|
""" |
|
Code from https://github.com/hassony2/torch_videovision |
|
""" |
|
|
|
import numbers |
|
|
|
import random |
|
import numpy as np |
|
import PIL |
|
|
|
from skimage.transform import resize, rotate |
|
from skimage.util import pad |
|
import torchvision |
|
|
|
import warnings |
|
|
|
from skimage import img_as_ubyte, img_as_float |
|
|
|
|
|
def crop_clip(clip, min_h, min_w, h, w): |
|
if isinstance(clip[0], np.ndarray): |
|
cropped = [img[min_h:min_h + h, min_w:min_w + w, :] for img in clip] |
|
|
|
elif isinstance(clip[0], PIL.Image.Image): |
|
cropped = [ |
|
img.crop((min_w, min_h, min_w + w, min_h + h)) for img in clip |
|
] |
|
else: |
|
raise TypeError('Expected numpy.ndarray or PIL.Image' + |
|
'but got list of {0}'.format(type(clip[0]))) |
|
return cropped |
|
|
|
|
|
def pad_clip(clip, h, w): |
|
im_h, im_w = clip[0].shape[:2] |
|
pad_h = (0, 0) if h < im_h else ((h - im_h) // 2, (h - im_h + 1) // 2) |
|
pad_w = (0, 0) if w < im_w else ((w - im_w) // 2, (w - im_w + 1) // 2) |
|
|
|
return pad(clip, ((0, 0), pad_h, pad_w, (0, 0)), mode='edge') |
|
|
|
|
|
def resize_clip(clip, size, interpolation='bilinear'): |
|
if isinstance(clip[0], np.ndarray): |
|
if isinstance(size, numbers.Number): |
|
im_h, im_w, im_c = clip[0].shape |
|
|
|
if (im_w <= im_h and im_w == size) or (im_h <= im_w |
|
and im_h == size): |
|
return clip |
|
new_h, new_w = get_resize_sizes(im_h, im_w, size) |
|
size = (new_w, new_h) |
|
else: |
|
size = size[1], size[0] |
|
|
|
scaled = [ |
|
resize(img, size, order=1 if interpolation == 'bilinear' else 0, preserve_range=True, |
|
mode='constant', anti_aliasing=True) for img in clip |
|
] |
|
elif isinstance(clip[0], PIL.Image.Image): |
|
if isinstance(size, numbers.Number): |
|
im_w, im_h = clip[0].size |
|
|
|
if (im_w <= im_h and im_w == size) or (im_h <= im_w |
|
and im_h == size): |
|
return clip |
|
new_h, new_w = get_resize_sizes(im_h, im_w, size) |
|
size = (new_w, new_h) |
|
else: |
|
size = size[1], size[0] |
|
if interpolation == 'bilinear': |
|
pil_inter = PIL.Image.NEAREST |
|
else: |
|
pil_inter = PIL.Image.BILINEAR |
|
scaled = [img.resize(size, pil_inter) for img in clip] |
|
else: |
|
raise TypeError('Expected numpy.ndarray or PIL.Image' + |
|
'but got list of {0}'.format(type(clip[0]))) |
|
return scaled |
|
|
|
|
|
def get_resize_sizes(im_h, im_w, size): |
|
if im_w < im_h: |
|
ow = size |
|
oh = int(size * im_h / im_w) |
|
else: |
|
oh = size |
|
ow = int(size * im_w / im_h) |
|
return oh, ow |
|
|
|
|
|
class RandomFlip(object): |
|
def __init__(self, time_flip=False, horizontal_flip=False): |
|
self.time_flip = time_flip |
|
self.horizontal_flip = horizontal_flip |
|
|
|
def __call__(self, clip): |
|
if random.random() < 0.5 and self.time_flip: |
|
return clip[::-1] |
|
if random.random() < 0.5 and self.horizontal_flip: |
|
return [np.fliplr(img) for img in clip] |
|
|
|
return clip |
|
|
|
|
|
class RandomResize(object): |
|
"""Resizes a list of (H x W x C) numpy.ndarray to the final size |
|
The larger the original image is, the more times it takes to |
|
interpolate |
|
Args: |
|
interpolation (str): Can be one of 'nearest', 'bilinear' |
|
defaults to nearest |
|
size (tuple): (widht, height) |
|
""" |
|
|
|
def __init__(self, ratio=(3. / 4., 4. / 3.), interpolation='nearest'): |
|
self.ratio = ratio |
|
self.interpolation = interpolation |
|
|
|
def __call__(self, clip): |
|
scaling_factor = random.uniform(self.ratio[0], self.ratio[1]) |
|
|
|
if isinstance(clip[0], np.ndarray): |
|
im_h, im_w, im_c = clip[0].shape |
|
elif isinstance(clip[0], PIL.Image.Image): |
|
im_w, im_h = clip[0].size |
|
|
|
new_w = int(im_w * scaling_factor) |
|
new_h = int(im_h * scaling_factor) |
|
new_size = (new_w, new_h) |
|
resized = resize_clip( |
|
clip, new_size, interpolation=self.interpolation) |
|
|
|
return resized |
|
|
|
|
|
class RandomCrop(object): |
|
"""Extract random crop at the same location for a list of videos |
|
Args: |
|
size (sequence or int): Desired output size for the |
|
crop in format (h, w) |
|
""" |
|
|
|
def __init__(self, size): |
|
if isinstance(size, numbers.Number): |
|
size = (size, size) |
|
|
|
self.size = size |
|
|
|
def __call__(self, clip): |
|
""" |
|
Args: |
|
img (PIL.Image or numpy.ndarray): List of videos to be cropped |
|
in format (h, w, c) in numpy.ndarray |
|
Returns: |
|
PIL.Image or numpy.ndarray: Cropped list of videos |
|
""" |
|
h, w = self.size |
|
if isinstance(clip[0], np.ndarray): |
|
im_h, im_w, im_c = clip[0].shape |
|
elif isinstance(clip[0], PIL.Image.Image): |
|
im_w, im_h = clip[0].size |
|
else: |
|
raise TypeError('Expected numpy.ndarray or PIL.Image' + |
|
'but got list of {0}'.format(type(clip[0]))) |
|
|
|
clip = pad_clip(clip, h, w) |
|
im_h, im_w = clip.shape[1:3] |
|
x1 = 0 if h == im_h else random.randint(0, im_w - w) |
|
y1 = 0 if w == im_w else random.randint(0, im_h - h) |
|
cropped = crop_clip(clip, y1, x1, h, w) |
|
|
|
return cropped |
|
|
|
|
|
class RandomRotation(object): |
|
"""Rotate entire clip randomly by a random angle within |
|
given bounds |
|
Args: |
|
degrees (sequence or int): Range of degrees to select from |
|
If degrees is a number instead of sequence like (min, max), |
|
the range of degrees, will be (-degrees, +degrees). |
|
""" |
|
|
|
def __init__(self, degrees): |
|
if isinstance(degrees, numbers.Number): |
|
if degrees < 0: |
|
raise ValueError('If degrees is a single number,' |
|
'must be positive') |
|
degrees = (-degrees, degrees) |
|
else: |
|
if len(degrees) != 2: |
|
raise ValueError('If degrees is a sequence,' |
|
'it must be of len 2.') |
|
|
|
self.degrees = degrees |
|
|
|
def __call__(self, clip): |
|
""" |
|
Args: |
|
img (PIL.Image or numpy.ndarray): List of videos to be cropped |
|
in format (h, w, c) in numpy.ndarray |
|
Returns: |
|
PIL.Image or numpy.ndarray: Cropped list of videos |
|
""" |
|
angle = random.uniform(self.degrees[0], self.degrees[1]) |
|
if isinstance(clip[0], np.ndarray): |
|
rotated = [rotate(image=img, angle=angle, preserve_range=True) for img in clip] |
|
elif isinstance(clip[0], PIL.Image.Image): |
|
rotated = [img.rotate(angle) for img in clip] |
|
else: |
|
raise TypeError('Expected numpy.ndarray or PIL.Image' + |
|
'but got list of {0}'.format(type(clip[0]))) |
|
|
|
return rotated |
|
|
|
|
|
class ColorJitter(object): |
|
"""Randomly change the brightness, contrast and saturation and hue of the clip |
|
Args: |
|
brightness (float): How much to jitter brightness. brightness_factor |
|
is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]. |
|
contrast (float): How much to jitter contrast. contrast_factor |
|
is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]. |
|
saturation (float): How much to jitter saturation. saturation_factor |
|
is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]. |
|
hue(float): How much to jitter hue. hue_factor is chosen uniformly from |
|
[-hue, hue]. Should be >=0 and <= 0.5. |
|
""" |
|
|
|
def __init__(self, brightness=0, contrast=0, saturation=0, hue=0): |
|
self.brightness = brightness |
|
self.contrast = contrast |
|
self.saturation = saturation |
|
self.hue = hue |
|
|
|
def get_params(self, brightness, contrast, saturation, hue): |
|
if brightness > 0: |
|
brightness_factor = random.uniform( |
|
max(0, 1 - brightness), 1 + brightness) |
|
else: |
|
brightness_factor = None |
|
|
|
if contrast > 0: |
|
contrast_factor = random.uniform( |
|
max(0, 1 - contrast), 1 + contrast) |
|
else: |
|
contrast_factor = None |
|
|
|
if saturation > 0: |
|
saturation_factor = random.uniform( |
|
max(0, 1 - saturation), 1 + saturation) |
|
else: |
|
saturation_factor = None |
|
|
|
if hue > 0: |
|
hue_factor = random.uniform(-hue, hue) |
|
else: |
|
hue_factor = None |
|
return brightness_factor, contrast_factor, saturation_factor, hue_factor |
|
|
|
def __call__(self, clip): |
|
""" |
|
Args: |
|
clip (list): list of PIL.Image |
|
Returns: |
|
list PIL.Image : list of transformed PIL.Image |
|
""" |
|
if isinstance(clip[0], np.ndarray): |
|
brightness, contrast, saturation, hue = self.get_params( |
|
self.brightness, self.contrast, self.saturation, self.hue) |
|
|
|
|
|
img_transforms = [] |
|
if brightness is not None: |
|
img_transforms.append(lambda img: torchvision.transforms.functional.adjust_brightness(img, brightness)) |
|
if saturation is not None: |
|
img_transforms.append(lambda img: torchvision.transforms.functional.adjust_saturation(img, saturation)) |
|
if hue is not None: |
|
img_transforms.append(lambda img: torchvision.transforms.functional.adjust_hue(img, hue)) |
|
if contrast is not None: |
|
img_transforms.append(lambda img: torchvision.transforms.functional.adjust_contrast(img, contrast)) |
|
random.shuffle(img_transforms) |
|
img_transforms = [img_as_ubyte, torchvision.transforms.ToPILImage()] + img_transforms + [np.array, |
|
img_as_float] |
|
|
|
with warnings.catch_warnings(): |
|
warnings.simplefilter("ignore") |
|
jittered_clip = [] |
|
for img in clip: |
|
jittered_img = img |
|
for func in img_transforms: |
|
jittered_img = func(jittered_img) |
|
jittered_clip.append(jittered_img.astype('float32')) |
|
elif isinstance(clip[0], PIL.Image.Image): |
|
brightness, contrast, saturation, hue = self.get_params( |
|
self.brightness, self.contrast, self.saturation, self.hue) |
|
|
|
|
|
img_transforms = [] |
|
if brightness is not None: |
|
img_transforms.append(lambda img: torchvision.transforms.functional.adjust_brightness(img, brightness)) |
|
if saturation is not None: |
|
img_transforms.append(lambda img: torchvision.transforms.functional.adjust_saturation(img, saturation)) |
|
if hue is not None: |
|
img_transforms.append(lambda img: torchvision.transforms.functional.adjust_hue(img, hue)) |
|
if contrast is not None: |
|
img_transforms.append(lambda img: torchvision.transforms.functional.adjust_contrast(img, contrast)) |
|
random.shuffle(img_transforms) |
|
|
|
|
|
jittered_clip = [] |
|
for img in clip: |
|
for func in img_transforms: |
|
jittered_img = func(img) |
|
jittered_clip.append(jittered_img) |
|
|
|
else: |
|
raise TypeError('Expected numpy.ndarray or PIL.Image' + |
|
'but got list of {0}'.format(type(clip[0]))) |
|
return jittered_clip |
|
|
|
|
|
class AllAugmentationTransform: |
|
def __init__(self, resize_param=None, rotation_param=None, flip_param=None, crop_param=None, jitter_param=None): |
|
self.transforms = [] |
|
|
|
if flip_param is not None: |
|
self.transforms.append(RandomFlip(**flip_param)) |
|
|
|
if rotation_param is not None: |
|
self.transforms.append(RandomRotation(**rotation_param)) |
|
|
|
if resize_param is not None: |
|
self.transforms.append(RandomResize(**resize_param)) |
|
|
|
if crop_param is not None: |
|
self.transforms.append(RandomCrop(**crop_param)) |
|
|
|
if jitter_param is not None: |
|
self.transforms.append(ColorJitter(**jitter_param)) |
|
|
|
def __call__(self, clip): |
|
for t in self.transforms: |
|
clip = t(clip) |
|
return clip |
|
|