|
import os |
|
from tqdm import tqdm |
|
|
|
import torch |
|
from torch.utils.data import DataLoader |
|
|
|
from logger import Logger, Visualizer |
|
import imageio |
|
from scipy.spatial import ConvexHull |
|
import numpy as np |
|
|
|
from sync_batchnorm import DataParallelWithCallback |
|
|
|
def normalize_kp(kp_source, kp_driving, kp_driving_initial, adapt_movement_scale=False, |
|
use_relative_movement=False, use_relative_jacobian=False): |
|
if adapt_movement_scale: |
|
source_area = ConvexHull(kp_source['value'][0].data.cpu().numpy()).volume |
|
driving_area = ConvexHull(kp_driving_initial['value'][0].data.cpu().numpy()).volume |
|
adapt_movement_scale = np.sqrt(source_area) / np.sqrt(driving_area) |
|
else: |
|
adapt_movement_scale = 1 |
|
|
|
kp_new = {k: v for k, v in kp_driving.items()} |
|
|
|
if use_relative_movement: |
|
kp_value_diff = (kp_driving['value'] - kp_driving_initial['value']) |
|
kp_value_diff *= adapt_movement_scale |
|
kp_new['value'] = kp_value_diff + kp_source['value'] |
|
|
|
if use_relative_jacobian: |
|
jacobian_diff = torch.matmul(kp_driving['jacobian'], torch.inverse(kp_driving_initial['jacobian'])) |
|
kp_new['jacobian'] = torch.matmul(jacobian_diff, kp_source['jacobian']) |
|
|
|
return kp_new |
|
|