Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
closed-domain-qa
Languages:
English
Size:
10K - 100K
License:
"""TODO(sciQ): Add a description here.""" | |
import json | |
import os | |
import datasets | |
# TODO(sciQ): BibTeX citation | |
_CITATION = """\ | |
@inproceedings{SciQ, | |
title={Crowdsourcing Multiple Choice Science Questions}, | |
author={Johannes Welbl, Nelson F. Liu, Matt Gardner}, | |
year={2017}, | |
journal={arXiv:1707.06209v1} | |
} | |
""" | |
# TODO(sciQ): | |
_DESCRIPTION = """\ | |
The SciQ dataset contains 13,679 crowdsourced science exam questions about Physics, Chemistry and Biology, among others. The questions are in multiple-choice format with 4 answer options each. For the majority of the questions, an additional paragraph with supporting evidence for the correct answer is provided. | |
""" | |
_URL = "https://s3-us-west-2.amazonaws.com/ai2-website/data/SciQ.zip" | |
class Sciq(datasets.GeneratorBasedBuilder): | |
"""TODO(sciQ): Short description of my dataset.""" | |
# TODO(sciQ): Set up version. | |
VERSION = datasets.Version("0.1.0") | |
def _info(self): | |
# TODO(sciQ): Specifies the datasets.DatasetInfo object | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# datasets.features.FeatureConnectors | |
features=datasets.Features( | |
{ | |
# These are the features of your dataset like images, labels ... | |
"question": datasets.Value("string"), | |
"distractor3": datasets.Value("string"), | |
"distractor1": datasets.Value("string"), | |
"distractor2": datasets.Value("string"), | |
"correct_answer": datasets.Value("string"), | |
"support": datasets.Value("string"), | |
} | |
), | |
# If there's a common (input, target) tuple from the features, | |
# specify them here. They'll be used if as_supervised=True in | |
# builder.as_dataset. | |
supervised_keys=None, | |
# Homepage of the dataset for documentation | |
homepage="https://allenai.org/data/sciq", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
# TODO(sciQ): Downloads the data and defines the splits | |
# dl_manager is a datasets.download.DownloadManager that can be used to | |
# download and extract URLs | |
dl_dir = dl_manager.download_and_extract(_URL) | |
data_dir = os.path.join(dl_dir, "SciQ dataset-2 3") | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": os.path.join(data_dir, "train.json")}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": os.path.join(data_dir, "valid.json")}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": os.path.join(data_dir, "test.json")}, | |
), | |
] | |
def _generate_examples(self, filepath): | |
"""Yields examples.""" | |
# TODO(sciQ): Yields (key, example) tuples from the dataset | |
with open(filepath, encoding="utf-8") as f: | |
data = json.load(f) | |
for id_, row in enumerate(data): | |
yield id_, row | |