|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
from configs.paths_config import model_paths |
|
|
|
|
|
class MocoLoss(nn.Module): |
|
|
|
def __init__(self): |
|
super(MocoLoss, self).__init__() |
|
print("Loading MOCO model from path: {}".format(model_paths["moco"])) |
|
self.model = self.__load_model() |
|
self.model.cuda() |
|
self.model.eval() |
|
|
|
@staticmethod |
|
def __load_model(): |
|
import torchvision.models as models |
|
model = models.__dict__["resnet50"]() |
|
|
|
for name, param in model.named_parameters(): |
|
if name not in ['fc.weight', 'fc.bias']: |
|
param.requires_grad = False |
|
checkpoint = torch.load(model_paths['moco'], map_location="cpu") |
|
state_dict = checkpoint['state_dict'] |
|
|
|
for k in list(state_dict.keys()): |
|
|
|
if k.startswith('module.encoder_q') and not k.startswith('module.encoder_q.fc'): |
|
|
|
state_dict[k[len("module.encoder_q."):]] = state_dict[k] |
|
|
|
del state_dict[k] |
|
msg = model.load_state_dict(state_dict, strict=False) |
|
assert set(msg.missing_keys) == {"fc.weight", "fc.bias"} |
|
|
|
model = nn.Sequential(*list(model.children())[:-1]).cuda() |
|
return model |
|
|
|
def extract_feats(self, x): |
|
x = F.interpolate(x, size=224) |
|
x_feats = self.model(x) |
|
x_feats = nn.functional.normalize(x_feats, dim=1) |
|
x_feats = x_feats.squeeze() |
|
return x_feats |
|
|
|
def forward(self, y_hat, y, x): |
|
n_samples = x.shape[0] |
|
x_feats = self.extract_feats(x) |
|
y_feats = self.extract_feats(y) |
|
y_hat_feats = self.extract_feats(y_hat) |
|
y_feats = y_feats.detach() |
|
loss = 0 |
|
sim_improvement = 0 |
|
sim_logs = [] |
|
count = 0 |
|
for i in range(n_samples): |
|
diff_target = y_hat_feats[i].dot(y_feats[i]) |
|
diff_input = y_hat_feats[i].dot(x_feats[i]) |
|
diff_views = y_feats[i].dot(x_feats[i]) |
|
sim_logs.append({'diff_target': float(diff_target), |
|
'diff_input': float(diff_input), |
|
'diff_views': float(diff_views)}) |
|
loss += 1 - diff_target |
|
sim_diff = float(diff_target) - float(diff_views) |
|
sim_improvement += sim_diff |
|
count += 1 |
|
|
|
return loss / count, sim_improvement / count, sim_logs |
|
|