antitheft159
commited on
Commit
•
108e0c0
1
Parent(s):
5e79b1e
Upload skipwithpredictor_159.py
Browse files- skipwithpredictor_159.py +114 -0
skipwithpredictor_159.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""skipwithpredictor.159
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1C7AO89jheeQ3C61BPsSdIfK5tCgcL7IT
|
8 |
+
"""
|
9 |
+
|
10 |
+
import pandas as pd
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
df = pd.read_csv('/content/online_course_engagement_data.csv')
|
14 |
+
|
15 |
+
df.dtypes
|
16 |
+
|
17 |
+
df.info()
|
18 |
+
|
19 |
+
df.isnull().sum()
|
20 |
+
|
21 |
+
df.drop('UserID', axis=1,inplace=True)
|
22 |
+
|
23 |
+
df['CourseCategory'].unique()
|
24 |
+
|
25 |
+
cat_mapping={
|
26 |
+
'Heatlh': 1,
|
27 |
+
'Arts': 2,
|
28 |
+
'Science': 3,
|
29 |
+
'Programming': 4,
|
30 |
+
'Business': 5
|
31 |
+
}
|
32 |
+
|
33 |
+
df['CourseCategory'] = df['CourseCategory'].map(cat_mapping)
|
34 |
+
|
35 |
+
from sklearn.preprocessing import StandardScaler
|
36 |
+
scaler = StandardScaler()
|
37 |
+
|
38 |
+
df['QuizScores'] = scaler.fit_transform(df[['QuizScores']])
|
39 |
+
df['CompletionRate'] = scaler.fit_transform(df[['CompletionRate']])
|
40 |
+
|
41 |
+
df.head(15)
|
42 |
+
|
43 |
+
df.dtypes
|
44 |
+
|
45 |
+
import matplotlib.pyplot as plt
|
46 |
+
import seaborn as sns
|
47 |
+
|
48 |
+
int_col = df.select_dtypes(include='int').columns
|
49 |
+
float_col = df.select_dtypes(include='float').columns
|
50 |
+
|
51 |
+
plt.figure(figsize=(15,15))
|
52 |
+
|
53 |
+
for i, col in enumerate(int_col, 1):
|
54 |
+
plt.subplot(3,2,i)
|
55 |
+
counts = df[col].value_counts()
|
56 |
+
plt.bar(counts.index, counts)
|
57 |
+
plt.title(f'Bar Chart of {col}')
|
58 |
+
plt.xlabel(col)
|
59 |
+
plt.ylabel('Frequency')
|
60 |
+
|
61 |
+
for x, y in zip(counts.index, counts):
|
62 |
+
plt.text(x, y, str(y), ha='center', va='bottom')
|
63 |
+
|
64 |
+
plt.tight_layout()
|
65 |
+
plt.show
|
66 |
+
|
67 |
+
plt.figure(figsize=(12, 6))
|
68 |
+
|
69 |
+
for i, col in enumerate(float_col, 1):
|
70 |
+
plt.subplot(1, 3, 1)
|
71 |
+
sns.boxplot(y=df[col])
|
72 |
+
plt.title(f'Box Plot of {col}')
|
73 |
+
plt.ylabel(col)
|
74 |
+
|
75 |
+
plt.tight_layout()
|
76 |
+
plt.show()
|
77 |
+
|
78 |
+
cor = df.corr()
|
79 |
+
|
80 |
+
plt.figure(figsize=(10, 6))
|
81 |
+
sns.heatmap(cor,annot=True, cmap="coolwarm", fmt=".2f")
|
82 |
+
|
83 |
+
from sklearn.model_selection import train_test_split
|
84 |
+
from sklearn.ensemble import RandomForestClassifier
|
85 |
+
import xgboost as xgb
|
86 |
+
import lightgbm as lgb
|
87 |
+
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
|
88 |
+
|
89 |
+
X = df.drop('CourseCompletion', axis=1)
|
90 |
+
y = df['CourseCompletion']
|
91 |
+
|
92 |
+
seed = 42
|
93 |
+
|
94 |
+
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.2, random_state=seed)
|
95 |
+
|
96 |
+
models = {
|
97 |
+
'RandomForest': RandomForestClassifier(random_state=seed),
|
98 |
+
'XGBoost': xgb.XGBClassifier(random_state=seed),
|
99 |
+
'LightGBM': lgb.LGBMClassifier(random_state=seed)
|
100 |
+
}
|
101 |
+
|
102 |
+
result = {}
|
103 |
+
|
104 |
+
for name, model in models.items():
|
105 |
+
model.fit(Xtrain, ytrain)
|
106 |
+
y_pred = model.predict(Xtest)
|
107 |
+
accuracy = accuracy_score(ytest, y_pred)
|
108 |
+
result[name] = accuracy
|
109 |
+
print(f'{name} Accuracy: {accuracy:.2f}')
|
110 |
+
|
111 |
+
print('Classification Report:')
|
112 |
+
print(classification_report(ytest, y_pred))
|
113 |
+
print('Confusion Matrix:')
|
114 |
+
print(confusion_matrix(ytest, y_pred))
|