pcbm_metashift / scripts /generate_interactive.py
Anon
Anonymize
da3e9e3
import argparse
import pickle
import logging
from omegaconf import OmegaConf
import re
import random
import tarfile
from pydantic import BaseModel
from pathlib import Path
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def setup_parser():
parser = argparse.ArgumentParser(description="Generate a domain shift dataset")
parser.add_argument("--config", type=str, required=True, help="Path to config file")
parser.add_argument(
"--full_candidate_subsets_path",
type=str,
required=True,
help="Path to full-candidate-subsets.pkl",
)
parser.add_argument(
"--visual_genome_images_dir",
type=str,
required=True,
help="Path to VisualGenome images directory allImages/images",
)
parser.add_argument(
"--save_images",
action=argparse.BooleanOptionalAction,
required=True,
help="Save images to output directory",
)
return parser
def get_ms_domain_name(obj: str, context: str) -> str:
return f"{obj}({context})"
class DataSplits(BaseModel):
train: dict[str, list[str]]
test: dict[str, list[str]]
class MetashiftData(BaseModel):
selected_classes: list[str]
spurious_class: str
train_context: str
test_context: str
data_splits: DataSplits
class MetashiftFactory(object):
object_context_to_id: dict[str, list[int]]
visual_genome_images_dir: str
def __init__(
self,
full_candidate_subsets_path: str,
visual_genome_images_dir: str,
):
"""
full_candidate_subsets_path: Path to `full-candidate-subsets.pkl`
visual_genome_images_dir: Path to VisualGenome images directory `allImages/images`
"""
with open(full_candidate_subsets_path, "rb") as f:
self.object_context_to_id = pickle.load(f)
self.visual_genome_images_dir = visual_genome_images_dir
def _get_all_domains_with_object(self, obj: str) -> set[str]:
"""Get all domains with given object and any context.
Example:
- _get_all_domains_with_object(table) => [table(dog), table(cat), ...]
"""
return {
key
for key in self.object_context_to_id.keys()
if re.match(f"^{obj}\\(.*\\)$", key)
}
def _get_all_image_ids_with_object(self, obj: str) -> set[str]:
"""Get all image ids with given object and any context.
Example:
- get_all_image_ids_with_object(table) => [id~table(dog), id~table(cat), ...]
- where id~domain, means an image sampled from the given domain.
"""
domains = self._get_all_domains_with_object(obj)
return {_id for domain in domains for _id in self.object_context_to_id[domain]}
def _get_image_ids(self, obj: str, context: str | None) -> set[str]:
"""Get image ids for the domain `obj(context)`."""
if context is None:
return self._get_all_image_ids_with_object(obj)
else:
return self.object_context_to_id[get_ms_domain_name(obj, context)]
def _get_class_domains(
self, domains_specification: dict[str, tuple[str, str | None]]
) -> dict[str, tuple[list[str], list[str]]]:
"""Get train and test image ids for the given domains specification."""
domain_ids = dict()
for cls, (train_context, test_context) in domains_specification.items():
if train_context == test_context:
ids = self._get_image_ids(cls, train_context)
domain_ids[cls] = [ids, ids]
logger.info(
f"{get_ms_domain_name(cls, train_context or '*')}: {len(ids)}"
" -> "
f"{get_ms_domain_name(cls, test_context or '*')}: {len(ids)}"
)
else:
train_ids = self._get_image_ids(cls, train_context)
test_ids = self._get_image_ids(cls, test_context)
domain_ids[cls] = [train_ids, test_ids]
logger.info(
f"{get_ms_domain_name(cls, train_context or '*')}: {len(train_ids)}"
" -> "
f"{get_ms_domain_name(cls, test_context or '*')}: {len(test_ids)}"
)
return domain_ids
def _get_unique_ids_from_domains(
self, domains: dict[str, tuple[list[str], list[str]]]
) -> set[str]:
"""Get unique image ids from the given domains."""
unique_ids: set[str] = set()
for _, (train_ids, test_ids) in domains.items():
unique_ids = unique_ids | set(train_ids) | set(test_ids)
return unique_ids
def _interactive_sample(
self,
image_ids: set[str],
seed: float,
num_images: int,
class_name: str,
spurious_context: str,
) -> set[str]:
from tkinter import Tk, Button, Label
from PIL import Image, ImageTk
"""
Given a list of image paths, `image_ids`,
draw tkinter user interface that displays each image one by one
along with a button that,
allows the user to select that image.
When `num_images` images are selected,
stop and return the selected image ids.
"""
UNVISITED, SELECTED, REJECTED = 0, 1, -1
CANVAS_WIDTH, CANVAS_HEIGHT, IMAGE_SIZE = 400, 300, 224
image_ids: list[str] = sorted(
list(image_ids)
) # Ensure canonical ordering for determinism
status: list[int] = [UNVISITED] * len(image_ids)
cnt: dict[int, int] = {SELECTED: 0, REJECTED: 0}
ix: int = -1
random.Random(seed).shuffle(image_ids)
root = Tk()
root.title("Select images")
root.geometry(f"{CANVAS_WIDTH}x{CANVAS_HEIGHT}") # Width x Height
def get_next(s: int):
"""Mark current image as `s` and move to the next image."""
nonlocal status, ix, image_ids
status[ix] = s
cnt[s] += 1
assert s in [SELECTED, REJECTED], "Cannot mark image as unvisited"
if s == SELECTED:
logger.info(f"SELECT IMAGE {image_ids[ix]}")
next_image()
def draw_image():
nonlocal image_label, image_ids, ix
image_id = image_ids[ix]
logging.info(f"Drawing image {image_id}")
image = Image.open(Path(self.visual_genome_images_dir) / f"{image_id}.jpg")
image = image.resize((IMAGE_SIZE, IMAGE_SIZE))
image = ImageTk.PhotoImage(image)
image_label.config(image=image)
image_label.image = image
def undo():
nonlocal ix, status, cnt, image_ids
ix = (ix - 1) % len(image_ids)
if status[ix] == UNVISITED: # do nothing
ix = (ix + 1) % len(image_ids)
return
cnt[status[ix]] -= 1
status[ix] = UNVISITED
draw_image()
draw_progbars()
def draw_progbars():
nonlocal progress_label, position_label, ix, status, num_images
progress_label.config(
text=f"Selected: {sum(s for s in status if s == SELECTED)}/{num_images}"
)
position_label.config(text=f"Position: {ix}/{len(status)}")
def next_image():
nonlocal ix, status, cnt, num_images, image_ids
if cnt[SELECTED] == num_images:
root.destroy()
return
for dx in range(1, len(image_ids)):
# We can select previously rejected image, in case we run out of unvisited
if status[(ix + dx) % len(image_ids)] in [UNVISITED, REJECTED]:
break
assert dx != 0, "No free image left"
ix = (ix + dx) % len(image_ids)
draw_image()
draw_progbars()
image_label = Label(root)
image_label.pack()
image_label.place(x=(CANVAS_WIDTH - IMAGE_SIZE) // 2, y=0)
select_btn = Button(root, text="Select", command=lambda: get_next(SELECTED))
reject_btn = Button(root, text="Reject", command=lambda: get_next(REJECTED))
undo_btn = Button(root, text="Undo", command=undo)
progress_label = Label(root, text=f"Selected: 0/{num_images}")
position_label = Label(root, text=f"Position: 0/{len(image_ids)}")
class_label = Label(root, text=f"{class_name}({spurious_context})")
class_label.pack()
class_label.place(x=170, y=250)
position_label.pack()
position_label.place(x=0, y=250)
progress_label.pack()
progress_label.place(x=300, y=250)
select_btn.pack()
select_btn.place(x=85, y=225)
reject_btn.pack()
reject_btn.place(x=165, y=225)
undo_btn.pack()
undo_btn.place(x=250, y=225)
next_image()
root.mainloop()
sampled_images: set[str] = set()
for i, s in enumerate(status):
if s == SELECTED:
sampled_images.add(image_ids[i])
return sampled_images
def _sample_from_domains(
self,
seed: int,
domains: dict[str, tuple[list[str], list[str]]],
num_train_images_per_class: int,
num_test_images_per_class: int,
spurious_class: str,
train_spurious_context: str,
test_spurious_context: str,
) -> dict[str, tuple[list[str], list[str]]]:
"""Return sampled domain data from the given full domains."""
# Maintain order of original domains
sampled_domains = {cls: (set(), set()) for cls in domains.keys()}
# First process the spurious class, to maximize the number of images available for it
classes = list(domains.keys())
spurious_class_ix = classes.index(spurious_class)
classes[0], classes[spurious_class_ix] = classes[spurious_class_ix], classes[0]
sampled_ids = set()
for cls in classes:
train_ids, test_ids = domains[cls]
try:
if cls == spurious_class:
train_ids = train_ids - sampled_ids
sampled_train_ids = self._interactive_sample(
image_ids=train_ids,
seed=seed,
num_images=num_train_images_per_class,
class_name=spurious_class,
spurious_context=train_spurious_context,
)
sampled_ids = sampled_ids | set(sampled_train_ids)
test_ids = test_ids - sampled_ids
sampled_test_ids = self._interactive_sample(
image_ids=test_ids,
seed=seed,
num_images=num_test_images_per_class,
class_name=spurious_class,
spurious_context=test_spurious_context,
)
sampled_ids = sampled_ids | set(sampled_test_ids)
else:
train_ids = train_ids - sampled_ids
sampled_train_ids = random.Random(seed).sample(
sorted(list(train_ids)), num_train_images_per_class
)
sampled_ids = sampled_ids | set(sampled_train_ids)
test_ids = test_ids - sampled_ids
sampled_test_ids = random.Random(seed).sample(
sorted(list(test_ids)), num_test_images_per_class
)
sampled_ids = sampled_ids | set(sampled_test_ids)
except ValueError:
logger.error(
f"{cls}: {len(train_ids)} train images, {len(test_ids)} test images"
)
raise Exception("Not enough images for this class")
sampled_domains[cls] = (sampled_train_ids, sampled_test_ids)
return sampled_domains
def create(
self,
seed: int,
selected_classes: list[str],
spurious_class: str,
train_spurious_context: str,
test_spurious_context: str,
num_train_images_per_class: int,
num_test_images_per_class: int,
) -> MetashiftData:
"""Return (metadata, data) splits for the given data shift."""
domains_specification = {
**{cls: (None, None) for cls in selected_classes},
spurious_class: (
train_spurious_context,
test_spurious_context,
), # overwrite spurious_class
}
domains = self._get_class_domains(domains_specification)
logger.info(
f"Total number of images: {len(self._get_unique_ids_from_domains(domains))}"
)
sampled_domains = self._sample_from_domains(
seed=seed,
domains=domains,
num_train_images_per_class=num_train_images_per_class,
num_test_images_per_class=num_test_images_per_class,
spurious_class=spurious_class,
train_spurious_context=train_spurious_context,
test_spurious_context=test_spurious_context,
)
logger.info(
f"Total number of images after sampling: {len(self._get_unique_ids_from_domains(sampled_domains))}"
)
data_splits = {"train": dict(), "test": dict()}
for cls, (train_ids, test_ids) in sampled_domains.items():
data_splits["train"][cls] = train_ids
data_splits["test"][cls] = test_ids
return MetashiftData(
selected_classes=selected_classes,
spurious_class=spurious_class,
train_context=train_spurious_context,
test_context=test_spurious_context,
data_splits=DataSplits(
train=data_splits["train"],
test=data_splits["test"],
),
)
def _get_unique_ids_from_info(self, info: dict[str, MetashiftData]):
"""Get unique ids from info struct."""
unique_ids = set()
for data in info.values():
for ids in data.data_splits.train.values():
unique_ids.update(ids)
for ids in data.data_splits.test.values():
unique_ids.update(ids)
return unique_ids
def _replace_ids_with_paths(
self, info: dict[str, MetashiftData], data_path: Path
) -> MetashiftData:
"""Replace ids with paths."""
new_data = dict()
for dataset_name, data in info.items():
for cls, ids in data.data_splits.train.items():
data.data_splits.train[cls] = [
str(data_path / f"{_id}.jpg") for _id in ids
]
for cls, ids in data.data_splits.test.items():
data.data_splits.test[cls] = [
str(data_path / f"{_id}.jpg") for _id in ids
]
new_data[dataset_name] = data
return new_data
def save_all(self, info: dict[str, MetashiftData], save_images: bool):
"""Save all datasets to the given directory."""
out_path = Path(".")
data_path = out_path / "data"
data_path.mkdir(parents=True, exist_ok=True)
scenarios_path = out_path / "scenarios" / "cherrypicked"
scenarios_path.mkdir(parents=True, exist_ok=True)
unique_ids = self._get_unique_ids_from_info(info)
data = self._replace_ids_with_paths(info, data_path)
for dataset_name, data in info.items():
with open(scenarios_path / f"{dataset_name}.json", "w") as f:
f.write(data.model_dump_json(indent=2))
if save_images:
with tarfile.open(data_path / "images.tar.gz", "w:gz") as tar:
for _id in unique_ids:
tar.add(
Path(self.visual_genome_images_dir) / f"{_id}.jpg",
)
def get_dataset_name(task_name: str, experiment_name: str) -> str:
return f"{task_name}_{experiment_name}"
def main():
parser = setup_parser()
args = parser.parse_args()
config = OmegaConf.load(args.config)
metashift_factory = MetashiftFactory(
full_candidate_subsets_path=args.full_candidate_subsets_path,
visual_genome_images_dir=args.visual_genome_images_dir,
)
info: dict[str, MetashiftData] = dict()
for task_config in config.tasks:
for experiment_config in task_config.experiments:
data = metashift_factory.create(
seed=task_config.seed,
selected_classes=task_config.selected_classes,
spurious_class=experiment_config.spurious_class,
train_spurious_context=experiment_config.train_context,
test_spurious_context=experiment_config.test_context,
num_test_images_per_class=task_config.num_images_per_class_test,
num_train_images_per_class=task_config.num_images_per_class_train,
)
dataset_name = get_dataset_name(task_config.name, experiment_config.name)
assert dataset_name not in info
info[dataset_name] = data
metashift_factory.save_all(info, save_images=args.save_images)
if __name__ == "__main__":
main()