peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/decomposition
/_kernel_pca.py
| """Kernel Principal Components Analysis.""" | |
| # Author: Mathieu Blondel <mathieu@mblondel.org> | |
| # Sylvain Marie <sylvain.marie@schneider-electric.com> | |
| # License: BSD 3 clause | |
| from numbers import Integral, Real | |
| import numpy as np | |
| from scipy import linalg | |
| from scipy.linalg import eigh | |
| from scipy.sparse.linalg import eigsh | |
| from ..base import ( | |
| BaseEstimator, | |
| ClassNamePrefixFeaturesOutMixin, | |
| TransformerMixin, | |
| _fit_context, | |
| ) | |
| from ..exceptions import NotFittedError | |
| from ..metrics.pairwise import pairwise_kernels | |
| from ..preprocessing import KernelCenterer | |
| from ..utils._arpack import _init_arpack_v0 | |
| from ..utils._param_validation import Interval, StrOptions | |
| from ..utils.extmath import _randomized_eigsh, svd_flip | |
| from ..utils.validation import ( | |
| _check_psd_eigenvalues, | |
| check_is_fitted, | |
| ) | |
| class KernelPCA(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator): | |
| """Kernel Principal component analysis (KPCA) [1]_. | |
| Non-linear dimensionality reduction through the use of kernels (see | |
| :ref:`metrics`). | |
| It uses the :func:`scipy.linalg.eigh` LAPACK implementation of the full SVD | |
| or the :func:`scipy.sparse.linalg.eigsh` ARPACK implementation of the | |
| truncated SVD, depending on the shape of the input data and the number of | |
| components to extract. It can also use a randomized truncated SVD by the | |
| method proposed in [3]_, see `eigen_solver`. | |
| For a usage example, see | |
| :ref:`sphx_glr_auto_examples_decomposition_plot_kernel_pca.py`. | |
| Read more in the :ref:`User Guide <kernel_PCA>`. | |
| Parameters | |
| ---------- | |
| n_components : int, default=None | |
| Number of components. If None, all non-zero components are kept. | |
| kernel : {'linear', 'poly', 'rbf', 'sigmoid', 'cosine', 'precomputed'} \ | |
| or callable, default='linear' | |
| Kernel used for PCA. | |
| gamma : float, default=None | |
| Kernel coefficient for rbf, poly and sigmoid kernels. Ignored by other | |
| kernels. If ``gamma`` is ``None``, then it is set to ``1/n_features``. | |
| degree : float, default=3 | |
| Degree for poly kernels. Ignored by other kernels. | |
| coef0 : float, default=1 | |
| Independent term in poly and sigmoid kernels. | |
| Ignored by other kernels. | |
| kernel_params : dict, default=None | |
| Parameters (keyword arguments) and | |
| values for kernel passed as callable object. | |
| Ignored by other kernels. | |
| alpha : float, default=1.0 | |
| Hyperparameter of the ridge regression that learns the | |
| inverse transform (when fit_inverse_transform=True). | |
| fit_inverse_transform : bool, default=False | |
| Learn the inverse transform for non-precomputed kernels | |
| (i.e. learn to find the pre-image of a point). This method is based | |
| on [2]_. | |
| eigen_solver : {'auto', 'dense', 'arpack', 'randomized'}, \ | |
| default='auto' | |
| Select eigensolver to use. If `n_components` is much | |
| less than the number of training samples, randomized (or arpack to a | |
| smaller extent) may be more efficient than the dense eigensolver. | |
| Randomized SVD is performed according to the method of Halko et al | |
| [3]_. | |
| auto : | |
| the solver is selected by a default policy based on n_samples | |
| (the number of training samples) and `n_components`: | |
| if the number of components to extract is less than 10 (strict) and | |
| the number of samples is more than 200 (strict), the 'arpack' | |
| method is enabled. Otherwise the exact full eigenvalue | |
| decomposition is computed and optionally truncated afterwards | |
| ('dense' method). | |
| dense : | |
| run exact full eigenvalue decomposition calling the standard | |
| LAPACK solver via `scipy.linalg.eigh`, and select the components | |
| by postprocessing | |
| arpack : | |
| run SVD truncated to n_components calling ARPACK solver using | |
| `scipy.sparse.linalg.eigsh`. It requires strictly | |
| 0 < n_components < n_samples | |
| randomized : | |
| run randomized SVD by the method of Halko et al. [3]_. The current | |
| implementation selects eigenvalues based on their module; therefore | |
| using this method can lead to unexpected results if the kernel is | |
| not positive semi-definite. See also [4]_. | |
| .. versionchanged:: 1.0 | |
| `'randomized'` was added. | |
| tol : float, default=0 | |
| Convergence tolerance for arpack. | |
| If 0, optimal value will be chosen by arpack. | |
| max_iter : int, default=None | |
| Maximum number of iterations for arpack. | |
| If None, optimal value will be chosen by arpack. | |
| iterated_power : int >= 0, or 'auto', default='auto' | |
| Number of iterations for the power method computed by | |
| svd_solver == 'randomized'. When 'auto', it is set to 7 when | |
| `n_components < 0.1 * min(X.shape)`, other it is set to 4. | |
| .. versionadded:: 1.0 | |
| remove_zero_eig : bool, default=False | |
| If True, then all components with zero eigenvalues are removed, so | |
| that the number of components in the output may be < n_components | |
| (and sometimes even zero due to numerical instability). | |
| When n_components is None, this parameter is ignored and components | |
| with zero eigenvalues are removed regardless. | |
| random_state : int, RandomState instance or None, default=None | |
| Used when ``eigen_solver`` == 'arpack' or 'randomized'. Pass an int | |
| for reproducible results across multiple function calls. | |
| See :term:`Glossary <random_state>`. | |
| .. versionadded:: 0.18 | |
| copy_X : bool, default=True | |
| If True, input X is copied and stored by the model in the `X_fit_` | |
| attribute. If no further changes will be done to X, setting | |
| `copy_X=False` saves memory by storing a reference. | |
| .. versionadded:: 0.18 | |
| n_jobs : int, default=None | |
| The number of parallel jobs to run. | |
| ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. | |
| ``-1`` means using all processors. See :term:`Glossary <n_jobs>` | |
| for more details. | |
| .. versionadded:: 0.18 | |
| Attributes | |
| ---------- | |
| eigenvalues_ : ndarray of shape (n_components,) | |
| Eigenvalues of the centered kernel matrix in decreasing order. | |
| If `n_components` and `remove_zero_eig` are not set, | |
| then all values are stored. | |
| eigenvectors_ : ndarray of shape (n_samples, n_components) | |
| Eigenvectors of the centered kernel matrix. If `n_components` and | |
| `remove_zero_eig` are not set, then all components are stored. | |
| dual_coef_ : ndarray of shape (n_samples, n_features) | |
| Inverse transform matrix. Only available when | |
| ``fit_inverse_transform`` is True. | |
| X_transformed_fit_ : ndarray of shape (n_samples, n_components) | |
| Projection of the fitted data on the kernel principal components. | |
| Only available when ``fit_inverse_transform`` is True. | |
| X_fit_ : ndarray of shape (n_samples, n_features) | |
| The data used to fit the model. If `copy_X=False`, then `X_fit_` is | |
| a reference. This attribute is used for the calls to transform. | |
| n_features_in_ : int | |
| Number of features seen during :term:`fit`. | |
| .. versionadded:: 0.24 | |
| feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
| Names of features seen during :term:`fit`. Defined only when `X` | |
| has feature names that are all strings. | |
| .. versionadded:: 1.0 | |
| gamma_ : float | |
| Kernel coefficient for rbf, poly and sigmoid kernels. When `gamma` | |
| is explicitly provided, this is just the same as `gamma`. When `gamma` | |
| is `None`, this is the actual value of kernel coefficient. | |
| .. versionadded:: 1.3 | |
| See Also | |
| -------- | |
| FastICA : A fast algorithm for Independent Component Analysis. | |
| IncrementalPCA : Incremental Principal Component Analysis. | |
| NMF : Non-Negative Matrix Factorization. | |
| PCA : Principal Component Analysis. | |
| SparsePCA : Sparse Principal Component Analysis. | |
| TruncatedSVD : Dimensionality reduction using truncated SVD. | |
| References | |
| ---------- | |
| .. [1] `Schölkopf, Bernhard, Alexander Smola, and Klaus-Robert Müller. | |
| "Kernel principal component analysis." | |
| International conference on artificial neural networks. | |
| Springer, Berlin, Heidelberg, 1997. | |
| <https://people.eecs.berkeley.edu/~wainwrig/stat241b/scholkopf_kernel.pdf>`_ | |
| .. [2] `Bakır, Gökhan H., Jason Weston, and Bernhard Schölkopf. | |
| "Learning to find pre-images." | |
| Advances in neural information processing systems 16 (2004): 449-456. | |
| <https://papers.nips.cc/paper/2003/file/ac1ad983e08ad3304a97e147f522747e-Paper.pdf>`_ | |
| .. [3] :arxiv:`Halko, Nathan, Per-Gunnar Martinsson, and Joel A. Tropp. | |
| "Finding structure with randomness: Probabilistic algorithms for | |
| constructing approximate matrix decompositions." | |
| SIAM review 53.2 (2011): 217-288. <0909.4061>` | |
| .. [4] `Martinsson, Per-Gunnar, Vladimir Rokhlin, and Mark Tygert. | |
| "A randomized algorithm for the decomposition of matrices." | |
| Applied and Computational Harmonic Analysis 30.1 (2011): 47-68. | |
| <https://www.sciencedirect.com/science/article/pii/S1063520310000242>`_ | |
| Examples | |
| -------- | |
| >>> from sklearn.datasets import load_digits | |
| >>> from sklearn.decomposition import KernelPCA | |
| >>> X, _ = load_digits(return_X_y=True) | |
| >>> transformer = KernelPCA(n_components=7, kernel='linear') | |
| >>> X_transformed = transformer.fit_transform(X) | |
| >>> X_transformed.shape | |
| (1797, 7) | |
| """ | |
| _parameter_constraints: dict = { | |
| "n_components": [ | |
| Interval(Integral, 1, None, closed="left"), | |
| None, | |
| ], | |
| "kernel": [ | |
| StrOptions({"linear", "poly", "rbf", "sigmoid", "cosine", "precomputed"}), | |
| callable, | |
| ], | |
| "gamma": [ | |
| Interval(Real, 0, None, closed="left"), | |
| None, | |
| ], | |
| "degree": [Interval(Real, 0, None, closed="left")], | |
| "coef0": [Interval(Real, None, None, closed="neither")], | |
| "kernel_params": [dict, None], | |
| "alpha": [Interval(Real, 0, None, closed="left")], | |
| "fit_inverse_transform": ["boolean"], | |
| "eigen_solver": [StrOptions({"auto", "dense", "arpack", "randomized"})], | |
| "tol": [Interval(Real, 0, None, closed="left")], | |
| "max_iter": [ | |
| Interval(Integral, 1, None, closed="left"), | |
| None, | |
| ], | |
| "iterated_power": [ | |
| Interval(Integral, 0, None, closed="left"), | |
| StrOptions({"auto"}), | |
| ], | |
| "remove_zero_eig": ["boolean"], | |
| "random_state": ["random_state"], | |
| "copy_X": ["boolean"], | |
| "n_jobs": [None, Integral], | |
| } | |
| def __init__( | |
| self, | |
| n_components=None, | |
| *, | |
| kernel="linear", | |
| gamma=None, | |
| degree=3, | |
| coef0=1, | |
| kernel_params=None, | |
| alpha=1.0, | |
| fit_inverse_transform=False, | |
| eigen_solver="auto", | |
| tol=0, | |
| max_iter=None, | |
| iterated_power="auto", | |
| remove_zero_eig=False, | |
| random_state=None, | |
| copy_X=True, | |
| n_jobs=None, | |
| ): | |
| self.n_components = n_components | |
| self.kernel = kernel | |
| self.kernel_params = kernel_params | |
| self.gamma = gamma | |
| self.degree = degree | |
| self.coef0 = coef0 | |
| self.alpha = alpha | |
| self.fit_inverse_transform = fit_inverse_transform | |
| self.eigen_solver = eigen_solver | |
| self.tol = tol | |
| self.max_iter = max_iter | |
| self.iterated_power = iterated_power | |
| self.remove_zero_eig = remove_zero_eig | |
| self.random_state = random_state | |
| self.n_jobs = n_jobs | |
| self.copy_X = copy_X | |
| def _get_kernel(self, X, Y=None): | |
| if callable(self.kernel): | |
| params = self.kernel_params or {} | |
| else: | |
| params = {"gamma": self.gamma_, "degree": self.degree, "coef0": self.coef0} | |
| return pairwise_kernels( | |
| X, Y, metric=self.kernel, filter_params=True, n_jobs=self.n_jobs, **params | |
| ) | |
| def _fit_transform(self, K): | |
| """Fit's using kernel K""" | |
| # center kernel | |
| K = self._centerer.fit_transform(K) | |
| # adjust n_components according to user inputs | |
| if self.n_components is None: | |
| n_components = K.shape[0] # use all dimensions | |
| else: | |
| n_components = min(K.shape[0], self.n_components) | |
| # compute eigenvectors | |
| if self.eigen_solver == "auto": | |
| if K.shape[0] > 200 and n_components < 10: | |
| eigen_solver = "arpack" | |
| else: | |
| eigen_solver = "dense" | |
| else: | |
| eigen_solver = self.eigen_solver | |
| if eigen_solver == "dense": | |
| # Note: subset_by_index specifies the indices of smallest/largest to return | |
| self.eigenvalues_, self.eigenvectors_ = eigh( | |
| K, subset_by_index=(K.shape[0] - n_components, K.shape[0] - 1) | |
| ) | |
| elif eigen_solver == "arpack": | |
| v0 = _init_arpack_v0(K.shape[0], self.random_state) | |
| self.eigenvalues_, self.eigenvectors_ = eigsh( | |
| K, n_components, which="LA", tol=self.tol, maxiter=self.max_iter, v0=v0 | |
| ) | |
| elif eigen_solver == "randomized": | |
| self.eigenvalues_, self.eigenvectors_ = _randomized_eigsh( | |
| K, | |
| n_components=n_components, | |
| n_iter=self.iterated_power, | |
| random_state=self.random_state, | |
| selection="module", | |
| ) | |
| # make sure that the eigenvalues are ok and fix numerical issues | |
| self.eigenvalues_ = _check_psd_eigenvalues( | |
| self.eigenvalues_, enable_warnings=False | |
| ) | |
| # flip eigenvectors' sign to enforce deterministic output | |
| self.eigenvectors_, _ = svd_flip( | |
| self.eigenvectors_, np.zeros_like(self.eigenvectors_).T | |
| ) | |
| # sort eigenvectors in descending order | |
| indices = self.eigenvalues_.argsort()[::-1] | |
| self.eigenvalues_ = self.eigenvalues_[indices] | |
| self.eigenvectors_ = self.eigenvectors_[:, indices] | |
| # remove eigenvectors with a zero eigenvalue (null space) if required | |
| if self.remove_zero_eig or self.n_components is None: | |
| self.eigenvectors_ = self.eigenvectors_[:, self.eigenvalues_ > 0] | |
| self.eigenvalues_ = self.eigenvalues_[self.eigenvalues_ > 0] | |
| # Maintenance note on Eigenvectors normalization | |
| # ---------------------------------------------- | |
| # there is a link between | |
| # the eigenvectors of K=Phi(X)'Phi(X) and the ones of Phi(X)Phi(X)' | |
| # if v is an eigenvector of K | |
| # then Phi(X)v is an eigenvector of Phi(X)Phi(X)' | |
| # if u is an eigenvector of Phi(X)Phi(X)' | |
| # then Phi(X)'u is an eigenvector of Phi(X)'Phi(X) | |
| # | |
| # At this stage our self.eigenvectors_ (the v) have norm 1, we need to scale | |
| # them so that eigenvectors in kernel feature space (the u) have norm=1 | |
| # instead | |
| # | |
| # We COULD scale them here: | |
| # self.eigenvectors_ = self.eigenvectors_ / np.sqrt(self.eigenvalues_) | |
| # | |
| # But choose to perform that LATER when needed, in `fit()` and in | |
| # `transform()`. | |
| return K | |
| def _fit_inverse_transform(self, X_transformed, X): | |
| if hasattr(X, "tocsr"): | |
| raise NotImplementedError( | |
| "Inverse transform not implemented for sparse matrices!" | |
| ) | |
| n_samples = X_transformed.shape[0] | |
| K = self._get_kernel(X_transformed) | |
| K.flat[:: n_samples + 1] += self.alpha | |
| self.dual_coef_ = linalg.solve(K, X, assume_a="pos", overwrite_a=True) | |
| self.X_transformed_fit_ = X_transformed | |
| def fit(self, X, y=None): | |
| """Fit the model from data in X. | |
| Parameters | |
| ---------- | |
| X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
| Training vector, where `n_samples` is the number of samples | |
| and `n_features` is the number of features. | |
| y : Ignored | |
| Not used, present for API consistency by convention. | |
| Returns | |
| ------- | |
| self : object | |
| Returns the instance itself. | |
| """ | |
| if self.fit_inverse_transform and self.kernel == "precomputed": | |
| raise ValueError("Cannot fit_inverse_transform with a precomputed kernel.") | |
| X = self._validate_data(X, accept_sparse="csr", copy=self.copy_X) | |
| self.gamma_ = 1 / X.shape[1] if self.gamma is None else self.gamma | |
| self._centerer = KernelCenterer().set_output(transform="default") | |
| K = self._get_kernel(X) | |
| self._fit_transform(K) | |
| if self.fit_inverse_transform: | |
| # no need to use the kernel to transform X, use shortcut expression | |
| X_transformed = self.eigenvectors_ * np.sqrt(self.eigenvalues_) | |
| self._fit_inverse_transform(X_transformed, X) | |
| self.X_fit_ = X | |
| return self | |
| def fit_transform(self, X, y=None, **params): | |
| """Fit the model from data in X and transform X. | |
| Parameters | |
| ---------- | |
| X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
| Training vector, where `n_samples` is the number of samples | |
| and `n_features` is the number of features. | |
| y : Ignored | |
| Not used, present for API consistency by convention. | |
| **params : kwargs | |
| Parameters (keyword arguments) and values passed to | |
| the fit_transform instance. | |
| Returns | |
| ------- | |
| X_new : ndarray of shape (n_samples, n_components) | |
| Returns the instance itself. | |
| """ | |
| self.fit(X, **params) | |
| # no need to use the kernel to transform X, use shortcut expression | |
| X_transformed = self.eigenvectors_ * np.sqrt(self.eigenvalues_) | |
| if self.fit_inverse_transform: | |
| self._fit_inverse_transform(X_transformed, X) | |
| return X_transformed | |
| def transform(self, X): | |
| """Transform X. | |
| Parameters | |
| ---------- | |
| X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
| Training vector, where `n_samples` is the number of samples | |
| and `n_features` is the number of features. | |
| Returns | |
| ------- | |
| X_new : ndarray of shape (n_samples, n_components) | |
| Returns the instance itself. | |
| """ | |
| check_is_fitted(self) | |
| X = self._validate_data(X, accept_sparse="csr", reset=False) | |
| # Compute centered gram matrix between X and training data X_fit_ | |
| K = self._centerer.transform(self._get_kernel(X, self.X_fit_)) | |
| # scale eigenvectors (properly account for null-space for dot product) | |
| non_zeros = np.flatnonzero(self.eigenvalues_) | |
| scaled_alphas = np.zeros_like(self.eigenvectors_) | |
| scaled_alphas[:, non_zeros] = self.eigenvectors_[:, non_zeros] / np.sqrt( | |
| self.eigenvalues_[non_zeros] | |
| ) | |
| # Project with a scalar product between K and the scaled eigenvectors | |
| return np.dot(K, scaled_alphas) | |
| def inverse_transform(self, X): | |
| """Transform X back to original space. | |
| ``inverse_transform`` approximates the inverse transformation using | |
| a learned pre-image. The pre-image is learned by kernel ridge | |
| regression of the original data on their low-dimensional representation | |
| vectors. | |
| .. note: | |
| :meth:`~sklearn.decomposition.fit` internally uses a centered | |
| kernel. As the centered kernel no longer contains the information | |
| of the mean of kernel features, such information is not taken into | |
| account in reconstruction. | |
| .. note:: | |
| When users want to compute inverse transformation for 'linear' | |
| kernel, it is recommended that they use | |
| :class:`~sklearn.decomposition.PCA` instead. Unlike | |
| :class:`~sklearn.decomposition.PCA`, | |
| :class:`~sklearn.decomposition.KernelPCA`'s ``inverse_transform`` | |
| does not reconstruct the mean of data when 'linear' kernel is used | |
| due to the use of centered kernel. | |
| Parameters | |
| ---------- | |
| X : {array-like, sparse matrix} of shape (n_samples, n_components) | |
| Training vector, where `n_samples` is the number of samples | |
| and `n_features` is the number of features. | |
| Returns | |
| ------- | |
| X_new : ndarray of shape (n_samples, n_features) | |
| Returns the instance itself. | |
| References | |
| ---------- | |
| `Bakır, Gökhan H., Jason Weston, and Bernhard Schölkopf. | |
| "Learning to find pre-images." | |
| Advances in neural information processing systems 16 (2004): 449-456. | |
| <https://papers.nips.cc/paper/2003/file/ac1ad983e08ad3304a97e147f522747e-Paper.pdf>`_ | |
| """ | |
| if not self.fit_inverse_transform: | |
| raise NotFittedError( | |
| "The fit_inverse_transform parameter was not" | |
| " set to True when instantiating and hence " | |
| "the inverse transform is not available." | |
| ) | |
| K = self._get_kernel(X, self.X_transformed_fit_) | |
| return np.dot(K, self.dual_coef_) | |
| def _more_tags(self): | |
| return { | |
| "preserves_dtype": [np.float64, np.float32], | |
| "pairwise": self.kernel == "precomputed", | |
| } | |
| def _n_features_out(self): | |
| """Number of transformed output features.""" | |
| return self.eigenvalues_.shape[0] | |