peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/nltk
/tbl
/demo.py
| # Natural Language Toolkit: Transformation-based learning | |
| # | |
| # Copyright (C) 2001-2023 NLTK Project | |
| # Author: Marcus Uneson <marcus.uneson@gmail.com> | |
| # based on previous (nltk2) version by | |
| # Christopher Maloof, Edward Loper, Steven Bird | |
| # URL: <https://www.nltk.org/> | |
| # For license information, see LICENSE.TXT | |
| import os | |
| import pickle | |
| import random | |
| import time | |
| from nltk.corpus import treebank | |
| from nltk.tag import BrillTaggerTrainer, RegexpTagger, UnigramTagger | |
| from nltk.tag.brill import Pos, Word | |
| from nltk.tbl import Template, error_list | |
| def demo(): | |
| """ | |
| Run a demo with defaults. See source comments for details, | |
| or docstrings of any of the more specific demo_* functions. | |
| """ | |
| postag() | |
| def demo_repr_rule_format(): | |
| """ | |
| Exemplify repr(Rule) (see also str(Rule) and Rule.format("verbose")) | |
| """ | |
| postag(ruleformat="repr") | |
| def demo_str_rule_format(): | |
| """ | |
| Exemplify repr(Rule) (see also str(Rule) and Rule.format("verbose")) | |
| """ | |
| postag(ruleformat="str") | |
| def demo_verbose_rule_format(): | |
| """ | |
| Exemplify Rule.format("verbose") | |
| """ | |
| postag(ruleformat="verbose") | |
| def demo_multiposition_feature(): | |
| """ | |
| The feature/s of a template takes a list of positions | |
| relative to the current word where the feature should be | |
| looked for, conceptually joined by logical OR. For instance, | |
| Pos([-1, 1]), given a value V, will hold whenever V is found | |
| one step to the left and/or one step to the right. | |
| For contiguous ranges, a 2-arg form giving inclusive end | |
| points can also be used: Pos(-3, -1) is the same as the arg | |
| below. | |
| """ | |
| postag(templates=[Template(Pos([-3, -2, -1]))]) | |
| def demo_multifeature_template(): | |
| """ | |
| Templates can have more than a single feature. | |
| """ | |
| postag(templates=[Template(Word([0]), Pos([-2, -1]))]) | |
| def demo_template_statistics(): | |
| """ | |
| Show aggregate statistics per template. Little used templates are | |
| candidates for deletion, much used templates may possibly be refined. | |
| Deleting unused templates is mostly about saving time and/or space: | |
| training is basically O(T) in the number of templates T | |
| (also in terms of memory usage, which often will be the limiting factor). | |
| """ | |
| postag(incremental_stats=True, template_stats=True) | |
| def demo_generated_templates(): | |
| """ | |
| Template.expand and Feature.expand are class methods facilitating | |
| generating large amounts of templates. See their documentation for | |
| details. | |
| Note: training with 500 templates can easily fill all available | |
| even on relatively small corpora | |
| """ | |
| wordtpls = Word.expand([-1, 0, 1], [1, 2], excludezero=False) | |
| tagtpls = Pos.expand([-2, -1, 0, 1], [1, 2], excludezero=True) | |
| templates = list(Template.expand([wordtpls, tagtpls], combinations=(1, 3))) | |
| print( | |
| "Generated {} templates for transformation-based learning".format( | |
| len(templates) | |
| ) | |
| ) | |
| postag(templates=templates, incremental_stats=True, template_stats=True) | |
| def demo_learning_curve(): | |
| """ | |
| Plot a learning curve -- the contribution on tagging accuracy of | |
| the individual rules. | |
| Note: requires matplotlib | |
| """ | |
| postag( | |
| incremental_stats=True, | |
| separate_baseline_data=True, | |
| learning_curve_output="learningcurve.png", | |
| ) | |
| def demo_error_analysis(): | |
| """ | |
| Writes a file with context for each erroneous word after tagging testing data | |
| """ | |
| postag(error_output="errors.txt") | |
| def demo_serialize_tagger(): | |
| """ | |
| Serializes the learned tagger to a file in pickle format; reloads it | |
| and validates the process. | |
| """ | |
| postag(serialize_output="tagger.pcl") | |
| def demo_high_accuracy_rules(): | |
| """ | |
| Discard rules with low accuracy. This may hurt performance a bit, | |
| but will often produce rules which are more interesting read to a human. | |
| """ | |
| postag(num_sents=3000, min_acc=0.96, min_score=10) | |
| def postag( | |
| templates=None, | |
| tagged_data=None, | |
| num_sents=1000, | |
| max_rules=300, | |
| min_score=3, | |
| min_acc=None, | |
| train=0.8, | |
| trace=3, | |
| randomize=False, | |
| ruleformat="str", | |
| incremental_stats=False, | |
| template_stats=False, | |
| error_output=None, | |
| serialize_output=None, | |
| learning_curve_output=None, | |
| learning_curve_take=300, | |
| baseline_backoff_tagger=None, | |
| separate_baseline_data=False, | |
| cache_baseline_tagger=None, | |
| ): | |
| """ | |
| Brill Tagger Demonstration | |
| :param templates: how many sentences of training and testing data to use | |
| :type templates: list of Template | |
| :param tagged_data: maximum number of rule instances to create | |
| :type tagged_data: C{int} | |
| :param num_sents: how many sentences of training and testing data to use | |
| :type num_sents: C{int} | |
| :param max_rules: maximum number of rule instances to create | |
| :type max_rules: C{int} | |
| :param min_score: the minimum score for a rule in order for it to be considered | |
| :type min_score: C{int} | |
| :param min_acc: the minimum score for a rule in order for it to be considered | |
| :type min_acc: C{float} | |
| :param train: the fraction of the the corpus to be used for training (1=all) | |
| :type train: C{float} | |
| :param trace: the level of diagnostic tracing output to produce (0-4) | |
| :type trace: C{int} | |
| :param randomize: whether the training data should be a random subset of the corpus | |
| :type randomize: C{bool} | |
| :param ruleformat: rule output format, one of "str", "repr", "verbose" | |
| :type ruleformat: C{str} | |
| :param incremental_stats: if true, will tag incrementally and collect stats for each rule (rather slow) | |
| :type incremental_stats: C{bool} | |
| :param template_stats: if true, will print per-template statistics collected in training and (optionally) testing | |
| :type template_stats: C{bool} | |
| :param error_output: the file where errors will be saved | |
| :type error_output: C{string} | |
| :param serialize_output: the file where the learned tbl tagger will be saved | |
| :type serialize_output: C{string} | |
| :param learning_curve_output: filename of plot of learning curve(s) (train and also test, if available) | |
| :type learning_curve_output: C{string} | |
| :param learning_curve_take: how many rules plotted | |
| :type learning_curve_take: C{int} | |
| :param baseline_backoff_tagger: the file where rules will be saved | |
| :type baseline_backoff_tagger: tagger | |
| :param separate_baseline_data: use a fraction of the training data exclusively for training baseline | |
| :type separate_baseline_data: C{bool} | |
| :param cache_baseline_tagger: cache baseline tagger to this file (only interesting as a temporary workaround to get | |
| deterministic output from the baseline unigram tagger between python versions) | |
| :type cache_baseline_tagger: C{string} | |
| Note on separate_baseline_data: if True, reuse training data both for baseline and rule learner. This | |
| is fast and fine for a demo, but is likely to generalize worse on unseen data. | |
| Also cannot be sensibly used for learning curves on training data (the baseline will be artificially high). | |
| """ | |
| # defaults | |
| baseline_backoff_tagger = baseline_backoff_tagger or REGEXP_TAGGER | |
| if templates is None: | |
| from nltk.tag.brill import brill24, describe_template_sets | |
| # some pre-built template sets taken from typical systems or publications are | |
| # available. Print a list with describe_template_sets() | |
| # for instance: | |
| templates = brill24() | |
| (training_data, baseline_data, gold_data, testing_data) = _demo_prepare_data( | |
| tagged_data, train, num_sents, randomize, separate_baseline_data | |
| ) | |
| # creating (or reloading from cache) a baseline tagger (unigram tagger) | |
| # this is just a mechanism for getting deterministic output from the baseline between | |
| # python versions | |
| if cache_baseline_tagger: | |
| if not os.path.exists(cache_baseline_tagger): | |
| baseline_tagger = UnigramTagger( | |
| baseline_data, backoff=baseline_backoff_tagger | |
| ) | |
| with open(cache_baseline_tagger, "w") as print_rules: | |
| pickle.dump(baseline_tagger, print_rules) | |
| print( | |
| "Trained baseline tagger, pickled it to {}".format( | |
| cache_baseline_tagger | |
| ) | |
| ) | |
| with open(cache_baseline_tagger) as print_rules: | |
| baseline_tagger = pickle.load(print_rules) | |
| print(f"Reloaded pickled tagger from {cache_baseline_tagger}") | |
| else: | |
| baseline_tagger = UnigramTagger(baseline_data, backoff=baseline_backoff_tagger) | |
| print("Trained baseline tagger") | |
| if gold_data: | |
| print( | |
| " Accuracy on test set: {:0.4f}".format( | |
| baseline_tagger.accuracy(gold_data) | |
| ) | |
| ) | |
| # creating a Brill tagger | |
| tbrill = time.time() | |
| trainer = BrillTaggerTrainer( | |
| baseline_tagger, templates, trace, ruleformat=ruleformat | |
| ) | |
| print("Training tbl tagger...") | |
| brill_tagger = trainer.train(training_data, max_rules, min_score, min_acc) | |
| print(f"Trained tbl tagger in {time.time() - tbrill:0.2f} seconds") | |
| if gold_data: | |
| print(" Accuracy on test set: %.4f" % brill_tagger.accuracy(gold_data)) | |
| # printing the learned rules, if learned silently | |
| if trace == 1: | |
| print("\nLearned rules: ") | |
| for (ruleno, rule) in enumerate(brill_tagger.rules(), 1): | |
| print(f"{ruleno:4d} {rule.format(ruleformat):s}") | |
| # printing template statistics (optionally including comparison with the training data) | |
| # note: if not separate_baseline_data, then baseline accuracy will be artificially high | |
| if incremental_stats: | |
| print( | |
| "Incrementally tagging the test data, collecting individual rule statistics" | |
| ) | |
| (taggedtest, teststats) = brill_tagger.batch_tag_incremental( | |
| testing_data, gold_data | |
| ) | |
| print(" Rule statistics collected") | |
| if not separate_baseline_data: | |
| print( | |
| "WARNING: train_stats asked for separate_baseline_data=True; the baseline " | |
| "will be artificially high" | |
| ) | |
| trainstats = brill_tagger.train_stats() | |
| if template_stats: | |
| brill_tagger.print_template_statistics(teststats) | |
| if learning_curve_output: | |
| _demo_plot( | |
| learning_curve_output, teststats, trainstats, take=learning_curve_take | |
| ) | |
| print(f"Wrote plot of learning curve to {learning_curve_output}") | |
| else: | |
| print("Tagging the test data") | |
| taggedtest = brill_tagger.tag_sents(testing_data) | |
| if template_stats: | |
| brill_tagger.print_template_statistics() | |
| # writing error analysis to file | |
| if error_output is not None: | |
| with open(error_output, "w") as f: | |
| f.write("Errors for Brill Tagger %r\n\n" % serialize_output) | |
| f.write("\n".join(error_list(gold_data, taggedtest)).encode("utf-8") + "\n") | |
| print(f"Wrote tagger errors including context to {error_output}") | |
| # serializing the tagger to a pickle file and reloading (just to see it works) | |
| if serialize_output is not None: | |
| taggedtest = brill_tagger.tag_sents(testing_data) | |
| with open(serialize_output, "w") as print_rules: | |
| pickle.dump(brill_tagger, print_rules) | |
| print(f"Wrote pickled tagger to {serialize_output}") | |
| with open(serialize_output) as print_rules: | |
| brill_tagger_reloaded = pickle.load(print_rules) | |
| print(f"Reloaded pickled tagger from {serialize_output}") | |
| taggedtest_reloaded = brill_tagger.tag_sents(testing_data) | |
| if taggedtest == taggedtest_reloaded: | |
| print("Reloaded tagger tried on test set, results identical") | |
| else: | |
| print("PROBLEM: Reloaded tagger gave different results on test set") | |
| def _demo_prepare_data( | |
| tagged_data, train, num_sents, randomize, separate_baseline_data | |
| ): | |
| # train is the proportion of data used in training; the rest is reserved | |
| # for testing. | |
| if tagged_data is None: | |
| print("Loading tagged data from treebank... ") | |
| tagged_data = treebank.tagged_sents() | |
| if num_sents is None or len(tagged_data) <= num_sents: | |
| num_sents = len(tagged_data) | |
| if randomize: | |
| random.seed(len(tagged_data)) | |
| random.shuffle(tagged_data) | |
| cutoff = int(num_sents * train) | |
| training_data = tagged_data[:cutoff] | |
| gold_data = tagged_data[cutoff:num_sents] | |
| testing_data = [[t[0] for t in sent] for sent in gold_data] | |
| if not separate_baseline_data: | |
| baseline_data = training_data | |
| else: | |
| bl_cutoff = len(training_data) // 3 | |
| (baseline_data, training_data) = ( | |
| training_data[:bl_cutoff], | |
| training_data[bl_cutoff:], | |
| ) | |
| (trainseqs, traintokens) = corpus_size(training_data) | |
| (testseqs, testtokens) = corpus_size(testing_data) | |
| (bltrainseqs, bltraintokens) = corpus_size(baseline_data) | |
| print(f"Read testing data ({testseqs:d} sents/{testtokens:d} wds)") | |
| print(f"Read training data ({trainseqs:d} sents/{traintokens:d} wds)") | |
| print( | |
| "Read baseline data ({:d} sents/{:d} wds) {:s}".format( | |
| bltrainseqs, | |
| bltraintokens, | |
| "" if separate_baseline_data else "[reused the training set]", | |
| ) | |
| ) | |
| return (training_data, baseline_data, gold_data, testing_data) | |
| def _demo_plot(learning_curve_output, teststats, trainstats=None, take=None): | |
| testcurve = [teststats["initialerrors"]] | |
| for rulescore in teststats["rulescores"]: | |
| testcurve.append(testcurve[-1] - rulescore) | |
| testcurve = [1 - x / teststats["tokencount"] for x in testcurve[:take]] | |
| traincurve = [trainstats["initialerrors"]] | |
| for rulescore in trainstats["rulescores"]: | |
| traincurve.append(traincurve[-1] - rulescore) | |
| traincurve = [1 - x / trainstats["tokencount"] for x in traincurve[:take]] | |
| import matplotlib.pyplot as plt | |
| r = list(range(len(testcurve))) | |
| plt.plot(r, testcurve, r, traincurve) | |
| plt.axis([None, None, None, 1.0]) | |
| plt.savefig(learning_curve_output) | |
| NN_CD_TAGGER = RegexpTagger([(r"^-?[0-9]+(\.[0-9]+)?$", "CD"), (r".*", "NN")]) | |
| REGEXP_TAGGER = RegexpTagger( | |
| [ | |
| (r"^-?[0-9]+(\.[0-9]+)?$", "CD"), # cardinal numbers | |
| (r"(The|the|A|a|An|an)$", "AT"), # articles | |
| (r".*able$", "JJ"), # adjectives | |
| (r".*ness$", "NN"), # nouns formed from adjectives | |
| (r".*ly$", "RB"), # adverbs | |
| (r".*s$", "NNS"), # plural nouns | |
| (r".*ing$", "VBG"), # gerunds | |
| (r".*ed$", "VBD"), # past tense verbs | |
| (r".*", "NN"), # nouns (default) | |
| ] | |
| ) | |
| def corpus_size(seqs): | |
| return (len(seqs), sum(len(x) for x in seqs)) | |
| if __name__ == "__main__": | |
| demo_learning_curve() | |