peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/nltk
/chunk
/named_entity.py
| # Natural Language Toolkit: Chunk parsing API | |
| # | |
| # Copyright (C) 2001-2023 NLTK Project | |
| # Author: Edward Loper <edloper@gmail.com> | |
| # URL: <https://www.nltk.org/> | |
| # For license information, see LICENSE.TXT | |
| """ | |
| Named entity chunker | |
| """ | |
| import os | |
| import pickle | |
| import re | |
| from xml.etree import ElementTree as ET | |
| from nltk.tag import ClassifierBasedTagger, pos_tag | |
| try: | |
| from nltk.classify import MaxentClassifier | |
| except ImportError: | |
| pass | |
| from nltk.chunk.api import ChunkParserI | |
| from nltk.chunk.util import ChunkScore | |
| from nltk.data import find | |
| from nltk.tokenize import word_tokenize | |
| from nltk.tree import Tree | |
| class NEChunkParserTagger(ClassifierBasedTagger): | |
| """ | |
| The IOB tagger used by the chunk parser. | |
| """ | |
| def __init__(self, train): | |
| ClassifierBasedTagger.__init__( | |
| self, train=train, classifier_builder=self._classifier_builder | |
| ) | |
| def _classifier_builder(self, train): | |
| return MaxentClassifier.train( | |
| train, algorithm="megam", gaussian_prior_sigma=1, trace=2 | |
| ) | |
| def _english_wordlist(self): | |
| try: | |
| wl = self._en_wordlist | |
| except AttributeError: | |
| from nltk.corpus import words | |
| self._en_wordlist = set(words.words("en-basic")) | |
| wl = self._en_wordlist | |
| return wl | |
| def _feature_detector(self, tokens, index, history): | |
| word = tokens[index][0] | |
| pos = simplify_pos(tokens[index][1]) | |
| if index == 0: | |
| prevword = prevprevword = None | |
| prevpos = prevprevpos = None | |
| prevshape = prevtag = prevprevtag = None | |
| elif index == 1: | |
| prevword = tokens[index - 1][0].lower() | |
| prevprevword = None | |
| prevpos = simplify_pos(tokens[index - 1][1]) | |
| prevprevpos = None | |
| prevtag = history[index - 1][0] | |
| prevshape = prevprevtag = None | |
| else: | |
| prevword = tokens[index - 1][0].lower() | |
| prevprevword = tokens[index - 2][0].lower() | |
| prevpos = simplify_pos(tokens[index - 1][1]) | |
| prevprevpos = simplify_pos(tokens[index - 2][1]) | |
| prevtag = history[index - 1] | |
| prevprevtag = history[index - 2] | |
| prevshape = shape(prevword) | |
| if index == len(tokens) - 1: | |
| nextword = nextnextword = None | |
| nextpos = nextnextpos = None | |
| elif index == len(tokens) - 2: | |
| nextword = tokens[index + 1][0].lower() | |
| nextpos = tokens[index + 1][1].lower() | |
| nextnextword = None | |
| nextnextpos = None | |
| else: | |
| nextword = tokens[index + 1][0].lower() | |
| nextpos = tokens[index + 1][1].lower() | |
| nextnextword = tokens[index + 2][0].lower() | |
| nextnextpos = tokens[index + 2][1].lower() | |
| # 89.6 | |
| features = { | |
| "bias": True, | |
| "shape": shape(word), | |
| "wordlen": len(word), | |
| "prefix3": word[:3].lower(), | |
| "suffix3": word[-3:].lower(), | |
| "pos": pos, | |
| "word": word, | |
| "en-wordlist": (word in self._english_wordlist()), | |
| "prevtag": prevtag, | |
| "prevpos": prevpos, | |
| "nextpos": nextpos, | |
| "prevword": prevword, | |
| "nextword": nextword, | |
| "word+nextpos": f"{word.lower()}+{nextpos}", | |
| "pos+prevtag": f"{pos}+{prevtag}", | |
| "shape+prevtag": f"{prevshape}+{prevtag}", | |
| } | |
| return features | |
| class NEChunkParser(ChunkParserI): | |
| """ | |
| Expected input: list of pos-tagged words | |
| """ | |
| def __init__(self, train): | |
| self._train(train) | |
| def parse(self, tokens): | |
| """ | |
| Each token should be a pos-tagged word | |
| """ | |
| tagged = self._tagger.tag(tokens) | |
| tree = self._tagged_to_parse(tagged) | |
| return tree | |
| def _train(self, corpus): | |
| # Convert to tagged sequence | |
| corpus = [self._parse_to_tagged(s) for s in corpus] | |
| self._tagger = NEChunkParserTagger(train=corpus) | |
| def _tagged_to_parse(self, tagged_tokens): | |
| """ | |
| Convert a list of tagged tokens to a chunk-parse tree. | |
| """ | |
| sent = Tree("S", []) | |
| for (tok, tag) in tagged_tokens: | |
| if tag == "O": | |
| sent.append(tok) | |
| elif tag.startswith("B-"): | |
| sent.append(Tree(tag[2:], [tok])) | |
| elif tag.startswith("I-"): | |
| if sent and isinstance(sent[-1], Tree) and sent[-1].label() == tag[2:]: | |
| sent[-1].append(tok) | |
| else: | |
| sent.append(Tree(tag[2:], [tok])) | |
| return sent | |
| def _parse_to_tagged(sent): | |
| """ | |
| Convert a chunk-parse tree to a list of tagged tokens. | |
| """ | |
| toks = [] | |
| for child in sent: | |
| if isinstance(child, Tree): | |
| if len(child) == 0: | |
| print("Warning -- empty chunk in sentence") | |
| continue | |
| toks.append((child[0], f"B-{child.label()}")) | |
| for tok in child[1:]: | |
| toks.append((tok, f"I-{child.label()}")) | |
| else: | |
| toks.append((child, "O")) | |
| return toks | |
| def shape(word): | |
| if re.match(r"[0-9]+(\.[0-9]*)?|[0-9]*\.[0-9]+$", word, re.UNICODE): | |
| return "number" | |
| elif re.match(r"\W+$", word, re.UNICODE): | |
| return "punct" | |
| elif re.match(r"\w+$", word, re.UNICODE): | |
| if word.istitle(): | |
| return "upcase" | |
| elif word.islower(): | |
| return "downcase" | |
| else: | |
| return "mixedcase" | |
| else: | |
| return "other" | |
| def simplify_pos(s): | |
| if s.startswith("V"): | |
| return "V" | |
| else: | |
| return s.split("-")[0] | |
| def postag_tree(tree): | |
| # Part-of-speech tagging. | |
| words = tree.leaves() | |
| tag_iter = (pos for (word, pos) in pos_tag(words)) | |
| newtree = Tree("S", []) | |
| for child in tree: | |
| if isinstance(child, Tree): | |
| newtree.append(Tree(child.label(), [])) | |
| for subchild in child: | |
| newtree[-1].append((subchild, next(tag_iter))) | |
| else: | |
| newtree.append((child, next(tag_iter))) | |
| return newtree | |
| def load_ace_data(roots, fmt="binary", skip_bnews=True): | |
| for root in roots: | |
| for root, dirs, files in os.walk(root): | |
| if root.endswith("bnews") and skip_bnews: | |
| continue | |
| for f in files: | |
| if f.endswith(".sgm"): | |
| yield from load_ace_file(os.path.join(root, f), fmt) | |
| def load_ace_file(textfile, fmt): | |
| print(f" - {os.path.split(textfile)[1]}") | |
| annfile = textfile + ".tmx.rdc.xml" | |
| # Read the xml file, and get a list of entities | |
| entities = [] | |
| with open(annfile) as infile: | |
| xml = ET.parse(infile).getroot() | |
| for entity in xml.findall("document/entity"): | |
| typ = entity.find("entity_type").text | |
| for mention in entity.findall("entity_mention"): | |
| if mention.get("TYPE") != "NAME": | |
| continue # only NEs | |
| s = int(mention.find("head/charseq/start").text) | |
| e = int(mention.find("head/charseq/end").text) + 1 | |
| entities.append((s, e, typ)) | |
| # Read the text file, and mark the entities. | |
| with open(textfile) as infile: | |
| text = infile.read() | |
| # Strip XML tags, since they don't count towards the indices | |
| text = re.sub("<(?!/?TEXT)[^>]+>", "", text) | |
| # Blank out anything before/after <TEXT> | |
| def subfunc(m): | |
| return " " * (m.end() - m.start() - 6) | |
| text = re.sub(r"[\s\S]*<TEXT>", subfunc, text) | |
| text = re.sub(r"</TEXT>[\s\S]*", "", text) | |
| # Simplify quotes | |
| text = re.sub("``", ' "', text) | |
| text = re.sub("''", '" ', text) | |
| entity_types = {typ for (s, e, typ) in entities} | |
| # Binary distinction (NE or not NE) | |
| if fmt == "binary": | |
| i = 0 | |
| toks = Tree("S", []) | |
| for (s, e, typ) in sorted(entities): | |
| if s < i: | |
| s = i # Overlapping! Deal with this better? | |
| if e <= s: | |
| continue | |
| toks.extend(word_tokenize(text[i:s])) | |
| toks.append(Tree("NE", text[s:e].split())) | |
| i = e | |
| toks.extend(word_tokenize(text[i:])) | |
| yield toks | |
| # Multiclass distinction (NE type) | |
| elif fmt == "multiclass": | |
| i = 0 | |
| toks = Tree("S", []) | |
| for (s, e, typ) in sorted(entities): | |
| if s < i: | |
| s = i # Overlapping! Deal with this better? | |
| if e <= s: | |
| continue | |
| toks.extend(word_tokenize(text[i:s])) | |
| toks.append(Tree(typ, text[s:e].split())) | |
| i = e | |
| toks.extend(word_tokenize(text[i:])) | |
| yield toks | |
| else: | |
| raise ValueError("bad fmt value") | |
| # This probably belongs in a more general-purpose location (as does | |
| # the parse_to_tagged function). | |
| def cmp_chunks(correct, guessed): | |
| correct = NEChunkParser._parse_to_tagged(correct) | |
| guessed = NEChunkParser._parse_to_tagged(guessed) | |
| ellipsis = False | |
| for (w, ct), (w, gt) in zip(correct, guessed): | |
| if ct == gt == "O": | |
| if not ellipsis: | |
| print(f" {ct:15} {gt:15} {w}") | |
| print(" {:15} {:15} {2}".format("...", "...", "...")) | |
| ellipsis = True | |
| else: | |
| ellipsis = False | |
| print(f" {ct:15} {gt:15} {w}") | |
| def build_model(fmt="binary"): | |
| print("Loading training data...") | |
| train_paths = [ | |
| find("corpora/ace_data/ace.dev"), | |
| find("corpora/ace_data/ace.heldout"), | |
| find("corpora/ace_data/bbn.dev"), | |
| find("corpora/ace_data/muc.dev"), | |
| ] | |
| train_trees = load_ace_data(train_paths, fmt) | |
| train_data = [postag_tree(t) for t in train_trees] | |
| print("Training...") | |
| cp = NEChunkParser(train_data) | |
| del train_data | |
| print("Loading eval data...") | |
| eval_paths = [find("corpora/ace_data/ace.eval")] | |
| eval_trees = load_ace_data(eval_paths, fmt) | |
| eval_data = [postag_tree(t) for t in eval_trees] | |
| print("Evaluating...") | |
| chunkscore = ChunkScore() | |
| for i, correct in enumerate(eval_data): | |
| guess = cp.parse(correct.leaves()) | |
| chunkscore.score(correct, guess) | |
| if i < 3: | |
| cmp_chunks(correct, guess) | |
| print(chunkscore) | |
| outfilename = f"/tmp/ne_chunker_{fmt}.pickle" | |
| print(f"Saving chunker to {outfilename}...") | |
| with open(outfilename, "wb") as outfile: | |
| pickle.dump(cp, outfile, -1) | |
| return cp | |
| if __name__ == "__main__": | |
| # Make sure that the pickled object has the right class name: | |
| from nltk.chunk.named_entity import build_model | |
| build_model("binary") | |
| build_model("multiclass") | |