|
|
|
"""tonal.159 |
|
|
|
Automatically generated by Colab. |
|
|
|
Original file is located at |
|
https://colab.research.google.com/drive/1d2iQuX1rG4rDuN_HjwOCnEStQRLaq-0V |
|
""" |
|
|
|
import numpy as np |
|
import pandas as pd |
|
import os |
|
import seaborn as sns |
|
import matplotlib.pyplot as plt |
|
import plotly.express as px |
|
import pandas as pd |
|
|
|
import missingno as msno |
|
|
|
import warnings |
|
warnings.filterwarnings('ignore') |
|
|
|
df = pd.read_csv("/content/ecommerce_sales_analysis.csv") |
|
df.head() |
|
|
|
df.tail() |
|
|
|
df.shape |
|
|
|
df.info() |
|
|
|
df.describe().T |
|
|
|
df.describe().T.plot(kind='bar') |
|
|
|
df.isnull().sum() |
|
|
|
sns.heatmap(df.isnull()) |
|
|
|
df.duplicated().sum() |
|
|
|
numeric_df = df.select_dtypes(include=['number']) |
|
|
|
plt.figure(figsize=(12, 6)) |
|
sns.heatmap(numeric_df.corr(), annot=True, cmap='coolwarm') |
|
plt.title('Correlation Heatmap') |
|
plt.show() |
|
|
|
df.columns.to_list() |
|
|
|
import plotly.express as px |
|
|
|
columns = ['product_id', |
|
'product_name', |
|
'category', |
|
'price', |
|
'review_score', |
|
'review_count', |
|
'sales_month_1', |
|
'sales_month_2', |
|
'sales_month_3', |
|
'sales_month_4', |
|
'sales_month_5', |
|
'sales_month_6', |
|
'sales_month_7', |
|
'sales_month_8', |
|
'sales_month_9', |
|
'sales_month_10', |
|
'sales_month_11', |
|
'sales_month_12',] |
|
|
|
for column in columns: |
|
|
|
if df[column].dtype == 'object' or df[column].dtype == 'category': |
|
column_counts = df[column].value_counts().reset_index() |
|
column_counts.columns = [column, 'count'] |
|
|
|
fig = px.bar( |
|
column_counts, |
|
x=column, |
|
y='count', |
|
title=f'Distribution of {column}', |
|
labels={column: column, 'count': 'Count'}, |
|
text='count' |
|
) |
|
|
|
fig.update_layout( |
|
xaxis_title=column, |
|
yaxis_title='Count', |
|
paper_bgcolor='rgba(0,0,0,0)', |
|
plot_bgcolor='rgba(0,0,0,0)', |
|
title_font=dict(size=18, family="Arial"), |
|
|
|
xaxis={'categoryorder':'total descending'} |
|
) |
|
|
|
fig.show() |
|
|
|
elif df[column].dtype == 'int64' or df[column].dtype == 'float64': |
|
|
|
fig = px.histogram( |
|
df, |
|
x=column, |
|
title=f'Distribution of {column}', |
|
labels={column: column, 'count': 'Count'}, |
|
|
|
) |
|
|
|
fig.update_layout( |
|
xaxis_title=column, |
|
yaxis_title='Count', |
|
paper_bgcolor='rgba(0,0,0,0)', |
|
plot_bgcolor='rgba(0,0,0,0)', |
|
title_font=dict(size=18, family="Arial") |
|
) |
|
|
|
fig.show() |
|
|
|
df |
|
|
|
import matplotlib.pyplot as plt |
|
from wordcloud import WordCloud, STOPWORDS |
|
from collections import Counter |
|
import pandas as pd |
|
|
|
stop_words_list = set(STOPWORDS) |
|
|
|
counts = Counter(df["category"].dropna().apply(lambda x: str(x))) |
|
|
|
wcc = WordCloud( |
|
background_color="black", |
|
width=1600, height=800, |
|
max_words=2000, |
|
stopwords=stop_words_list |
|
) |
|
wcc.generate_from_frequencies(counts) |
|
|
|
plt.figure(figsize=(10, 5), facecolor='k') |
|
plt.imshow(wcc, interpolation='bilinear') |
|
plt.axis("off") |
|
plt.tight_layout(pad=0) |
|
plt.show() |