system HF staff commited on
Commit
528450d
0 Parent(s):

Update files from the datasets library (from 1.0.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.0.0

Files changed (4) hide show
  1. .gitattributes +27 -0
  2. dataset_infos.json +1 -0
  3. dummy/0.1.0/dummy_data.zip +3 -0
  4. wiqa.py +114 -0
.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"default": {"description": "The WIQA dataset V1 has 39705 questions containing a perturbation and a possible effect in the context of a paragraph. \nThe dataset is split into 29808 train questions, 6894 dev questions and 3003 test questions.\n", "citation": "@article{wiqa,\n author = {Niket Tandon and Bhavana Dalvi Mishra and Keisuke Sakaguchi and Antoine Bosselut and Peter Clark}\n title = {WIQA: A dataset for \"What if...\" reasoning over procedural text},\n journal = {arXiv:1909.04739v1},\n year = {2019},\n}\n", "homepage": "https://allenai.org/data/wiqa", "license": "", "features": {"question_stem": {"dtype": "string", "id": null, "_type": "Value"}, "question_para_step": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "answer_label": {"dtype": "string", "id": null, "_type": "Value"}, "answer_label_as_choice": {"dtype": "string", "id": null, "_type": "Value"}, "choices": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "metadata_question_id": {"dtype": "string", "id": null, "_type": "Value"}, "metadata_graph_id": {"dtype": "string", "id": null, "_type": "Value"}, "metadata_para_id": {"dtype": "string", "id": null, "_type": "Value"}, "metadata_question_type": {"dtype": "string", "id": null, "_type": "Value"}, "metadata_path_len": {"dtype": "int32", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "wiqa", "config_name": "default", "version": {"version_str": "0.1.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 17089298, "num_examples": 29808, "dataset_name": "wiqa"}, "test": {"name": "test", "num_bytes": 1532223, "num_examples": 3003, "dataset_name": "wiqa"}, "validation": {"name": "validation", "num_bytes": 3779584, "num_examples": 6894, "dataset_name": "wiqa"}}, "download_checksums": {"https://public-aristo-processes.s3-us-west-2.amazonaws.com/wiqa_dataset_no_explanation_v2/wiqa-dataset-v2-october-2019.zip": {"num_bytes": 5247733, "checksum": "afdab9bc33d814576f76516017f2b39dd101f8770f3f29ab6be2846ff59efb43"}}, "download_size": 5247733, "dataset_size": 22401105, "size_in_bytes": 27648838}}
dummy/0.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:878f302120c4548bda2e88da2e246f73f730f5a710dd6e753b95819bcbe70860
3
+ size 2387
wiqa.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """TODO(wiqa): Add a description here."""
2
+
3
+ from __future__ import absolute_import, division, print_function
4
+
5
+ import json
6
+ import os
7
+
8
+ import datasets
9
+
10
+
11
+ # TODO(wiqa): BibTeX citation
12
+ _CITATION = """\
13
+ @article{wiqa,
14
+ author = {Niket Tandon and Bhavana Dalvi Mishra and Keisuke Sakaguchi and Antoine Bosselut and Peter Clark}
15
+ title = {WIQA: A dataset for "What if..." reasoning over procedural text},
16
+ journal = {arXiv:1909.04739v1},
17
+ year = {2019},
18
+ }
19
+ """
20
+
21
+ # TODO(wiqa):
22
+ _DESCRIPTION = """\
23
+ The WIQA dataset V1 has 39705 questions containing a perturbation and a possible effect in the context of a paragraph.
24
+ The dataset is split into 29808 train questions, 6894 dev questions and 3003 test questions.
25
+ """
26
+ _URL = "https://public-aristo-processes.s3-us-west-2.amazonaws.com/wiqa_dataset_no_explanation_v2/wiqa-dataset-v2-october-2019.zip"
27
+ URl = "s3://ai2-s2-research-public/open-corpus/2020-04-10/"
28
+
29
+
30
+ class Wiqa(datasets.GeneratorBasedBuilder):
31
+ """TODO(wiqa): Short description of my dataset."""
32
+
33
+ # TODO(wiqa): Set up version.
34
+ VERSION = datasets.Version("0.1.0")
35
+
36
+ def _info(self):
37
+ # TODO(wiqa): Specifies the datasets.DatasetInfo object
38
+ return datasets.DatasetInfo(
39
+ # This is the description that will appear on the datasets page.
40
+ description=_DESCRIPTION,
41
+ # datasets.features.FeatureConnectors
42
+ features=datasets.Features(
43
+ {
44
+ # These are the features of your dataset like images, labels ...
45
+ "question_stem": datasets.Value("string"),
46
+ "question_para_step": datasets.features.Sequence(datasets.Value("string")),
47
+ "answer_label": datasets.Value("string"),
48
+ "answer_label_as_choice": datasets.Value("string"),
49
+ "choices": datasets.features.Sequence(
50
+ {"text": datasets.Value("string"), "label": datasets.Value("string")}
51
+ ),
52
+ "metadata_question_id": datasets.Value("string"),
53
+ "metadata_graph_id": datasets.Value("string"),
54
+ "metadata_para_id": datasets.Value("string"),
55
+ "metadata_question_type": datasets.Value("string"),
56
+ "metadata_path_len": datasets.Value("int32"),
57
+ }
58
+ ),
59
+ # If there's a common (input, target) tuple from the features,
60
+ # specify them here. They'll be used if as_supervised=True in
61
+ # builder.as_dataset.
62
+ supervised_keys=None,
63
+ # Homepage of the dataset for documentation
64
+ homepage="https://allenai.org/data/wiqa",
65
+ citation=_CITATION,
66
+ )
67
+
68
+ def _split_generators(self, dl_manager):
69
+ """Returns SplitGenerators."""
70
+ # TODO(wiqa): Downloads the data and defines the splits
71
+ # dl_manager is a datasets.download.DownloadManager that can be used to
72
+ # download and extract URLs
73
+ dl_dir = dl_manager.download_and_extract(_URL)
74
+
75
+ return [
76
+ datasets.SplitGenerator(
77
+ name=datasets.Split.TRAIN,
78
+ # These kwargs will be passed to _generate_examples
79
+ gen_kwargs={"filepath": os.path.join(dl_dir, "train.jsonl")},
80
+ ),
81
+ datasets.SplitGenerator(
82
+ name=datasets.Split.TEST,
83
+ # These kwargs will be passed to _generate_examples
84
+ gen_kwargs={"filepath": os.path.join(dl_dir, "test.jsonl")},
85
+ ),
86
+ datasets.SplitGenerator(
87
+ name=datasets.Split.VALIDATION,
88
+ # These kwargs will be passed to _generate_examples
89
+ gen_kwargs={"filepath": os.path.join(dl_dir, "dev.jsonl")},
90
+ ),
91
+ ]
92
+
93
+ def _generate_examples(self, filepath):
94
+ """Yields examples."""
95
+ # TODO(wiqa): Yields (key, example) tuples from the dataset
96
+ with open(filepath, encoding="utf-8") as f:
97
+ for id_, row in enumerate(f):
98
+ data = json.loads(row)
99
+
100
+ yield id_, {
101
+ "question_stem": data["question"]["stem"],
102
+ "question_para_step": data["question"]["para_steps"],
103
+ "answer_label": data["question"]["answer_label"],
104
+ "answer_label_as_choice": data["question"]["answer_label_as_choice"],
105
+ "choices": {
106
+ "text": [choice["text"] for choice in data["question"]["choices"]],
107
+ "label": [choice["label"] for choice in data["question"]["choices"]],
108
+ },
109
+ "metadata_question_id": data["metadata"]["ques_id"],
110
+ "metadata_graph_id": data["metadata"]["graph_id"],
111
+ "metadata_para_id": data["metadata"]["para_id"],
112
+ "metadata_question_type": data["metadata"]["question_type"],
113
+ "metadata_path_len": data["metadata"]["path_len"],
114
+ }