|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torchvision |
|
|
|
from models.bisenet.resnet import Resnet18 |
|
|
|
|
|
|
|
class ConvBNReLU(nn.Module): |
|
def __init__(self, in_chan, out_chan, ks=3, stride=1, padding=1, *args, **kwargs): |
|
super(ConvBNReLU, self).__init__() |
|
self.conv = nn.Conv2d(in_chan, |
|
out_chan, |
|
kernel_size = ks, |
|
stride = stride, |
|
padding = padding, |
|
bias = False) |
|
self.bn = nn.BatchNorm2d(out_chan) |
|
self.init_weight() |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = F.relu(self.bn(x)) |
|
return x |
|
|
|
def init_weight(self): |
|
for ly in self.children(): |
|
if isinstance(ly, nn.Conv2d): |
|
nn.init.kaiming_normal_(ly.weight, a=1) |
|
if not ly.bias is None: nn.init.constant_(ly.bias, 0) |
|
|
|
class BiSeNetOutput(nn.Module): |
|
def __init__(self, in_chan, mid_chan, n_classes, *args, **kwargs): |
|
super(BiSeNetOutput, self).__init__() |
|
self.conv = ConvBNReLU(in_chan, mid_chan, ks=3, stride=1, padding=1) |
|
self.conv_out = nn.Conv2d(mid_chan, n_classes, kernel_size=1, bias=False) |
|
self.init_weight() |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.conv_out(x) |
|
return x |
|
|
|
def init_weight(self): |
|
for ly in self.children(): |
|
if isinstance(ly, nn.Conv2d): |
|
nn.init.kaiming_normal_(ly.weight, a=1) |
|
if not ly.bias is None: nn.init.constant_(ly.bias, 0) |
|
|
|
def get_params(self): |
|
wd_params, nowd_params = [], [] |
|
for name, module in self.named_modules(): |
|
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d): |
|
wd_params.append(module.weight) |
|
if not module.bias is None: |
|
nowd_params.append(module.bias) |
|
elif isinstance(module, nn.BatchNorm2d): |
|
nowd_params += list(module.parameters()) |
|
return wd_params, nowd_params |
|
|
|
|
|
class AttentionRefinementModule(nn.Module): |
|
def __init__(self, in_chan, out_chan, *args, **kwargs): |
|
super(AttentionRefinementModule, self).__init__() |
|
self.conv = ConvBNReLU(in_chan, out_chan, ks=3, stride=1, padding=1) |
|
self.conv_atten = nn.Conv2d(out_chan, out_chan, kernel_size= 1, bias=False) |
|
self.bn_atten = nn.BatchNorm2d(out_chan) |
|
self.sigmoid_atten = nn.Sigmoid() |
|
self.init_weight() |
|
|
|
def forward(self, x): |
|
feat = self.conv(x) |
|
atten = F.avg_pool2d(feat, feat.size()[2:]) |
|
atten = self.conv_atten(atten) |
|
atten = self.bn_atten(atten) |
|
atten = self.sigmoid_atten(atten) |
|
out = torch.mul(feat, atten) |
|
return out |
|
|
|
def init_weight(self): |
|
for ly in self.children(): |
|
if isinstance(ly, nn.Conv2d): |
|
nn.init.kaiming_normal_(ly.weight, a=1) |
|
if not ly.bias is None: nn.init.constant_(ly.bias, 0) |
|
|
|
|
|
class ContextPath(nn.Module): |
|
def __init__(self, *args, **kwargs): |
|
super(ContextPath, self).__init__() |
|
self.resnet = Resnet18() |
|
self.arm16 = AttentionRefinementModule(256, 128) |
|
self.arm32 = AttentionRefinementModule(512, 128) |
|
self.conv_head32 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1) |
|
self.conv_head16 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1) |
|
self.conv_avg = ConvBNReLU(512, 128, ks=1, stride=1, padding=0) |
|
|
|
self.init_weight() |
|
|
|
def forward(self, x): |
|
H0, W0 = x.size()[2:] |
|
feat8, feat16, feat32 = self.resnet(x) |
|
H8, W8 = feat8.size()[2:] |
|
H16, W16 = feat16.size()[2:] |
|
H32, W32 = feat32.size()[2:] |
|
|
|
avg = F.avg_pool2d(feat32, feat32.size()[2:]) |
|
avg = self.conv_avg(avg) |
|
avg_up = F.interpolate(avg, (H32, W32), mode='nearest') |
|
|
|
feat32_arm = self.arm32(feat32) |
|
feat32_sum = feat32_arm + avg_up |
|
feat32_up = F.interpolate(feat32_sum, (H16, W16), mode='nearest') |
|
feat32_up = self.conv_head32(feat32_up) |
|
|
|
feat16_arm = self.arm16(feat16) |
|
feat16_sum = feat16_arm + feat32_up |
|
feat16_up = F.interpolate(feat16_sum, (H8, W8), mode='nearest') |
|
feat16_up = self.conv_head16(feat16_up) |
|
|
|
return feat8, feat16_up, feat32_up |
|
|
|
def init_weight(self): |
|
for ly in self.children(): |
|
if isinstance(ly, nn.Conv2d): |
|
nn.init.kaiming_normal_(ly.weight, a=1) |
|
if not ly.bias is None: nn.init.constant_(ly.bias, 0) |
|
|
|
def get_params(self): |
|
wd_params, nowd_params = [], [] |
|
for name, module in self.named_modules(): |
|
if isinstance(module, (nn.Linear, nn.Conv2d)): |
|
wd_params.append(module.weight) |
|
if not module.bias is None: |
|
nowd_params.append(module.bias) |
|
elif isinstance(module, nn.BatchNorm2d): |
|
nowd_params += list(module.parameters()) |
|
return wd_params, nowd_params |
|
|
|
|
|
|
|
class SpatialPath(nn.Module): |
|
def __init__(self, *args, **kwargs): |
|
super(SpatialPath, self).__init__() |
|
self.conv1 = ConvBNReLU(3, 64, ks=7, stride=2, padding=3) |
|
self.conv2 = ConvBNReLU(64, 64, ks=3, stride=2, padding=1) |
|
self.conv3 = ConvBNReLU(64, 64, ks=3, stride=2, padding=1) |
|
self.conv_out = ConvBNReLU(64, 128, ks=1, stride=1, padding=0) |
|
self.init_weight() |
|
|
|
def forward(self, x): |
|
feat = self.conv1(x) |
|
feat = self.conv2(feat) |
|
feat = self.conv3(feat) |
|
feat = self.conv_out(feat) |
|
return feat |
|
|
|
def init_weight(self): |
|
for ly in self.children(): |
|
if isinstance(ly, nn.Conv2d): |
|
nn.init.kaiming_normal_(ly.weight, a=1) |
|
if not ly.bias is None: nn.init.constant_(ly.bias, 0) |
|
|
|
def get_params(self): |
|
wd_params, nowd_params = [], [] |
|
for name, module in self.named_modules(): |
|
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d): |
|
wd_params.append(module.weight) |
|
if not module.bias is None: |
|
nowd_params.append(module.bias) |
|
elif isinstance(module, nn.BatchNorm2d): |
|
nowd_params += list(module.parameters()) |
|
return wd_params, nowd_params |
|
|
|
|
|
class FeatureFusionModule(nn.Module): |
|
def __init__(self, in_chan, out_chan, *args, **kwargs): |
|
super(FeatureFusionModule, self).__init__() |
|
self.convblk = ConvBNReLU(in_chan, out_chan, ks=1, stride=1, padding=0) |
|
self.conv1 = nn.Conv2d(out_chan, |
|
out_chan//4, |
|
kernel_size = 1, |
|
stride = 1, |
|
padding = 0, |
|
bias = False) |
|
self.conv2 = nn.Conv2d(out_chan//4, |
|
out_chan, |
|
kernel_size = 1, |
|
stride = 1, |
|
padding = 0, |
|
bias = False) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.sigmoid = nn.Sigmoid() |
|
self.init_weight() |
|
|
|
def forward(self, fsp, fcp): |
|
fcat = torch.cat([fsp, fcp], dim=1) |
|
feat = self.convblk(fcat) |
|
atten = F.avg_pool2d(feat, feat.size()[2:]) |
|
atten = self.conv1(atten) |
|
atten = self.relu(atten) |
|
atten = self.conv2(atten) |
|
atten = self.sigmoid(atten) |
|
feat_atten = torch.mul(feat, atten) |
|
feat_out = feat_atten + feat |
|
return feat_out |
|
|
|
def init_weight(self): |
|
for ly in self.children(): |
|
if isinstance(ly, nn.Conv2d): |
|
nn.init.kaiming_normal_(ly.weight, a=1) |
|
if not ly.bias is None: nn.init.constant_(ly.bias, 0) |
|
|
|
def get_params(self): |
|
wd_params, nowd_params = [], [] |
|
for name, module in self.named_modules(): |
|
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d): |
|
wd_params.append(module.weight) |
|
if not module.bias is None: |
|
nowd_params.append(module.bias) |
|
elif isinstance(module, nn.BatchNorm2d): |
|
nowd_params += list(module.parameters()) |
|
return wd_params, nowd_params |
|
|
|
|
|
class BiSeNet(nn.Module): |
|
def __init__(self, n_classes, *args, **kwargs): |
|
super(BiSeNet, self).__init__() |
|
self.cp = ContextPath() |
|
|
|
self.ffm = FeatureFusionModule(256, 256) |
|
self.conv_out = BiSeNetOutput(256, 256, n_classes) |
|
self.conv_out16 = BiSeNetOutput(128, 64, n_classes) |
|
self.conv_out32 = BiSeNetOutput(128, 64, n_classes) |
|
self.init_weight() |
|
|
|
def forward(self, x): |
|
H, W = x.size()[2:] |
|
feat_res8, feat_cp8, feat_cp16 = self.cp(x) |
|
feat_sp = feat_res8 |
|
feat_fuse = self.ffm(feat_sp, feat_cp8) |
|
|
|
feat_out = self.conv_out(feat_fuse) |
|
feat_out16 = self.conv_out16(feat_cp8) |
|
feat_out32 = self.conv_out32(feat_cp16) |
|
|
|
feat_out = F.interpolate(feat_out, (H, W), mode='bilinear', align_corners=True) |
|
feat_out16 = F.interpolate(feat_out16, (H, W), mode='bilinear', align_corners=True) |
|
feat_out32 = F.interpolate(feat_out32, (H, W), mode='bilinear', align_corners=True) |
|
return feat_out, feat_out16, feat_out32 |
|
|
|
def init_weight(self): |
|
for ly in self.children(): |
|
if isinstance(ly, nn.Conv2d): |
|
nn.init.kaiming_normal_(ly.weight, a=1) |
|
if not ly.bias is None: nn.init.constant_(ly.bias, 0) |
|
|
|
def get_params(self): |
|
wd_params, nowd_params, lr_mul_wd_params, lr_mul_nowd_params = [], [], [], [] |
|
for name, child in self.named_children(): |
|
child_wd_params, child_nowd_params = child.get_params() |
|
if isinstance(child, FeatureFusionModule) or isinstance(child, BiSeNetOutput): |
|
lr_mul_wd_params += child_wd_params |
|
lr_mul_nowd_params += child_nowd_params |
|
else: |
|
wd_params += child_wd_params |
|
nowd_params += child_nowd_params |
|
return wd_params, nowd_params, lr_mul_wd_params, lr_mul_nowd_params |
|
|
|
|
|
if __name__ == "__main__": |
|
net = BiSeNet(19) |
|
net.cuda() |
|
net.eval() |
|
in_ten = torch.randn(16, 3, 640, 480).cuda() |
|
out, out16, out32 = net(in_ten) |
|
print(out.shape) |
|
|
|
net.get_params() |
|
|