peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/manifold
/tests
/test_isomap.py
| import math | |
| from itertools import product | |
| import numpy as np | |
| import pytest | |
| from scipy.sparse import rand as sparse_rand | |
| from sklearn import clone, datasets, manifold, neighbors, pipeline, preprocessing | |
| from sklearn.datasets import make_blobs | |
| from sklearn.metrics.pairwise import pairwise_distances | |
| from sklearn.utils._testing import ( | |
| assert_allclose, | |
| assert_allclose_dense_sparse, | |
| assert_array_equal, | |
| ) | |
| from sklearn.utils.fixes import CSR_CONTAINERS | |
| eigen_solvers = ["auto", "dense", "arpack"] | |
| path_methods = ["auto", "FW", "D"] | |
| def create_sample_data(dtype, n_pts=25, add_noise=False): | |
| # grid of equidistant points in 2D, n_components = n_dim | |
| n_per_side = int(math.sqrt(n_pts)) | |
| X = np.array(list(product(range(n_per_side), repeat=2))).astype(dtype, copy=False) | |
| if add_noise: | |
| # add noise in a third dimension | |
| rng = np.random.RandomState(0) | |
| noise = 0.1 * rng.randn(n_pts, 1).astype(dtype, copy=False) | |
| X = np.concatenate((X, noise), 1) | |
| return X | |
| def test_isomap_simple_grid( | |
| global_dtype, n_neighbors, radius, eigen_solver, path_method | |
| ): | |
| # Isomap should preserve distances when all neighbors are used | |
| n_pts = 25 | |
| X = create_sample_data(global_dtype, n_pts=n_pts, add_noise=False) | |
| # distances from each point to all others | |
| if n_neighbors is not None: | |
| G = neighbors.kneighbors_graph(X, n_neighbors, mode="distance") | |
| else: | |
| G = neighbors.radius_neighbors_graph(X, radius, mode="distance") | |
| clf = manifold.Isomap( | |
| n_neighbors=n_neighbors, | |
| radius=radius, | |
| n_components=2, | |
| eigen_solver=eigen_solver, | |
| path_method=path_method, | |
| ) | |
| clf.fit(X) | |
| if n_neighbors is not None: | |
| G_iso = neighbors.kneighbors_graph(clf.embedding_, n_neighbors, mode="distance") | |
| else: | |
| G_iso = neighbors.radius_neighbors_graph( | |
| clf.embedding_, radius, mode="distance" | |
| ) | |
| atol = 1e-5 if global_dtype == np.float32 else 0 | |
| assert_allclose_dense_sparse(G, G_iso, atol=atol) | |
| def test_isomap_reconstruction_error( | |
| global_dtype, n_neighbors, radius, eigen_solver, path_method | |
| ): | |
| if global_dtype is np.float32: | |
| pytest.skip( | |
| "Skipping test due to numerical instabilities on float32 data" | |
| "from KernelCenterer used in the reconstruction_error method" | |
| ) | |
| # Same setup as in test_isomap_simple_grid, with an added dimension | |
| n_pts = 25 | |
| X = create_sample_data(global_dtype, n_pts=n_pts, add_noise=True) | |
| # compute input kernel | |
| if n_neighbors is not None: | |
| G = neighbors.kneighbors_graph(X, n_neighbors, mode="distance").toarray() | |
| else: | |
| G = neighbors.radius_neighbors_graph(X, radius, mode="distance").toarray() | |
| centerer = preprocessing.KernelCenterer() | |
| K = centerer.fit_transform(-0.5 * G**2) | |
| clf = manifold.Isomap( | |
| n_neighbors=n_neighbors, | |
| radius=radius, | |
| n_components=2, | |
| eigen_solver=eigen_solver, | |
| path_method=path_method, | |
| ) | |
| clf.fit(X) | |
| # compute output kernel | |
| if n_neighbors is not None: | |
| G_iso = neighbors.kneighbors_graph(clf.embedding_, n_neighbors, mode="distance") | |
| else: | |
| G_iso = neighbors.radius_neighbors_graph( | |
| clf.embedding_, radius, mode="distance" | |
| ) | |
| G_iso = G_iso.toarray() | |
| K_iso = centerer.fit_transform(-0.5 * G_iso**2) | |
| # make sure error agrees | |
| reconstruction_error = np.linalg.norm(K - K_iso) / n_pts | |
| atol = 1e-5 if global_dtype == np.float32 else 0 | |
| assert_allclose(reconstruction_error, clf.reconstruction_error(), atol=atol) | |
| def test_transform(global_dtype, n_neighbors, radius): | |
| n_samples = 200 | |
| n_components = 10 | |
| noise_scale = 0.01 | |
| # Create S-curve dataset | |
| X, y = datasets.make_s_curve(n_samples, random_state=0) | |
| X = X.astype(global_dtype, copy=False) | |
| # Compute isomap embedding | |
| iso = manifold.Isomap( | |
| n_components=n_components, n_neighbors=n_neighbors, radius=radius | |
| ) | |
| X_iso = iso.fit_transform(X) | |
| # Re-embed a noisy version of the points | |
| rng = np.random.RandomState(0) | |
| noise = noise_scale * rng.randn(*X.shape) | |
| X_iso2 = iso.transform(X + noise) | |
| # Make sure the rms error on re-embedding is comparable to noise_scale | |
| assert np.sqrt(np.mean((X_iso - X_iso2) ** 2)) < 2 * noise_scale | |
| def test_pipeline(n_neighbors, radius, global_dtype): | |
| # check that Isomap works fine as a transformer in a Pipeline | |
| # only checks that no error is raised. | |
| # TODO check that it actually does something useful | |
| X, y = datasets.make_blobs(random_state=0) | |
| X = X.astype(global_dtype, copy=False) | |
| clf = pipeline.Pipeline( | |
| [ | |
| ("isomap", manifold.Isomap(n_neighbors=n_neighbors, radius=radius)), | |
| ("clf", neighbors.KNeighborsClassifier()), | |
| ] | |
| ) | |
| clf.fit(X, y) | |
| assert 0.9 < clf.score(X, y) | |
| def test_pipeline_with_nearest_neighbors_transformer(global_dtype): | |
| # Test chaining NearestNeighborsTransformer and Isomap with | |
| # neighbors_algorithm='precomputed' | |
| algorithm = "auto" | |
| n_neighbors = 10 | |
| X, _ = datasets.make_blobs(random_state=0) | |
| X2, _ = datasets.make_blobs(random_state=1) | |
| X = X.astype(global_dtype, copy=False) | |
| X2 = X2.astype(global_dtype, copy=False) | |
| # compare the chained version and the compact version | |
| est_chain = pipeline.make_pipeline( | |
| neighbors.KNeighborsTransformer( | |
| n_neighbors=n_neighbors, algorithm=algorithm, mode="distance" | |
| ), | |
| manifold.Isomap(n_neighbors=n_neighbors, metric="precomputed"), | |
| ) | |
| est_compact = manifold.Isomap( | |
| n_neighbors=n_neighbors, neighbors_algorithm=algorithm | |
| ) | |
| Xt_chain = est_chain.fit_transform(X) | |
| Xt_compact = est_compact.fit_transform(X) | |
| assert_allclose(Xt_chain, Xt_compact) | |
| Xt_chain = est_chain.transform(X2) | |
| Xt_compact = est_compact.transform(X2) | |
| assert_allclose(Xt_chain, Xt_compact) | |
| def test_different_metric(global_dtype, metric, p, is_euclidean): | |
| # Isomap must work on various metric parameters work correctly | |
| # and must default to euclidean. | |
| X, _ = datasets.make_blobs(random_state=0) | |
| X = X.astype(global_dtype, copy=False) | |
| reference = manifold.Isomap().fit_transform(X) | |
| embedding = manifold.Isomap(metric=metric, p=p).fit_transform(X) | |
| if is_euclidean: | |
| assert_allclose(embedding, reference) | |
| else: | |
| with pytest.raises(AssertionError, match="Not equal to tolerance"): | |
| assert_allclose(embedding, reference) | |
| def test_isomap_clone_bug(): | |
| # regression test for bug reported in #6062 | |
| model = manifold.Isomap() | |
| for n_neighbors in [10, 15, 20]: | |
| model.set_params(n_neighbors=n_neighbors) | |
| model.fit(np.random.rand(50, 2)) | |
| assert model.nbrs_.n_neighbors == n_neighbors | |
| def test_sparse_input( | |
| global_dtype, eigen_solver, path_method, global_random_seed, csr_container | |
| ): | |
| # TODO: compare results on dense and sparse data as proposed in: | |
| # https://github.com/scikit-learn/scikit-learn/pull/23585#discussion_r968388186 | |
| X = csr_container( | |
| sparse_rand( | |
| 100, | |
| 3, | |
| density=0.1, | |
| format="csr", | |
| dtype=global_dtype, | |
| random_state=global_random_seed, | |
| ) | |
| ) | |
| iso_dense = manifold.Isomap( | |
| n_components=2, | |
| eigen_solver=eigen_solver, | |
| path_method=path_method, | |
| n_neighbors=8, | |
| ) | |
| iso_sparse = clone(iso_dense) | |
| X_trans_dense = iso_dense.fit_transform(X.toarray()) | |
| X_trans_sparse = iso_sparse.fit_transform(X) | |
| assert_allclose(X_trans_sparse, X_trans_dense, rtol=1e-4, atol=1e-4) | |
| def test_isomap_fit_precomputed_radius_graph(global_dtype): | |
| # Isomap.fit_transform must yield similar result when using | |
| # a precomputed distance matrix. | |
| X, y = datasets.make_s_curve(200, random_state=0) | |
| X = X.astype(global_dtype, copy=False) | |
| radius = 10 | |
| g = neighbors.radius_neighbors_graph(X, radius=radius, mode="distance") | |
| isomap = manifold.Isomap(n_neighbors=None, radius=radius, metric="precomputed") | |
| isomap.fit(g) | |
| precomputed_result = isomap.embedding_ | |
| isomap = manifold.Isomap(n_neighbors=None, radius=radius, metric="minkowski") | |
| result = isomap.fit_transform(X) | |
| atol = 1e-5 if global_dtype == np.float32 else 0 | |
| assert_allclose(precomputed_result, result, atol=atol) | |
| def test_isomap_fitted_attributes_dtype(global_dtype): | |
| """Check that the fitted attributes are stored accordingly to the | |
| data type of X.""" | |
| iso = manifold.Isomap(n_neighbors=2) | |
| X = np.array([[1, 2], [3, 4], [5, 6]], dtype=global_dtype) | |
| iso.fit(X) | |
| assert iso.dist_matrix_.dtype == global_dtype | |
| assert iso.embedding_.dtype == global_dtype | |
| def test_isomap_dtype_equivalence(): | |
| """Check the equivalence of the results with 32 and 64 bits input.""" | |
| iso_32 = manifold.Isomap(n_neighbors=2) | |
| X_32 = np.array([[1, 2], [3, 4], [5, 6]], dtype=np.float32) | |
| iso_32.fit(X_32) | |
| iso_64 = manifold.Isomap(n_neighbors=2) | |
| X_64 = np.array([[1, 2], [3, 4], [5, 6]], dtype=np.float64) | |
| iso_64.fit(X_64) | |
| assert_allclose(iso_32.dist_matrix_, iso_64.dist_matrix_) | |
| def test_isomap_raise_error_when_neighbor_and_radius_both_set(): | |
| # Isomap.fit_transform must raise a ValueError if | |
| # radius and n_neighbors are provided. | |
| X, _ = datasets.load_digits(return_X_y=True) | |
| isomap = manifold.Isomap(n_neighbors=3, radius=5.5) | |
| msg = "Both n_neighbors and radius are provided" | |
| with pytest.raises(ValueError, match=msg): | |
| isomap.fit_transform(X) | |
| def test_multiple_connected_components(): | |
| # Test that a warning is raised when the graph has multiple components | |
| X = np.array([0, 1, 2, 5, 6, 7])[:, None] | |
| with pytest.warns(UserWarning, match="number of connected components"): | |
| manifold.Isomap(n_neighbors=2).fit(X) | |
| def test_multiple_connected_components_metric_precomputed(global_dtype): | |
| # Test that an error is raised when the graph has multiple components | |
| # and when X is a precomputed neighbors graph. | |
| X = np.array([0, 1, 2, 5, 6, 7])[:, None].astype(global_dtype, copy=False) | |
| # works with a precomputed distance matrix (dense) | |
| X_distances = pairwise_distances(X) | |
| with pytest.warns(UserWarning, match="number of connected components"): | |
| manifold.Isomap(n_neighbors=1, metric="precomputed").fit(X_distances) | |
| # does not work with a precomputed neighbors graph (sparse) | |
| X_graph = neighbors.kneighbors_graph(X, n_neighbors=2, mode="distance") | |
| with pytest.raises(RuntimeError, match="number of connected components"): | |
| manifold.Isomap(n_neighbors=1, metric="precomputed").fit(X_graph) | |
| def test_get_feature_names_out(): | |
| """Check get_feature_names_out for Isomap.""" | |
| X, y = make_blobs(random_state=0, n_features=4) | |
| n_components = 2 | |
| iso = manifold.Isomap(n_components=n_components) | |
| iso.fit_transform(X) | |
| names = iso.get_feature_names_out() | |
| assert_array_equal([f"isomap{i}" for i in range(n_components)], names) | |