|
|
|
"""stringleveldigits.159 |
|
|
|
Automatically generated by Colab. |
|
|
|
Original file is located at |
|
https://colab.research.google.com/drive/1PYxiyOc2syUh3LwBeNHT7Ks2uQcfVk_n |
|
""" |
|
|
|
import numpy as np |
|
import pandas as pd |
|
|
|
import os |
|
|
|
for dirnam, _, filenames in os.walk('financial_risk_assessment.csv'): |
|
for filename in filenames: |
|
print(os.path.join(dirname, filename)) |
|
|
|
import pandas as pd |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.preprocessing import StandardScaler, OneHotEncoder |
|
from sklearn.compose import ColumnTransformer |
|
from sklearn.pipeline import Pipeline |
|
from sklearn.impute import SimpleImputer |
|
from sklearn.ensemble import RandomForestClassifier |
|
from sklearn.metrics import classification_report, confusion_matrix |
|
|
|
sns.set(style="whitegrid") |
|
|
|
df = pd.read_csv('financial_risk_assessment.csv') |
|
|
|
df.head() |
|
|
|
df.info() |
|
|
|
df.describe(include=[np.number]) |
|
|
|
df.describe(include=[object]) |
|
|
|
df.isnull().sum() |
|
|
|
plt.figure(figsize=(8,6)) |
|
sns.countplot(x='Risk Rating', data=df) |
|
plt.title('Distribution of Risk Ratings') |
|
plt.show() |
|
|
|
num_features = ['Age', 'Income', 'Credit Score', 'Loan Amount', 'Years at Current Job', |
|
'Debt-to-Income Ratio', 'Assets Value', 'Number of Dependents', 'Previous Defaults'] |
|
df[num_features].hist(figsize=(15,12), bins=30, edgecolor='black') |
|
plt.suptitle('Histograms of Numerical Features') |
|
plt.show() |
|
|
|
plt.figure(figsize=(15,10)) |
|
for i, feature in enumerate(num_features): |
|
plt.subplot(3, 3, i+1) |
|
sns.boxplot(x='Risk Rating', y=feature, data=df) |
|
plt.title(f'Boxplot of {feature}') |
|
plt.tight_layout() |
|
plt.show() |
|
|
|
plt.figure(figsize=(12,10)) |
|
correlation_matrix = df[num_features].corr() |
|
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt='.2f', vmin=-1, vmax=1) |
|
plt.title('Correlation Heatmap') |
|
plt.show() |
|
|
|
for column in['Gender', 'Education Level', 'Marital Status', 'Loan Purpose', 'Employment Status', 'Payment History', 'City', 'State', 'Country']: |
|
print('f{column} unique values:') |
|
print(df[column].value_counts()) |
|
print() |
|
|
|
X = df.drop('Risk Rating', axis=1) |
|
y = df['Risk Rating'] |
|
|
|
numeric_features = ['Age', 'Income', 'Credit Score', 'Loan Amount', 'Years at Current Job', 'Debt-to-Income Ratio', 'Assets Value', 'Number of Dependents', 'Previous Defaults', 'Marital Status Change'] |
|
categorical_features = ['Gender', 'Education Level', 'Marital Status', 'Loan Purpose', 'Employment Status', 'Payment History', 'City', 'State', 'Country'] |
|
|
|
numeric_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler())]) |
|
categorical_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='most_frequent')), ('onehot', OneHotEncoder(handle_unknown='ignore'))]) |
|
preprocessor = ColumnTransformer(transformers=[('num', numeric_transformer, numeric_features),('cat', categorical_transformer, categorical_features)]) |
|
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) |
|
model = Pipeline(steps=[('preprocessor', preprocessor), ('classifier', RandomForestClassifier(n_estimators=100, random_state=42))]) |
|
|
|
model.fit(X_train, y_train) |
|
|
|
y_pred = model.predict(X_test) |
|
|
|
print("Classification Report:") |
|
print(classification_report(y_test, y_pred)) |
|
|
|
conf_matrix = confusion_matrix(y_test, y_pred) |
|
plt.figure(figsize=(10,7)) |
|
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=['Low', 'Medium', 'High'], yticklabels=['Low','Medium', 'High']) |
|
plt.xlabel('Predicted') |
|
plt.ylabel('Actual') |
|
plt.title('Confusion Matrix') |
|
plt.show() |