antitheft159 commited on
Commit
97f8b83
1 Parent(s): 54aa523

Upload master_card&visastockdata_159.py

Browse files

MasterCard & Visa Stock Data (2008-2024)

Files changed (1) hide show
  1. master_card&visastockdata_159.py +376 -0
master_card&visastockdata_159.py ADDED
@@ -0,0 +1,376 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """Master Card&VisaStockData.159
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/127-oS8O1T914B2Fx1z0r0JAfHc3RJ8NB
8
+ """
9
+
10
+ import pandas as pd
11
+
12
+ data = pd.read_csv('MVR.csv')
13
+
14
+ print(data.head())
15
+
16
+ print(data.isnull().sum())
17
+
18
+ data['Date'] = pd.to_datetime(data['Date'])
19
+
20
+ data.set_index('Date', inplace=True)
21
+
22
+ print(data.dtypes)
23
+
24
+ print(data.info())
25
+
26
+ print(data.describe())
27
+
28
+ import matplotlib.pyplot as plt
29
+
30
+ plt.figure(figsize=(14, 7))
31
+ plt.plot(data.index, data['Close_M'], label='MasterCard Close')
32
+ plt.plot(data.index, data['Close_V'], label='Visa Close')
33
+ plt.title('Stock Prices of MasterCard and Visa')
34
+ plt.xlabel('Date')
35
+ plt.ylabel('Stock Price')
36
+ plt.legend()
37
+ plt.show()
38
+
39
+ data['MA_Close_M'] = data['Close_M'].rolling(window=30).mean()
40
+ data['MA_Close_V'] = data['Close_V'].rolling(window=30).mean()
41
+
42
+ plt.figure(figsize=(14, 7))
43
+ plt.plot(data['Close_M'], label='MasterCard Close Price')
44
+ plt.plot(data['MA_Close_M'], label='MasterCard 30-Day MA')
45
+ plt.title('Moving Averages of Stock Prices')
46
+ plt.xlabel('Date')
47
+ plt.ylabel('Price')
48
+ plt.legend()
49
+ plt.show()
50
+
51
+ plt.figure(figsize=(14, 7))
52
+ plt.plot(data['Volume_M'], label='MasterCard Volume')
53
+ plt.plot(data['Volume_V'], label='Visa Volume')
54
+ plt.title('Volume of Stocks Traded')
55
+ plt.xlabel('Date')
56
+ plt.ylabel('Volume')
57
+ plt.legend()
58
+ plt.show()
59
+
60
+ data['SMA50_M'] = data['Close_M'].rolling(window=50).mean()
61
+ data['SMA200_M'] = data['Close_M'].rolling(window=200).mean()
62
+
63
+ data['SMA50_V'] = data['Close_V'].rolling(window=50).mean()
64
+ data['SMA200_V'] = data['Close_V'].rolling(window=200).mean()
65
+
66
+ plt.figure(figsize=(14, 7))
67
+ plt.plot(data.index, data['Close_M'], label='MasterCard Close')
68
+ plt.plot(data.index, data['SMA50_M'], label='MasterCard SMA50')
69
+ plt.plot(data.index, data['SMA200_M'], label='MasterCard SMA200')
70
+ plt.title('MasterCard Stock Price and Moving Averages')
71
+ plt.xlabel('Date')
72
+ plt.ylabel('Stock Price')
73
+ plt.legend()
74
+ plt.show()
75
+
76
+ plt.figure(figsize=(14, 7))
77
+ plt.plot(data.index, data['Close_V'], label='Visa Close')
78
+ plt.plot(data.index, data['SMA50_V'], label='Visa SMA50')
79
+ plt.plot(data.index, data['SMA200_V'], label='Visa SMA200')
80
+ plt.title('Visa Stock Price and Moving Averages')
81
+ plt.xlabel('Date')
82
+ plt.ylabel('Stock Price')
83
+ plt.legend()
84
+ plt.show
85
+
86
+ data['Volatility_M'] = data['Close_M'].rolling(window=30).std()
87
+ data['Volatility_V'] = data['Close_V'].rolling(window=30).std()
88
+
89
+ plt.figure(figsize=(14, 7))
90
+ plt.plot(data.index, data['Volatility_M'], label='MasterCard Volatility')
91
+ plt.plot(data.index, data['Volatility_V'], label='Visa Volatility')
92
+ plt.title('Stock Price Volatility of MasterCard and Visa')
93
+ plt.xlabel('Date')
94
+ plt.ylabel('Volatility')
95
+ plt.legend()
96
+ plt.show()
97
+
98
+ data['Return_M'] = data['Close_M'].pct_change()
99
+ data['Return_V'] = data['Close_V'].pct_change()
100
+
101
+ data['Cumulative_Return_M'] = (1 + data['Return_M']).cumprod()
102
+ data['Cumulative_Return_V'] = (1 + data['Return_V']).cumprod()
103
+
104
+ plt.figure(figsize=(14, 7))
105
+ plt.plot(data.index, data['Cumulative_Return_M'], label='MasterCard Cumulative Return')
106
+ plt.plot(data.index, data['Cumulative_Return_V'], label='Visa Cumulative Return')
107
+ plt.title('Cumulative Returns of MasterCard and Visa')
108
+ plt.xlabel('Date')
109
+ plt.ylabel('Cumulative Return')
110
+ plt.legend()
111
+ plt.show()
112
+
113
+ correlation = data[['Close_M', 'Close_V']].corr()
114
+ print(correlation)
115
+
116
+ from statsmodels.tsa.seasonal import seasonal_decompose
117
+
118
+ decomposition_M = seasonal_decompose(data['Close_M'], model='multiplicative', period=365)
119
+ fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, figsize=(15, 12))
120
+
121
+ ax1.plot(decomposition_M.observed)
122
+ ax1.set_title('Observed - MasterCard')
123
+ ax2.plot(decomposition_M.trend)
124
+ ax2.set_title('Tren - MasterCard')
125
+ ax3.plot(decomposition_M.seasonal)
126
+ ax3.set_title('Seasonal - MasterCard')
127
+ ax4.plot(decomposition_M.resid)
128
+ ax4.set_title('Residual - MasterCard')
129
+
130
+ plt.tight_layout()
131
+ plt.show
132
+
133
+ decomposition_V = seasonal_decompose(data['Close_V'], model='multiplicative', period=365)
134
+ fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, figsize=(15, 12))
135
+
136
+ ax1.plot(decomposition_V.observed)
137
+ ax1.set_title('Observed - Visa')
138
+ ax2.plot(decomposition_V.trend)
139
+ ax2.set_title('Trend - Visa')
140
+ ax3.plot(decomposition_V.seasonal)
141
+ ax3.set_title('Seasonal - Visa')
142
+ ax4.plot(decomposition_V.resid)
143
+ ax4.set_title('Residual - Visa')
144
+
145
+ plt.tight_layout()
146
+ plt.show()
147
+
148
+ from statsmodels.tsa.stattools import adfuller
149
+
150
+ def adf_test(series):
151
+ result = adfuller(series.dropna())
152
+ print('ADF Statistic:', result[0])
153
+ print('p-value:', result[1])
154
+ for key, value in result[4].items():
155
+ print('Critial Values:')
156
+ print(f' {key}, {value}')
157
+
158
+ print("ADF Test for MasterCard Close Price:")
159
+ adf_test(data['Close_M'])
160
+
161
+ print("\ADF Test for Visa Close Price:")
162
+ adf_test(data['Close_V'])
163
+
164
+ import numpy as np
165
+ from sklearn.preprocessing import MinMaxScaler
166
+ from keras.models import Sequential
167
+ from keras.layers import LSTM, Dense, Input
168
+ from sklearn.metrics import mean_squared_error
169
+
170
+ scaler = MinMaxScaler(feature_range=(0, 1))
171
+ scaled_data_M = scaler.fit_transform(data[['Close_M']])
172
+ scaled_data_V = scaler.fit_transform(data[['Close_V']])
173
+
174
+ train_len_M = int(len(scaled_data_M) * 0.8)
175
+ train_len_V = int(len(scaled_data_V) * 0.8)
176
+
177
+ train_data_M = scaled_data_M[:train_len_M]
178
+ test_data_M = scaled_data_M[train_len_M:]
179
+
180
+ train_data_V = scaled_data_V[:train_len_V]
181
+ test_data_V = scaled_data_V[train_len_V:]
182
+
183
+ def create_sequences(data, seq_length):
184
+ x = []
185
+ y = []
186
+ for i in range(seq_length, len(data)):
187
+ x.append(data[i-seq_length:i, 0])
188
+ y.append(data[i, 0])
189
+ return np.array(x), np.array(y)
190
+
191
+ seq_length = 60
192
+ x_train_M, y_train_M = create_sequences(train_data_M, seq_length)
193
+ x_test_M, y_test_M = create_sequences(test_data_M, seq_length)
194
+
195
+ x_train_V, y_train_V = create_sequences(train_data_V, seq_length)
196
+ x_test_V, y_test_V = create_sequences(test_data_V, seq_length)
197
+
198
+ x_train_M = np.reshape(x_train_M, (x_train_M.shape[0], x_train_M.shape[1], 1))
199
+ x_test_M = np.reshape(x_test_M, (x_test_M.shape[0], x_test_M.shape[1], 1))
200
+
201
+ x_train_V = np.reshape(x_train_V, (x_train_V.shape[0], x_train_V.shape[1], 1))
202
+ x_test_V = np.reshape(x_test_V, (x_test_V.shape[0], x_test_V.shape[1], 1))
203
+
204
+ model_M = Sequential()
205
+ model_M.add(Input(shape=(x_train_M.shape[1], 1)))
206
+ model_M.add(LSTM(units=50, return_sequences=True))
207
+ model_M.add(LSTM(units=50, return_sequences=False))
208
+ model_M.add(Dense(units=25))
209
+ model_M.add(Dense(units=1))
210
+
211
+ model_M.compile(optimizer='adam', loss='mean_squared_error')
212
+
213
+ model_V = Sequential()
214
+ model_V.add(Input(shape=(x_train_V.shape[1], 1)))
215
+ model_V.add(LSTM(units=50, return_sequences=True))
216
+ model_V.add(LSTM(units=50, return_sequences=False))
217
+ model_V.add(Dense(units=25))
218
+ model_V.add(Dense(units=1))
219
+
220
+ model_V.compile(optimizer ='adam', loss='mean_squared_error')
221
+
222
+ model_M.fit(x_train_M, y_train_M, batch_size=32, epochs=100)
223
+ model_V.fit(x_train_V, y_train_V, batch_size=32, epochs=100)
224
+
225
+ predictions_M = model_M.predict(x_test_M)
226
+ predictions_M = scaler.inverse_transform(predictions_M)
227
+
228
+ predictions_V = model_V.predict(x_test_V)
229
+ predictions_V = scaler.inverse_transform(predictions_V)
230
+
231
+ rmse_M = np.sqrt(mean_squared_error(y_test_M, predictions_M))
232
+ rmse_V = np.sqrt(mean_squared_error(y_test_V, predictions_V))
233
+
234
+ print(f'RMSE for MasterCard: {rmse_M}')
235
+ print(f'RMSE for Visa: {rmse_V}')
236
+
237
+ train_M = data[:train_len_M]['Close_M']
238
+ valid_M = data[train_len_M:train_len_M + len(predictions_M)]['Close_M']
239
+ valid_M = valid_M.to_frame()
240
+ valid_M['Predictions'] = predictions_M
241
+
242
+ train_V = data[:train_len_V]['Close_V']
243
+ valid_V = data[train_len_V:train_len_V + len(predictions_V)]['Close_V']
244
+ valid_V = valid_V.to_frame()
245
+ valid_V['Predictions'] = predictions_V
246
+
247
+ plt.figure(figsize=(14, 7))
248
+ plt.plot(train_M, label='Train - MasterCard')
249
+ plt.plot(valid_M['Close_M'], label='Valid - MasterCard')
250
+ plt.plot(valid_M['Predictions'], label='Predictions - MasterCard')
251
+ plt.legend()
252
+ plt.show()
253
+
254
+ plt.figure(figsize=(14, 7))
255
+ plt.plot(train_V, label ='Train -Visa')
256
+ plt.plot(valid_V['Close_V'], label='Valid -Visa')
257
+ plt.plot(valid_V['Predictions'], label='Predictions - Visa')
258
+ plt.legend()
259
+ plt.show()
260
+
261
+ from statsmodels.tsa.arima.model import ARIMA
262
+
263
+ data = data.asfreq('B')
264
+
265
+ train_size = int(len(data) * 0.8)
266
+ train, test = data['Close_M'][:train_size], data['Close_M'][train_size:]
267
+
268
+ model = ARIMA(train, order=(5, 1, 0))
269
+ model_fit = model.fit()
270
+ print(model_fit.summary())
271
+
272
+ predictions = model_fit.forecast(steps=len(test))
273
+ predictions = pd.Series(predictions, index=test.index)
274
+
275
+ plt.figure(figsize=(14, 7))
276
+ plt.plot(train, label='Training Data')
277
+ plt.plot(test, label='Test Data')
278
+ plt.plot(predictions, label='Predicted Data')
279
+ plt.title('ARIMA Model Predictions for MasterCard')
280
+ plt.xlabel('Date')
281
+ plt.ylabel('Price')
282
+ plt.legend()
283
+ plt.show()
284
+
285
+ data = data.asfreq('B')
286
+
287
+ train_size = int(len(data) * 0.8)
288
+ train_V, test_V = data['Close_V'][:train_size], data['Close_V'][train_size:]
289
+
290
+ model_V = ARIMA(train_V, order=(5, 1, 0))
291
+ model_fit_V = model_V.fit()
292
+ print(model_fit_V.summary())
293
+
294
+ predictions_V = model_fit_V.forecast(steps=len(test_V))
295
+ predictions_V = pd.Series(predictions_V, index=test_V.index)
296
+
297
+ plt.figure(figsize=(14, 7))
298
+ plt.plot(train_V, label='Training Data')
299
+ plt.plot(test_V, label='Test Data')
300
+ plt.plot(predictions_V, label='Predicted Data'),
301
+ plt.title('ARIMA Model Predictions for Visa')
302
+ plt.xlabel('Date')
303
+ plt.ylabel('Price')
304
+ plt.legend()
305
+ plt.show()
306
+
307
+ import warnings
308
+ warnings.filterwarnings('ignore')
309
+ import plotly.graph_objects as go
310
+
311
+ def predict_stock_price(data, column_name, forecast_periods):
312
+ train_size = int(len(data) * 0.8)
313
+ train, test = data[column_name][:train_size], data[column_name][train_size:]
314
+
315
+ model = ARIMA(train, order=(5, 1, 0))
316
+ model_fit = model.fit()
317
+
318
+ future_dates = pd.date_range(start=data.index[-1], periods=forecast_periods, freq='B')
319
+ forecast = model_fit.forecast(steps=forecast_periods)
320
+ forecast_series = pd.Series(forecast, index=future_dates)
321
+
322
+ return forecast_series
323
+
324
+ forecast_periods = 3 * 252
325
+ forecast_M = predict_stock_price(data, 'Close_M', forecast_periods)
326
+ forecast_V = predict_stock_price(data, 'Close_V', forecast_periods)
327
+
328
+ extended_data_M = pd.concat([data['Close_M'], forecast_M])
329
+ extended_data_V = pd.concat([data['Close_V'], forecast_V])
330
+
331
+ candlestick_data_M = pd.DataFrame({
332
+ 'Date': extended_data_M.index,
333
+ 'Open': extended_data_M.shift(1).fillna(method='bfill'),
334
+ 'High': extended_data_M.rolling(2).max(),
335
+ 'Low': extended_data_M.rolling(2).min(),
336
+ 'Close': extended_data_M
337
+ }).reset_index(drop=True)
338
+
339
+ candlestick_data_V = pd.DataFrame({
340
+ 'Date': extended_data_V.index,
341
+ 'Open': extended_data_V.shift(1).fillna(method='bfill'),
342
+ 'High': extended_data_V.rolling(2).max(),
343
+ 'Low': extended_data_V.rolling(2).min(),
344
+ 'Close': extended_data_V
345
+ }).reset_index(drop=True)
346
+
347
+ fig = go.Figure()
348
+
349
+ fig.add_trace(go.Candlestick(
350
+ x=candlestick_data_M['Date'],
351
+ open=candlestick_data_M['Open'],
352
+ high=candlestick_data_M['High'],
353
+ low=candlestick_data_M['Low'],
354
+ close=candlestick_data_M['Close'],
355
+ name='MasterCard',
356
+ increasing_line_color='blue', decreasing_line_color='red'
357
+ ))
358
+
359
+ fig.add_trace(go.Candlestick(
360
+ x=candlestick_data_V['Date'],
361
+ open=candlestick_data_V['Open'],
362
+ high=candlestick_data_V['High'],
363
+ low=candlestick_data_V['Low'],
364
+ close=candlestick_data_V['Close'],
365
+ name='Visa',
366
+ increasing_line_color='green', decreasing_line_color='orange'
367
+ ))
368
+
369
+ fig.update_layout(
370
+ title='MasterCard and Visa Stock Prices (Historical and Predicted)',
371
+ xaxis_title='Date',
372
+ yaxis_title='Price',
373
+ xaxis_rangeslider_visible=False
374
+ )
375
+
376
+ fig.show()