Datasets:
Sub-tasks:
hate-speech-detection
Languages:
English
Size:
100K<n<1M
Tags:
explanation-generation
License:
# coding=utf-8 | |
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""Social Bias Frames""" | |
import csv | |
import datasets | |
_CITATION = """\ | |
@inproceedings{sap2020socialbiasframes, | |
title={Social Bias Frames: Reasoning about Social and Power Implications of Language}, | |
author={Sap, Maarten and Gabriel, Saadia and Qin, Lianhui and Jurafsky, Dan and Smith, Noah A and Choi, Yejin}, | |
year={2020}, | |
booktitle={ACL}, | |
} | |
""" | |
_DESCRIPTION = """\ | |
Social Bias Frames is a new way of representing the biases and offensiveness that are implied in language. | |
For example, these frames are meant to distill the implication that "women (candidates) are less qualified" | |
behind the statement "we shouldn’t lower our standards to hire more women." | |
""" | |
_DATA_URL = "https://homes.cs.washington.edu/~msap/social-bias-frames/SBIC.v2.tgz" | |
class SocialBiasFrames(datasets.GeneratorBasedBuilder): | |
"""TSocial Bias Frame""" | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"whoTarget": datasets.Value("string"), | |
"intentYN": datasets.Value("string"), | |
"sexYN": datasets.Value("string"), | |
"sexReason": datasets.Value("string"), | |
"offensiveYN": datasets.Value("string"), | |
"annotatorGender": datasets.Value("string"), | |
"annotatorMinority": datasets.Value("string"), | |
"sexPhrase": datasets.Value("string"), | |
"speakerMinorityYN": datasets.Value("string"), | |
"WorkerId": datasets.Value("string"), | |
"HITId": datasets.Value("string"), | |
"annotatorPolitics": datasets.Value("string"), | |
"annotatorRace": datasets.Value("string"), | |
"annotatorAge": datasets.Value("string"), | |
"post": datasets.Value("string"), | |
"targetMinority": datasets.Value("string"), | |
"targetCategory": datasets.Value("string"), | |
"targetStereotype": datasets.Value("string"), | |
"dataSource": datasets.Value("string"), | |
} | |
), | |
# No default supervised_keys (as we have to pass both premise | |
# and hypothesis as input). | |
supervised_keys=None, | |
homepage="https://homes.cs.washington.edu/~msap/social-bias-frames/", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
archive = dl_manager.download(_DATA_URL) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"filepath": "SBIC.v2.tst.csv", "files": dl_manager.iter_archive(archive)}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={"filepath": "SBIC.v2.dev.csv", "files": dl_manager.iter_archive(archive)}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"filepath": "SBIC.v2.trn.csv", "files": dl_manager.iter_archive(archive)}, | |
), | |
] | |
def _generate_examples(self, filepath, files): | |
"""This function returns the examples in the raw (text) form.""" | |
for path, f in files: | |
if path == filepath: | |
lines = (line.decode("utf-8") for line in f) | |
reader = csv.DictReader(lines) | |
for idx, row in enumerate(reader): | |
yield idx, row | |
break | |