anvilarth commited on
Commit
72d4a1b
·
verified ·
1 Parent(s): e6482b1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md CHANGED
@@ -1,3 +1,79 @@
1
  ---
2
  license: apache-2.0
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ language:
4
+ - en
5
  ---
6
+ ---
7
+ viewer: true
8
+ annotations_creators: []
9
+ language: []
10
+ language_creators: []
11
+ license:
12
+ - cc-by-4.0
13
+ pretty_name: lvis
14
+ size_categories:
15
+ - 1M<n<10M
16
+ source_datasets: []
17
+ tags:
18
+ - segmentation
19
+ - coco
20
+ task_categories:
21
+ - image-segmentation
22
+ task_ids:
23
+ - instance-segmentation
24
+ ---
25
+
26
+ # LVIS
27
+ ### Dataset Summary
28
+
29
+ This dataset is the implementation of LVIS dataset into Hugging Face datasets. Please visit the original website for more information.
30
+
31
+ - https://www.lvisdataset.org/
32
+
33
+ ### Loading
34
+ This code returns train, validation and test generators.
35
+
36
+ ```python
37
+ from datasets import load_dataset
38
+
39
+ dataset = load_dataset("winvoker/lvis")
40
+ ```
41
+
42
+ Objects is a dictionary which contains annotation information like bbox, class.
43
+ ```
44
+ DatasetDict({
45
+ train: Dataset({
46
+ features: ['id', 'image', 'height', 'width', 'objects'],
47
+ num_rows: 100170
48
+ })
49
+ validation: Dataset({
50
+ features: ['id', 'image', 'height', 'width', 'objects'],
51
+ num_rows: 4809
52
+ })
53
+ test: Dataset({
54
+ features: ['id', 'image', 'height', 'width', 'objects'],
55
+ num_rows: 19822
56
+ })
57
+ })
58
+ ```
59
+ ### Access Generators
60
+ ```python
61
+ train = dataset["train"]
62
+ validation = dataset["validation"]
63
+ test = dataset["test"]
64
+ ```
65
+
66
+ An example row is as follows.
67
+
68
+ ```json
69
+ { 'id': 0,
70
+ 'image': '000000437561.jpg',
71
+ 'height': 480,
72
+ 'width': 640,
73
+ 'objects': {
74
+ 'bboxes': [[[392, 271, 14, 3]],
75
+ 'classes': [117],
76
+ 'segmentation': [[376, 272, 375, 270, 372, 269, 371, 269, 373, 269, 373]]
77
+ }
78
+ }
79
+ ```