Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,79 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
---
|
6 |
+
---
|
7 |
+
viewer: true
|
8 |
+
annotations_creators: []
|
9 |
+
language: []
|
10 |
+
language_creators: []
|
11 |
+
license:
|
12 |
+
- cc-by-4.0
|
13 |
+
pretty_name: lvis
|
14 |
+
size_categories:
|
15 |
+
- 1M<n<10M
|
16 |
+
source_datasets: []
|
17 |
+
tags:
|
18 |
+
- segmentation
|
19 |
+
- coco
|
20 |
+
task_categories:
|
21 |
+
- image-segmentation
|
22 |
+
task_ids:
|
23 |
+
- instance-segmentation
|
24 |
+
---
|
25 |
+
|
26 |
+
# LVIS
|
27 |
+
### Dataset Summary
|
28 |
+
|
29 |
+
This dataset is the implementation of LVIS dataset into Hugging Face datasets. Please visit the original website for more information.
|
30 |
+
|
31 |
+
- https://www.lvisdataset.org/
|
32 |
+
|
33 |
+
### Loading
|
34 |
+
This code returns train, validation and test generators.
|
35 |
+
|
36 |
+
```python
|
37 |
+
from datasets import load_dataset
|
38 |
+
|
39 |
+
dataset = load_dataset("winvoker/lvis")
|
40 |
+
```
|
41 |
+
|
42 |
+
Objects is a dictionary which contains annotation information like bbox, class.
|
43 |
+
```
|
44 |
+
DatasetDict({
|
45 |
+
train: Dataset({
|
46 |
+
features: ['id', 'image', 'height', 'width', 'objects'],
|
47 |
+
num_rows: 100170
|
48 |
+
})
|
49 |
+
validation: Dataset({
|
50 |
+
features: ['id', 'image', 'height', 'width', 'objects'],
|
51 |
+
num_rows: 4809
|
52 |
+
})
|
53 |
+
test: Dataset({
|
54 |
+
features: ['id', 'image', 'height', 'width', 'objects'],
|
55 |
+
num_rows: 19822
|
56 |
+
})
|
57 |
+
})
|
58 |
+
```
|
59 |
+
### Access Generators
|
60 |
+
```python
|
61 |
+
train = dataset["train"]
|
62 |
+
validation = dataset["validation"]
|
63 |
+
test = dataset["test"]
|
64 |
+
```
|
65 |
+
|
66 |
+
An example row is as follows.
|
67 |
+
|
68 |
+
```json
|
69 |
+
{ 'id': 0,
|
70 |
+
'image': '000000437561.jpg',
|
71 |
+
'height': 480,
|
72 |
+
'width': 640,
|
73 |
+
'objects': {
|
74 |
+
'bboxes': [[[392, 271, 14, 3]],
|
75 |
+
'classes': [117],
|
76 |
+
'segmentation': [[376, 272, 375, 270, 372, 269, 371, 269, 373, 269, 373]]
|
77 |
+
}
|
78 |
+
}
|
79 |
+
```
|