# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# TODO: Address all TODOs and remove all explanatory comments | |
"""TODO: Add a description here.""" | |
import csv | |
import json | |
import os | |
import glob | |
import datasets | |
from datasets.data_files import DataFilesDict | |
from .scirepeval_test_configs import SCIREPEVAL_CONFIGS | |
#from datasets.packaged_modules.json import json | |
# TODO: Add BibTeX citation | |
# Find for instance the citation on arxiv or on the dataset repo/website | |
_CITATION = """\ | |
@InProceedings{huggingface:dataset, | |
title = {A great new dataset}, | |
author={huggingface, Inc. | |
}, | |
year={2021} | |
} | |
""" | |
# TODO: Add description of the dataset here | |
# You can copy an official description | |
_DESCRIPTION = """\ | |
This new dataset is designed to solve this great NLP task and is crafted with a lot of care. | |
""" | |
# TODO: Add a link to an official homepage for the dataset here | |
_HOMEPAGE = "" | |
# TODO: Add the licence for the dataset here if you can find it | |
_LICENSE = "" | |
# TODO: Add link to the official dataset URLs here | |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files. | |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) | |
_URLS = { | |
"first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip", | |
"second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip", | |
} | |
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case | |
class Scirepeval(datasets.GeneratorBasedBuilder): | |
"""TODO: Short description of my dataset.""" | |
VERSION = datasets.Version("1.1.0") | |
# This is an example of a dataset with multiple configurations. | |
# If you don't want/need to define several sub-sets in your dataset, | |
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. | |
# If you need to make complex sub-parts in the datasets with configurable options | |
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig | |
# BUILDER_CONFIG_CLASS = MyBuilderConfig | |
# You will be able to load one or the other configurations in the following list with | |
# data = datasets.load_dataset('my_dataset', 'first_domain') | |
# data = datasets.load_dataset('my_dataset', 'second_domain') | |
BUILDER_CONFIGS = SCIREPEVAL_CONFIGS | |
def _info(self): | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# This defines the different columns of the dataset and their types | |
features=datasets.Features(self.config.features), # Here we define them above because they are different between the two configurations | |
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and | |
# specify them. They'll be used if as_supervised=True in builder.as_dataset. | |
# supervised_keys=("sentence", "label"), | |
# Homepage of the dataset for documentation | |
homepage=_HOMEPAGE, | |
# License for the dataset if available | |
license=_LICENSE, | |
# Citation for the dataset | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration | |
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name | |
base_url = "https://ai2-s2-research-public.s3.us-west-2.amazonaws.com/scirepeval" | |
data_urls = dict() | |
data_dir = self.config.url if self.config.url else self.config.name | |
if self.config.task_type in set(["classification", "regression"]): | |
data_urls.update({"train": f"{base_url}/test/{data_dir}/train.csv"}) | |
data_urls.update({"test": f"{base_url}/test/{data_dir}/test.csv"}) | |
elif self.config.task_type == "metadata": | |
data_urls.update({"metadata": f"{base_url}/test/{data_dir}/reviewer_metadata.jsonl"}) | |
elif "reviewer_matching" in self.config.name: | |
data_urls.update({"test_hard": f"{base_url}/test/{data_dir}/test_hard_qrel.jsonl", | |
"test_soft": f"{base_url}/test/{data_dir}/test_soft_qrel.jsonl"}) | |
else: | |
data_urls.update({"test": f"{base_url}/test/{data_dir}/test_qrel.jsonl"}) | |
downloaded_files = dl_manager.download_and_extract(data_urls) | |
splits = [] | |
if self.config.task_type == "metadata": | |
splits = [datasets.SplitGenerator( | |
name=datasets.Split("metadata"), | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": downloaded_files["metadata"], | |
"split": "metadata" | |
}, | |
), | |
] | |
elif "reviewer_matching" in self.config.name: | |
splits = [datasets.SplitGenerator( | |
name=datasets.Split("test_hard"), | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": downloaded_files["test_hard"], | |
"split": "test" | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split("test_soft"), | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": downloaded_files["test_soft"], | |
"split": "test" | |
}, | |
) | |
] | |
else: | |
splits = [datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": downloaded_files["test"], | |
"split": "test" | |
}, | |
), | |
] | |
if "train" in downloaded_files: | |
splits += [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": downloaded_files["train"], | |
"split": "train", | |
}, | |
)] | |
return splits | |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
def _generate_examples(self, filepath, split): | |
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. | |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. | |
# data = read_data(filepath) | |
if self.config.task_type in set(["classification", "regression"]): | |
import csv | |
import ast | |
with open(filepath, encoding="utf-8") as f: | |
reader = csv.reader(f) | |
for id_, row in enumerate(reader): | |
if id_ == 0: | |
continue | |
yield id_, { | |
"paper_id": row[0], | |
"label": ast.literal_eval(",".join(row[1:])) if self.config.name=="fos" else row[1] | |
} | |
elif self.config.task_type == "metadata": | |
with open(filepath, encoding="utf-8") as f: | |
for line in f: | |
d = json.loads(line) | |
yield d["r_id"], d | |
else: | |
with open(filepath, encoding="utf-8") as f: | |
for i, line in enumerate(f): | |
d = json.loads(line) | |
yield i, d | |