speech-test
commited on
Commit
·
108f378
1
Parent(s):
e45c283
Upload
Browse files- sd.json +3 -0
- superb_dummy.py +27 -0
sd.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43d6de49a557a63b23147e1b16c10fb624d220b40afc7b620dd1cf9ac540c739
|
3 |
+
size 6949114
|
superb_dummy.py
CHANGED
@@ -217,6 +217,33 @@ class Superb(datasets.GeneratorBasedBuilder):
|
|
217 |
url="https://sail.usc.edu/iemocap/",
|
218 |
data_url="er.json",
|
219 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
]
|
221 |
|
222 |
def _info(self):
|
|
|
217 |
url="https://sail.usc.edu/iemocap/",
|
218 |
data_url="er.json",
|
219 |
),
|
220 |
+
SuperbConfig(
|
221 |
+
name="sd",
|
222 |
+
description=textwrap.dedent(
|
223 |
+
"""\
|
224 |
+
Speaker Diarization (SD) predicts `who is speaking when` for each timestamp, and multiple speakers can
|
225 |
+
speak simultaneously. The model has to encode rich speaker characteristics for each frame and should be
|
226 |
+
able to represent mixtures of signals. [LibriMix] is adopted where LibriSpeech
|
227 |
+
train-clean-100/dev-clean/test-clean are used to generate mixtures for training/validation/testing.
|
228 |
+
We focus on the two-speaker scenario as the first step. The time-coded speaker labels were generated using
|
229 |
+
alignments from Kaldi LibriSpeech ASR model. The evaluation metric is diarization error rate (DER)."""
|
230 |
+
),
|
231 |
+
features=datasets.Features(
|
232 |
+
{
|
233 |
+
"file": datasets.Value("string"),
|
234 |
+
"speech": datasets.Sequence(datasets.Value("float32")),
|
235 |
+
"speakers": [
|
236 |
+
{
|
237 |
+
"speaker_id": datasets.Value("string"),
|
238 |
+
"start": datasets.Value("int64"),
|
239 |
+
"end": datasets.Value("int64"),
|
240 |
+
}
|
241 |
+
],
|
242 |
+
}
|
243 |
+
),
|
244 |
+
url="https://github.com/ftshijt/LibriMix",
|
245 |
+
data_url="sd.json",
|
246 |
+
),
|
247 |
]
|
248 |
|
249 |
def _info(self):
|