metric_params = metric_params | |
| def _fit_transform(self, X): | |
| if self.n_neighbors is not None and self.radius is not None: | |
| raise ValueError( | |
| "Both n_neighbors and radius are provided. Use" | |
| f" Isomap(radius={self.radius}, n_neighbors=None) if intended to use" | |
| " radius-based neighbors" | |
| ) | |
| self.nbrs_ = NearestNeighbors( | |
| n_neighbors=self.n_neighbors, | |
| radius=self.radius, | |
| algorithm=self.neighbors_algorithm, | |
| metric=self.metric, | |
| p=self.p, | |
| metric_params=self.metric_params, | |
| n_jobs=self.n_jobs, | |
| ) | |
| self.nbrs_.fit(X) | |
| self.n_features_in_ = self.nbrs_.n_features_in_ | |
| if hasattr(self.nbrs_, "feature_names_in_"): | |
| self.feature_names_in_ = self.nbrs_.feature_names_in_ | |
| self.kernel_pca_ = KernelPCA( | |
| n_components=self.n_components, | |
| kernel="precomputed", | |
| eigen_solver=self.eigen_solver, | |
| tol=self.tol, | |
| max_iter=self.max_iter, | |
| n_jobs=self.n_jobs, | |
| ).set_output(transform="default") | |
| if self.n_neighbors is not None: | |
| nbg = kneighbors_graph( | |
| self.nbrs_, | |
| self.n_neighbors, | |
| metric=self.metric, | |
| p=self.p, | |
| metric_params=self.metric_params, | |
| mode="distance", | |
| n_jobs=self.n_jobs, | |
| ) | |
| else: | |
| nbg = radius_neighbors_graph( | |
| self.nbrs_, | |
| radius=self.radius, | |
| metric=self.metric, | |
| p=self.p, | |
| metric_params=self.metric_params, | |
| mode="distance", | |
| n_jobs=self.n_jobs, | |
| ) | |
| # Compute the number of connected components, and connect the different | |
| # components to be able to compute a shortest path between all pairs | |
| # of samples in the graph. | |
| # Similar fix to cluster._agglomerative._fix_connectivity. | |
| n_connected_components, labels = connected_components(nbg) | |
| if n_connected_components > 1: | |
| if self.metric == "precomputed" and issparse(X): | |
| raise RuntimeError( | |
| "The number of connected components of the neighbors graph" | |
| f" is {n_connected_components} > 1. The graph cannot be " | |
| "completed with metric='precomputed', and Isomap cannot be" | |
| "fitted. Increase the number of neighbors to avoid this " | |
| "issue, or precompute the full distance matrix instead " | |
| "of passing a sparse neighbors graph." | |
| ) | |
| warnings.warn( | |
| ( | |
| "The number of connected components of the neighbors graph " | |
| f"is {n_connected_components} > 1. Completing the graph to fit" | |
| " Isomap might be slow. Increase the number of neighbors to " | |
| "avoid this issue." | |
| ), | |
| stacklevel=2, | |
| ) | |
| # use array validated by NearestNeighbors | |
| nbg = _fix_connected_components( | |
| X=self.nbrs_._fit_X, | |
| graph=nbg, | |
| n_connected_components=n_connected_components, | |
| component_labels=labels, | |
| mode="distance", | |
| metric=self.nbrs_.effective_metric_, | |
| **self.nbrs_.effective_metric_params_, | |
| ) | |
| self.dist_matrix_ = shortest_path(nbg, method=self.path_method, directed=False) | |
| if self.nbrs_._fit_X.dtype == np.float32: | |
| self.dist_matrix_ = self.dist_matrix_.astype( | |
| self.nbrs_._fit_X.dtype, copy=False | |
| ) | |
| G = self.dist_matrix_**2 | |
| G *= -0.5 | |
| self.embedding_ = self.kernel_pca_.fit_transform(G) | |
| self._n_features_out = self.embedding_.shape[1] | |
| def reconstruction_error(self): | |
| """Compute the reconstruction error for the embedding. | |
| Returns | |
| ------- | |
| reconstruction_error : float | |
| Reconstruction error. | |
| Notes | |
| ----- | |
| The cost function of an isomap embedding is | |
| ``E = frobenius_norm[K(D) - K(D_fit)] / n_samples`` | |
| Where D is the matrix of distances for the input data X, | |
| D_fit is the matrix of distances for the output embedding X_fit, | |
| and K is the isomap kernel: | |
| ``K(D) = -0.5 * (I - 1/n_samples) * D^2 * (I - 1/n_samples)`` | |
| """ | |
| G = -0.5 * self.dist_matrix_**2 | |
| G_center = KernelCenterer().fit_transform(G) | |
| evals = self.kernel_pca_.eigenvalues_ | |
| return np.sqrt(np.sum(G_center**2) - np.sum(evals**2)) / G.shape[0] | |
| def fit(self, X, y=None): | |
| """Compute the embedding vectors for data X. | |
| Parameters | |
| ---------- | |
| X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors} | |
| Sample data, shape = (n_samples, n_features), in the form of a | |
| numpy array, sparse matrix, precomputed tree, or NearestNeighbors | |
| object. | |
| y : Ignored | |
| Not used, present for API consistency by convention. | |
| Returns | |
| ------- | |
| self : object | |
| Returns a fitted instance of self. | |
| """ | |
| self._fit_transform(X) | |
| return self | |
| def fit_transform(self, X, y=None): | |
| """Fit the model from data in X and transform X. | |
| Parameters | |
| ---------- | |
| X : {array-like, sparse matrix, BallTree, KDTree} | |
| Training vector, where `n_samples` is the number of samples | |
| and `n_features` is the number of features. | |
| y : Ignored | |
| Not used, present for API consistency by convention. | |
| Returns | |
| ------- | |
| X_new : array-like, shape (n_samples, n_components) | |
| X transformed in the new space. | |
| """ | |
| self._fit_transform(X) | |
| return self.embedding_ | |
| def transform(self, X): | |
| """Transform X. | |
| This is implemented by linking the points X into the graph of geodesic | |
| distances of the training data. First the `n_neighbors` nearest | |
| neighbors of X are found in the training data, and from these the | |
| shortest geodesic distances from each point in X to each point in | |
| the training data are computed in order to construct the kernel. | |
| The embedding of X is the projection of this kernel onto the | |
| embedding vectors of the training set. | |
| Parameters | |
| ---------- | |
| X : {array-like, sparse matrix}, shape (n_queries, n_features) | |
| If neighbors_algorithm='precomputed', X is assumed to be a | |
| distance matrix or a sparse graph of shape | |
| (n_queries, n_samples_fit). | |
| Returns | |
| ------- | |
| X_new : array-like, shape (n_queries, n_components) | |
| X transformed in the new space. | |
| """ | |
| check_is_fitted(self) | |
| if self.n_neighbors is not None: | |
| distances, indices = self.nbrs_.kneighbors(X, return_distance=True) | |
| else: | |
| distances, indices = self.nbrs_.radius_neighbors(X, return_distance=True) | |
| # Create the graph of shortest distances from X to | |
| # training data via the nearest neighbors of X. | |
| # This can be done as a single array operation, but it potentially | |
| # takes a lot of memory. To avoid that, use a loop: | |
| n_samples_fit = self.nbrs_.n_samples_fit_ | |
| n_queries = distances.shape[0] | |
| if hasattr(X, "dtype") and X.dtype == np.float32: | |
| dtype = np.float32 | |
| else: | |
| dtype = np.float64 | |
| G_X = np.zeros((n_queries, n_samples_fit), dtype) | |
| for i in range(n_queries): | |
| G_X[i] = np.min(self.dist_matrix_[indices[i]] + distances[i][:, None], 0) | |
| G_X **= 2 | |
| G_X *= -0.5 | |
| return self.kernel_pca_.transform(G_X) | |
| def _more_tags(self): | |
| return {"preserves_dtype": [np.float64, np.float32]} | |