Create 455.py.space
Browse files- 455.py.space +67 -0
455.py.space
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
print(torch.__version__)
|
6 |
+
|
7 |
+
scalar = torch.tensor(7)
|
8 |
+
scalar
|
9 |
+
|
10 |
+
scalar.ndim
|
11 |
+
|
12 |
+
scalar.item()
|
13 |
+
|
14 |
+
vector = torch.tensor([7, 7])
|
15 |
+
|
16 |
+
vector.ndim
|
17 |
+
|
18 |
+
vector.shape
|
19 |
+
|
20 |
+
MATRIX = torch.tensor[[7, 8],[9, 10]]
|
21 |
+
|
22 |
+
MATRIX
|
23 |
+
|
24 |
+
MATRIX.ndim
|
25 |
+
|
26 |
+
MATRIX[1]
|
27 |
+
|
28 |
+
MATRIX.shape
|
29 |
+
|
30 |
+
TENSOR = torch.tensor([[[1, 2, 3],
|
31 |
+
[3, 6, 9],
|
32 |
+
[2, 4, 5]]])
|
33 |
+
|
34 |
+
TENSOR.ndim
|
35 |
+
|
36 |
+
TENSOR.shape
|
37 |
+
|
38 |
+
TENSOR[0]
|
39 |
+
|
40 |
+
random_tensor = torch.rand(3, 4)
|
41 |
+
random_tensor
|
42 |
+
|
43 |
+
|
44 |
+
random_tensor.ndim
|
45 |
+
|
46 |
+
random_image_size_tensor = torch.rand(size=(224, 224, 3))
|
47 |
+
random_image_size_tensor.shape, random_image_size_tensor.ndim
|
48 |
+
|
49 |
+
zeros = torch.zeros(size=(3, 4))
|
50 |
+
zeros
|
51 |
+
|
52 |
+
ones = torch.ones(size=(3, 4))
|
53 |
+
ones
|
54 |
+
|
55 |
+
ones.dtype
|
56 |
+
|
57 |
+
random_tensor.dtype
|
58 |
+
|
59 |
+
one_to_ten = torch.arange(start=1, end=11, step=1)
|
60 |
+
|
61 |
+
ten_zeros = torch.zeros_like(input=one_to_ten)
|
62 |
+
ten_zeros
|
63 |
+
|
64 |
+
float_32_tensor - torch.tensor([3.0, 6.0, 9.0],
|
65 |
+
dtype=None,
|
66 |
+
device=None,
|
67 |
+
requires_grad=False)
|