|
import torch |
|
import torch.nn as nn |
|
from torch.autograd import Variable |
|
import math |
|
import torch.nn.functional as F |
|
|
|
class Hopenet(nn.Module): |
|
|
|
|
|
def __init__(self, block, layers, num_bins): |
|
self.inplanes = 64 |
|
super(Hopenet, self).__init__() |
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, |
|
bias=False) |
|
self.bn1 = nn.BatchNorm2d(64) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
self.layer1 = self._make_layer(block, 64, layers[0]) |
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) |
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2) |
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=2) |
|
self.avgpool = nn.AvgPool2d(7) |
|
self.fc_yaw = nn.Linear(512 * block.expansion, num_bins) |
|
self.fc_pitch = nn.Linear(512 * block.expansion, num_bins) |
|
self.fc_roll = nn.Linear(512 * block.expansion, num_bins) |
|
|
|
|
|
self.fc_finetune = nn.Linear(512 * block.expansion + 3, 3) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
m.weight.data.normal_(0, math.sqrt(2. / n)) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
m.weight.data.fill_(1) |
|
m.bias.data.zero_() |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1): |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2d(self.inplanes, planes * block.expansion, |
|
kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
layers.append(block(self.inplanes, planes, stride, downsample)) |
|
self.inplanes = planes * block.expansion |
|
for i in range(1, blocks): |
|
layers.append(block(self.inplanes, planes)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
x = self.maxpool(x) |
|
|
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
|
|
x = self.avgpool(x) |
|
x = x.view(x.size(0), -1) |
|
pre_yaw = self.fc_yaw(x) |
|
pre_pitch = self.fc_pitch(x) |
|
pre_roll = self.fc_roll(x) |
|
|
|
return pre_yaw, pre_pitch, pre_roll |
|
|
|
class ResNet(nn.Module): |
|
|
|
def __init__(self, block, layers, num_classes=1000): |
|
self.inplanes = 64 |
|
super(ResNet, self).__init__() |
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, |
|
bias=False) |
|
self.bn1 = nn.BatchNorm2d(64) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
self.layer1 = self._make_layer(block, 64, layers[0]) |
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) |
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2) |
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=2) |
|
self.avgpool = nn.AvgPool2d(7) |
|
self.fc_angles = nn.Linear(512 * block.expansion, num_classes) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
m.weight.data.normal_(0, math.sqrt(2. / n)) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
m.weight.data.fill_(1) |
|
m.bias.data.zero_() |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1): |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2d(self.inplanes, planes * block.expansion, |
|
kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
layers.append(block(self.inplanes, planes, stride, downsample)) |
|
self.inplanes = planes * block.expansion |
|
for i in range(1, blocks): |
|
layers.append(block(self.inplanes, planes)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
x = self.maxpool(x) |
|
|
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
|
|
x = self.avgpool(x) |
|
x = x.view(x.size(0), -1) |
|
x = self.fc_angles(x) |
|
return x |
|
|
|
class AlexNet(nn.Module): |
|
|
|
|
|
def __init__(self, num_bins): |
|
super(AlexNet, self).__init__() |
|
self.features = nn.Sequential( |
|
nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), |
|
nn.ReLU(inplace=True), |
|
nn.MaxPool2d(kernel_size=3, stride=2), |
|
nn.Conv2d(64, 192, kernel_size=5, padding=2), |
|
nn.ReLU(inplace=True), |
|
nn.MaxPool2d(kernel_size=3, stride=2), |
|
nn.Conv2d(192, 384, kernel_size=3, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(384, 256, kernel_size=3, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(256, 256, kernel_size=3, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.MaxPool2d(kernel_size=3, stride=2), |
|
) |
|
self.classifier = nn.Sequential( |
|
nn.Dropout(), |
|
nn.Linear(256 * 6 * 6, 4096), |
|
nn.ReLU(inplace=True), |
|
nn.Dropout(), |
|
nn.Linear(4096, 4096), |
|
nn.ReLU(inplace=True), |
|
) |
|
self.fc_yaw = nn.Linear(4096, num_bins) |
|
self.fc_pitch = nn.Linear(4096, num_bins) |
|
self.fc_roll = nn.Linear(4096, num_bins) |
|
|
|
def forward(self, x): |
|
x = self.features(x) |
|
x = x.view(x.size(0), 256 * 6 * 6) |
|
x = self.classifier(x) |
|
yaw = self.fc_yaw(x) |
|
pitch = self.fc_pitch(x) |
|
roll = self.fc_roll(x) |
|
return yaw, pitch, roll |
|
|