|
|
from __future__ import annotations |
|
|
from huggingface_hub import hf_hub_download |
|
|
import numpy as np |
|
|
import gradio as gr |
|
|
|
|
|
|
|
|
def create_demo_sr(process): |
|
|
with gr.Blocks() as demo: |
|
|
with gr.Row(): |
|
|
gr.Markdown('## Face Super Resolution') |
|
|
with gr.Row(): |
|
|
with gr.Column(): |
|
|
input_image = gr.Image(source='upload', type='filepath') |
|
|
model_type = gr.Radio(label='Model Type', choices=['SR for 32x','SR for 4x-48x'], value='SR for 32x') |
|
|
resize_scale = gr.Slider(label='Resize Scale', |
|
|
minimum=4, |
|
|
maximum=48, |
|
|
value=32, |
|
|
step=4) |
|
|
run_button = gr.Button(label='Run') |
|
|
gr.Examples( |
|
|
examples =[['pexels-daniel-xavier-1239291.jpg', 'SR for 32x', 32], |
|
|
['ILip77SbmOE.png', 'SR for 32x', 32], |
|
|
['ILip77SbmOE.png', 'SR for 4x-48x', 48], |
|
|
], |
|
|
inputs = [input_image, model_type, resize_scale], |
|
|
) |
|
|
with gr.Column(): |
|
|
|
|
|
|
|
|
result = gr.Gallery(label='LR input and Output', |
|
|
elem_id='gallery').style(grid=2, |
|
|
height='auto') |
|
|
|
|
|
inputs = [ |
|
|
input_image, |
|
|
resize_scale, |
|
|
model_type, |
|
|
] |
|
|
run_button.click(fn=process, |
|
|
inputs=inputs, |
|
|
outputs=[result], |
|
|
api_name='sr') |
|
|
return demo |
|
|
|
|
|
def create_demo_s2f(process): |
|
|
with gr.Blocks() as demo: |
|
|
with gr.Row(): |
|
|
gr.Markdown('## Sketch-to-Face Translation') |
|
|
with gr.Row(): |
|
|
with gr.Column(): |
|
|
input_image = gr.Image(source='upload', type='filepath') |
|
|
gr.Markdown("""Note: Input will be cropped if larger than 512x512.""") |
|
|
seed = gr.Slider(label='Seed for appearance', |
|
|
minimum=0, |
|
|
maximum=2147483647, |
|
|
step=1, |
|
|
randomize=True) |
|
|
|
|
|
run_button = gr.Button(label='Run') |
|
|
gr.Examples( |
|
|
examples =[['234_sketch.jpg', 1024]], |
|
|
inputs = [input_image, seed], |
|
|
) |
|
|
with gr.Column(): |
|
|
result = gr.Image(label='Output',type='numpy', interactive=False) |
|
|
|
|
|
inputs = [ |
|
|
input_image, seed |
|
|
] |
|
|
run_button.click(fn=process, |
|
|
inputs=inputs, |
|
|
outputs=[result], |
|
|
api_name='s2f') |
|
|
return demo |
|
|
|
|
|
|
|
|
def create_demo_m2f(process): |
|
|
with gr.Blocks() as demo: |
|
|
with gr.Row(): |
|
|
gr.Markdown('## Mask-to-Face Translation') |
|
|
with gr.Row(): |
|
|
with gr.Column(): |
|
|
input_image = gr.Image(source='upload', type='filepath') |
|
|
input_type = gr.Radio(label='Input Type', choices=['color image','parsing mask'], value='color image') |
|
|
seed = gr.Slider(label='Seed for appearance', |
|
|
minimum=0, |
|
|
maximum=2147483647, |
|
|
step=1, |
|
|
randomize=True) |
|
|
|
|
|
run_button = gr.Button(label='Run') |
|
|
gr.Examples( |
|
|
examples =[['ILip77SbmOE.png', 'color image', 4], ['ILip77SbmOE_mask.png', 'parsing mask', 4]], |
|
|
inputs = [input_image, input_type, seed], |
|
|
) |
|
|
with gr.Column(): |
|
|
|
|
|
|
|
|
result = gr.Gallery(label='Visualized mask and Output', |
|
|
elem_id='gallery').style(grid=2, |
|
|
height='auto') |
|
|
|
|
|
inputs = [ |
|
|
input_image, input_type, seed |
|
|
] |
|
|
run_button.click(fn=process, |
|
|
inputs=inputs, |
|
|
outputs=[result], |
|
|
api_name='m2f') |
|
|
return demo |
|
|
|
|
|
def create_demo_editing(process): |
|
|
with gr.Blocks() as demo: |
|
|
with gr.Row(): |
|
|
gr.Markdown('## Video Face Editing (for image input)') |
|
|
with gr.Row(): |
|
|
with gr.Column(): |
|
|
input_image = gr.Image(source='upload', type='filepath') |
|
|
model_type = gr.Radio(label='Editing Type', choices=['reduce age','light hair color'], value='color image') |
|
|
scale_factor = gr.Slider(label='editing degree (-2~2)', |
|
|
minimum=-2, |
|
|
maximum=2, |
|
|
value=1, |
|
|
step=0.1) |
|
|
|
|
|
run_button = gr.Button(label='Run') |
|
|
gr.Examples( |
|
|
examples =[['ILip77SbmOE.png', 'reduce age', -2], |
|
|
['ILip77SbmOE.png', 'light hair color', 1]], |
|
|
inputs = [input_image, model_type, scale_factor], |
|
|
) |
|
|
with gr.Column(): |
|
|
result = gr.Image(label='Output',type='numpy', interactive=False) |
|
|
|
|
|
inputs = [ |
|
|
input_image, scale_factor, model_type |
|
|
] |
|
|
run_button.click(fn=process, |
|
|
inputs=inputs, |
|
|
outputs=[result], |
|
|
api_name='editing') |
|
|
return demo |
|
|
|
|
|
def create_demo_toonify(process): |
|
|
with gr.Blocks() as demo: |
|
|
with gr.Row(): |
|
|
gr.Markdown('## Video Face Toonification (for image input)') |
|
|
with gr.Row(): |
|
|
with gr.Column(): |
|
|
input_image = gr.Image(source='upload', type='filepath') |
|
|
style_type = gr.Radio(label='Style Type', choices=['Pixar','Cartoon','Arcane'], value='Pixar') |
|
|
|
|
|
run_button = gr.Button(label='Run') |
|
|
gr.Examples( |
|
|
examples =[['ILip77SbmOE.png', 'Pixar'], ['ILip77SbmOE.png', 'Cartoon'], ['ILip77SbmOE.png', 'Arcane']], |
|
|
inputs = [input_image, style_type], |
|
|
) |
|
|
with gr.Column(): |
|
|
result = gr.Image(label='Output',type='numpy', interactive=False) |
|
|
|
|
|
inputs = [ |
|
|
input_image, style_type |
|
|
] |
|
|
run_button.click(fn=process, |
|
|
inputs=inputs, |
|
|
outputs=[result], |
|
|
api_name='toonify') |
|
|
return demo |
|
|
|
|
|
|
|
|
def create_demo_vediting(process, max_frame_num = 4): |
|
|
with gr.Blocks() as demo: |
|
|
with gr.Row(): |
|
|
gr.Markdown('## Video Face Editing (for video input)') |
|
|
with gr.Row(): |
|
|
with gr.Column(): |
|
|
input_video = gr.Video(source='upload', mirror_webcam=False, type='filepath') |
|
|
model_type = gr.Radio(label='Editing Type', choices=['reduce age','light hair color'], value='color image') |
|
|
scale_factor = gr.Slider(label='editing degree (-2~2)', |
|
|
minimum=-2, |
|
|
maximum=2, |
|
|
value=1, |
|
|
step=0.1) |
|
|
info = '' |
|
|
if max_frame_num < 100: |
|
|
info = '(full video editing is not allowed so as not to slow down the demo, \ |
|
|
but you can duplicate the Space to modify the number limit to a large value)' |
|
|
frame_num = gr.Slider(label='Number of frames to edit' + info, |
|
|
minimum=1, |
|
|
maximum=max_frame_num, |
|
|
value=4, |
|
|
step=1) |
|
|
|
|
|
run_button = gr.Button(label='Run') |
|
|
gr.Examples( |
|
|
examples =[['684.mp4', 'reduce age', 1.5, 2], |
|
|
['684.mp4', 'light hair color', 0.7, 2]], |
|
|
inputs = [input_video, model_type, scale_factor], |
|
|
) |
|
|
with gr.Column(): |
|
|
viz_result = gr.Gallery(label='Several edited frames', elem_id='gallery').style(grid=2, height='auto') |
|
|
result = gr.Video(label='Output', type='mp4', interactive=False) |
|
|
|
|
|
inputs = [ |
|
|
input_video, scale_factor, model_type, frame_num |
|
|
] |
|
|
run_button.click(fn=process, |
|
|
inputs=inputs, |
|
|
outputs=[viz_result, result], |
|
|
api_name='vediting') |
|
|
return demo |
|
|
|
|
|
def create_demo_vtoonify(process, max_frame_num = 4): |
|
|
with gr.Blocks() as demo: |
|
|
with gr.Row(): |
|
|
gr.Markdown('## Video Face Toonification (for video input)') |
|
|
with gr.Row(): |
|
|
with gr.Column(): |
|
|
input_video = gr.Video(source='upload', mirror_webcam=False, type='filepath') |
|
|
style_type = gr.Radio(label='Style Type', choices=['Pixar','Cartoon','Arcane'], value='Pixar') |
|
|
info = '' |
|
|
if max_frame_num < 100: |
|
|
info = '(full video toonify is not allowed so as not to slow down the demo, \ |
|
|
but you can duplicate the Space to modify the number limit from 4 to a large value)' |
|
|
frame_num = gr.Slider(label='Number of frames to toonify' + info, |
|
|
minimum=1, |
|
|
maximum=max_frame_num, |
|
|
value=4, |
|
|
step=1) |
|
|
|
|
|
run_button = gr.Button(label='Run') |
|
|
gr.Examples( |
|
|
examples =[['529_2.mp4', 'Arcane'], |
|
|
['pexels-anthony-shkraba-production-8136210.mp4', 'Pixar'], |
|
|
['684.mp4', 'Cartoon']], |
|
|
inputs = [input_video, style_type], |
|
|
) |
|
|
with gr.Column(): |
|
|
viz_result = gr.Gallery(label='Several toonified frames', elem_id='gallery').style(grid=2, height='auto') |
|
|
result = gr.Video(label='Output', type='mp4', interactive=False) |
|
|
|
|
|
inputs = [ |
|
|
input_video, style_type, frame_num |
|
|
] |
|
|
run_button.click(fn=process, |
|
|
inputs=inputs, |
|
|
outputs=[viz_result, result], |
|
|
api_name='vtoonify') |
|
|
return demo |
|
|
|
|
|
def create_demo_inversion(process, allow_optimization=False): |
|
|
with gr.Blocks() as demo: |
|
|
with gr.Row(): |
|
|
gr.Markdown('## StyleGANEX Inversion for Editing') |
|
|
with gr.Row(): |
|
|
with gr.Column(): |
|
|
input_image = gr.Image(source='upload', type='filepath') |
|
|
info = '' |
|
|
if allow_optimization == False: |
|
|
info = ' (latent optimization is not allowed so as not to slow down the demo, \ |
|
|
but you can duplicate the Space to modify the option or directly upload an optimized latent file. \ |
|
|
The file can be computed by inversion.py from the github page or colab)' |
|
|
optimize = gr.Radio(label='Whether optimize latent' + info, choices=['No optimization','Latent optimization'], |
|
|
value='No optimization', interactive=allow_optimization) |
|
|
input_latent = gr.File(label='Optimized latent code (optional)', file_types=[".pt"]) |
|
|
editing_options = gr.Dropdown(['None', 'Style Mixing', |
|
|
'Attribute Editing: smile', |
|
|
'Attribute Editing: open_eye', |
|
|
'Attribute Editing: open_mouth', |
|
|
'Attribute Editing: pose', |
|
|
'Attribute Editing: reduce_age', |
|
|
'Attribute Editing: glasses', |
|
|
'Attribute Editing: light_hair_color', |
|
|
'Attribute Editing: slender', |
|
|
'Domain Transfer: disney_princess', |
|
|
'Domain Transfer: vintage_comics', |
|
|
'Domain Transfer: pixar', |
|
|
'Domain Transfer: edvard_munch', |
|
|
'Domain Transfer: modigliani', |
|
|
], |
|
|
label="editing options (based on StyleGAN-NADA, InterFaceGAN, LowRankGAN)", |
|
|
value='None') |
|
|
scale_factor = gr.Slider(label='editing degree (-2~2) for Attribute Editing', |
|
|
minimum=-2, |
|
|
maximum=2, |
|
|
value=2, |
|
|
step=0.1) |
|
|
seed = gr.Slider(label='Appearance Seed for Style Mixing', |
|
|
minimum=0, |
|
|
maximum=2147483647, |
|
|
step=1, |
|
|
randomize=True) |
|
|
|
|
|
run_button = gr.Button(label='Run') |
|
|
gr.Examples( |
|
|
examples =[['ILip77SbmOE.png', 'ILip77SbmOE_inversion.pt', 'Domain Transfer: vintage_comics'], |
|
|
['ILip77SbmOE.png', 'ILip77SbmOE_inversion.pt', 'Attribute Editing: smile'], |
|
|
['ILip77SbmOE.png', 'ILip77SbmOE_inversion.pt', 'Style Mixing'], |
|
|
], |
|
|
inputs = [input_image, input_latent, editing_options], |
|
|
) |
|
|
with gr.Column(): |
|
|
result = gr.Image(label='Inversion output',type='numpy', interactive=False) |
|
|
editing_result = gr.Image(label='Editing output',type='numpy', interactive=False) |
|
|
|
|
|
inputs = [ |
|
|
input_image, optimize, input_latent, editing_options, scale_factor, seed |
|
|
] |
|
|
run_button.click(fn=process, |
|
|
inputs=inputs, |
|
|
outputs=[result, editing_result], |
|
|
api_name='inversion') |
|
|
return demo |
|
|
|