antitheft159 commited on
Commit
b09b46b
1 Parent(s): b631915

Upload _1952.py

Browse files
Files changed (1) hide show
  1. _1952.py +74 -0
_1952.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """.1952
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1Gw-RJg5Bp__ayBzDb0HsHaj9uYYfQ_nI
8
+ """
9
+
10
+ # Commented out IPython magic to ensure Python compatibility.
11
+ import pandas as pd
12
+ import numpy as np
13
+ import seaborn as sns
14
+ import matplotlib.pyplot as plt
15
+ import warnings
16
+ warnings.filterwarnings('ignore')
17
+ # %matplotlib inline
18
+
19
+ file_path = '/content/Key_Economic_Indicators.csv'
20
+ df = pd.read_csv(file_path)
21
+
22
+ df.head()
23
+
24
+ df.isnull().sum()
25
+
26
+ df.fillna(df.mean(), inplace=True)
27
+
28
+ df['Date'] = pd.to_datetime(df[['Year', 'Month']].assign(DAY=1))
29
+
30
+ df.drop(['Year', 'Month'], axis=1, inplace=True)
31
+
32
+ df.head()
33
+
34
+ plt.figure(figsize=(12, 6))
35
+ sns.lineplot(data=df, x='Date', y='Consumer Confidence Index TX', label='TX')
36
+ plt.title('Consumer Confidence Index Over Time')
37
+ plt.xlabel('Date')
38
+ plt.ylabel('Consumer Confidence Index')
39
+ plt.legend()
40
+ plt.show()
41
+
42
+ plt.figure(figsize=(12, 6))
43
+ sns.histplot(df['Unemployment TX'], kde=True, color='blue', label='TX')
44
+ sns.histplot(df['Unemployment U.S.'], kde=True, color='red', label='US')
45
+ plt.title('Distribution of Unemployment Rates')
46
+ plt.xlabel('Unemployment Rate')
47
+ plt.ylabel('Frequency')
48
+ plt.legend()
49
+ plt.show()
50
+
51
+ numeric_df = df.select_dtypes(include=[np.number])
52
+
53
+ plt.figure(figsize=(14, 10))
54
+ sns.heatmap(numeric_df.corr(), annot=True, fmt='.2f', cmap='coolwarm')
55
+ plt.title('Correlation Matrix of Economic Indicators')
56
+ plt.show()
57
+
58
+ from sklearn.model_selection import train_test_split
59
+ from sklearn.ensemble import RandomForestRegressor
60
+ from sklearn.metrics import mean_squared_error
61
+
62
+ X = numeric_df.drop(columns=['Consumer Confidence Index TX'])
63
+ y = numeric_df['Consumer Confidence Index TX']
64
+
65
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
66
+
67
+ model = RandomForestRegressor(random_state=42)
68
+ model.fit(X_train, y_train)
69
+
70
+ y_pred = model.predict(X_test)
71
+
72
+ mse = mean_squared_error(y_test, y_pred)
73
+ rmse = np.sqrt(mse)
74
+ rmse