Datasets:
Update parquet files
Browse files- .gitignore +0 -4
- README.md +0 -11
- build.py +0 -50
- data/test-00000-of-00001.parquet → default/test/0000.parquet +0 -0
- data/train-00000-of-00004.parquet → default/train/0000.parquet +0 -0
- data/train-00001-of-00004.parquet → default/train/0001.parquet +0 -0
- data/train-00002-of-00004.parquet → default/train/0002.parquet +0 -0
- data/train-00003-of-00004.parquet → default/train/0003.parquet +0 -0
- data/validation-00000-of-00001.parquet → default/validation/0000.parquet +0 -0
- src/LADaS.py +0 -125
.gitignore
DELETED
@@ -1,4 +0,0 @@
|
|
1 |
-
env
|
2 |
-
.idea
|
3 |
-
*.json
|
4 |
-
*.arrow
|
|
|
|
|
|
|
|
|
|
README.md
DELETED
@@ -1,11 +0,0 @@
|
|
1 |
-
---
|
2 |
-
task_categories:
|
3 |
-
- object-detection
|
4 |
-
license: cc-by-4.0
|
5 |
-
pretty_name: LADaS
|
6 |
-
size_categories:
|
7 |
-
- 1K<n<10K
|
8 |
-
---
|
9 |
-
|
10 |
-
# LADaS: Layout Analysis Dataset with Segmonto
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
build.py
DELETED
@@ -1,50 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from datasets import load_dataset
|
3 |
-
from datasets import config
|
4 |
-
from datasets.utils.py_utils import convert_file_size_to_int
|
5 |
-
from datasets.table import embed_table_storage
|
6 |
-
from tqdm import tqdm
|
7 |
-
|
8 |
-
|
9 |
-
def build_parquet(split):
|
10 |
-
# Source: https://discuss.huggingface.co/t/how-to-save-audio-dataset-with-parquet-format-on-disk/66179
|
11 |
-
dataset = load_dataset("./src/LADaS.py", split=split, trust_remote_code=True)
|
12 |
-
max_shard_size = '500MB'
|
13 |
-
|
14 |
-
dataset_nbytes = dataset._estimate_nbytes()
|
15 |
-
max_shard_size = convert_file_size_to_int(max_shard_size or config.MAX_SHARD_SIZE)
|
16 |
-
num_shards = int(dataset_nbytes / max_shard_size) + 1
|
17 |
-
num_shards = max(num_shards, 1)
|
18 |
-
shards = (dataset.shard(num_shards=num_shards, index=i, contiguous=True) for i in range(num_shards))
|
19 |
-
|
20 |
-
def shards_with_embedded_external_files(shards):
|
21 |
-
for shard in shards:
|
22 |
-
format = shard.format
|
23 |
-
shard = shard.with_format("arrow")
|
24 |
-
shard = shard.map(
|
25 |
-
embed_table_storage,
|
26 |
-
batched=True,
|
27 |
-
batch_size=1000,
|
28 |
-
keep_in_memory=True,
|
29 |
-
)
|
30 |
-
shard = shard.with_format(**format)
|
31 |
-
yield shard
|
32 |
-
|
33 |
-
shards = shards_with_embedded_external_files(shards)
|
34 |
-
|
35 |
-
os.makedirs("data", exist_ok=True)
|
36 |
-
|
37 |
-
for index, shard in tqdm(
|
38 |
-
enumerate(shards),
|
39 |
-
desc="Save the dataset shards",
|
40 |
-
total=num_shards,
|
41 |
-
):
|
42 |
-
shard_path = f"data/{split}-{index:05d}-of-{num_shards:05d}.parquet"
|
43 |
-
shard.to_parquet(shard_path)
|
44 |
-
|
45 |
-
|
46 |
-
if __name__ == "__main__":
|
47 |
-
build_parquet("train")
|
48 |
-
build_parquet("validation")
|
49 |
-
build_parquet("test")
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data/test-00000-of-00001.parquet → default/test/0000.parquet
RENAMED
File without changes
|
data/train-00000-of-00004.parquet → default/train/0000.parquet
RENAMED
File without changes
|
data/train-00001-of-00004.parquet → default/train/0001.parquet
RENAMED
File without changes
|
data/train-00002-of-00004.parquet → default/train/0002.parquet
RENAMED
File without changes
|
data/train-00003-of-00004.parquet → default/train/0003.parquet
RENAMED
File without changes
|
data/validation-00000-of-00001.parquet → default/validation/0000.parquet
RENAMED
File without changes
|
src/LADaS.py
DELETED
@@ -1,125 +0,0 @@
|
|
1 |
-
import glob
|
2 |
-
import os
|
3 |
-
from typing import List, Any
|
4 |
-
|
5 |
-
import yaml
|
6 |
-
import datasets
|
7 |
-
from PIL import Image
|
8 |
-
|
9 |
-
|
10 |
-
_VERSION = "2024-07-17"
|
11 |
-
_URL = f"https://github.com/DEFI-COLaF/LADaS/archive/refs/tags/{_VERSION}.tar.gz"
|
12 |
-
_HOMEPAGE = "https://github.com/DEFI-COLaF/LADaS"
|
13 |
-
_LICENSE = "CC BY 4.0"
|
14 |
-
_CITATION = """\
|
15 |
-
@misc{Clerice_Layout_Analysis_Dataset,
|
16 |
-
author = {Clérice, Thibault and Janès, Juliette and Scheithauer, Hugo and Bénière, Sarah and Romary, Laurent and Sagot, Benoit and Bougrelle, Roxane},
|
17 |
-
title = {{Layout Analysis Dataset with SegmOnto (LADaS)}},
|
18 |
-
url = {https://github.com/DEFI-COLaF/LADaS}
|
19 |
-
}
|
20 |
-
"""
|
21 |
-
|
22 |
-
_CATEGORIES: list[str] = ["AdvertisementZone", "DigitizationArtefactZone", "DropCapitalZone", "FigureZone",
|
23 |
-
"FigureZone-FigDesc", "FigureZone-Head", "GraphicZone", "GraphicZone-Decoration",
|
24 |
-
"GraphicZone-FigDesc", "GraphicZone-Head", "GraphicZone-Maths", "GraphicZone-Part",
|
25 |
-
"GraphicZone-TextualContent", "MainZone-Date", "MainZone-Entry", "MainZone-Entry-Continued",
|
26 |
-
"MainZone-Form", "MainZone-Head", "MainZone-Lg", "MainZone-Lg-Continued", "MainZone-List",
|
27 |
-
"MainZone-List-Continued", "MainZone-Other", "MainZone-P", "MainZone-P-Continued",
|
28 |
-
"MainZone-Signature", "MainZone-Sp", "MainZone-Sp-Continued",
|
29 |
-
"MarginTextZone-ManuscriptAddendum", "MarginTextZone-Notes", "MarginTextZone-Notes-Continued",
|
30 |
-
"NumberingZone", "TitlePageZone", "TitlePageZone-Index", "QuireMarksZone", "RunningTitleZone",
|
31 |
-
"StampZone", "StampZone-Sticker", "TableZone", "TableZone-Continued", "TableZone-Head"]
|
32 |
-
|
33 |
-
|
34 |
-
class LadasConfig(datasets.BuilderConfig):
|
35 |
-
"""Builder Config for LADaS"""
|
36 |
-
def __init__(self, *args, **kwargs):
|
37 |
-
super().__init__(*args, **kwargs)
|
38 |
-
|
39 |
-
|
40 |
-
class LadasDataset(datasets.GeneratorBasedBuilder):
|
41 |
-
VERSION = datasets.Version(_VERSION.replace("-", "."))
|
42 |
-
BUILDER_CONFIGS = [
|
43 |
-
LadasConfig(
|
44 |
-
name="full",
|
45 |
-
description="Full version of the dataset"
|
46 |
-
)
|
47 |
-
]
|
48 |
-
|
49 |
-
def _info(self) -> datasets.DatasetInfo:
|
50 |
-
features = datasets.Features({
|
51 |
-
"image_path": datasets.Value("string"),
|
52 |
-
"image": datasets.Image(),
|
53 |
-
"width": datasets.Value("int32"),
|
54 |
-
"height": datasets.Value("int32"),
|
55 |
-
"objects": datasets.Sequence(
|
56 |
-
{
|
57 |
-
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
|
58 |
-
"category": datasets.ClassLabel(names=_CATEGORIES),
|
59 |
-
}
|
60 |
-
)
|
61 |
-
})
|
62 |
-
return datasets.DatasetInfo(
|
63 |
-
features=features,
|
64 |
-
homepage=_HOMEPAGE,
|
65 |
-
citation=_CITATION,
|
66 |
-
license=_LICENSE
|
67 |
-
)
|
68 |
-
|
69 |
-
def _split_generators(self, dl_manager):
|
70 |
-
urls_to_download = _URL
|
71 |
-
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
72 |
-
return [
|
73 |
-
datasets.SplitGenerator(
|
74 |
-
name=datasets.Split.TRAIN,
|
75 |
-
gen_kwargs={
|
76 |
-
"local_dir": downloaded_files,
|
77 |
-
"split": "train"
|
78 |
-
},
|
79 |
-
),
|
80 |
-
datasets.SplitGenerator(
|
81 |
-
name=datasets.Split.VALIDATION,
|
82 |
-
gen_kwargs={
|
83 |
-
"local_dir": downloaded_files,
|
84 |
-
"split": "valid"
|
85 |
-
},
|
86 |
-
),
|
87 |
-
datasets.SplitGenerator(
|
88 |
-
name=datasets.Split.TEST,
|
89 |
-
gen_kwargs={
|
90 |
-
"local_dir": downloaded_files,
|
91 |
-
"split": "test"
|
92 |
-
},
|
93 |
-
),
|
94 |
-
]
|
95 |
-
|
96 |
-
def _generate_examples(self, local_dir: str, split: str):
|
97 |
-
|
98 |
-
idx = 0
|
99 |
-
|
100 |
-
for file in glob.glob(os.path.join(local_dir, "*", "data", "*", split, "labels", "*.txt")):
|
101 |
-
objects = []
|
102 |
-
with open(file) as f:
|
103 |
-
for line in f:
|
104 |
-
cls, *bbox = line.strip().split()
|
105 |
-
objects.append({"category": _CATEGORIES[int(cls)], "bbox": list(map(float, bbox))})
|
106 |
-
|
107 |
-
image_path = os.path.normpath(file).split(os.sep)
|
108 |
-
image_path = os.path.join(*image_path[:-2], "images", image_path[-1].replace(".txt", ".jpg"))
|
109 |
-
if file.startswith("/") and not image_path.startswith("/"):
|
110 |
-
image_path = "/" + image_path
|
111 |
-
|
112 |
-
with open(image_path, "rb") as f:
|
113 |
-
image_bytes = f.read()
|
114 |
-
|
115 |
-
with Image.open(image_path) as im:
|
116 |
-
width, height = im.size
|
117 |
-
|
118 |
-
yield idx, {
|
119 |
-
"image_id": f"{image_path[-4]}/{image_path[-1]}",
|
120 |
-
"image": {"path": image_path, "bytes": image_bytes},
|
121 |
-
"width": width,
|
122 |
-
"height": height,
|
123 |
-
"objects": objects,
|
124 |
-
}
|
125 |
-
idx += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|