Datasets:

Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
ropes / ropes.py
system's picture
system HF staff
Update files from the datasets library (from 1.2.0)
cfc8fbe
raw
history blame
5.09 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""ROPES dataset.
Code is heavily inspired from https://github.com/huggingface/datasets/blob/master/datasets/squad/squad.py"""
from __future__ import absolute_import, division, print_function
import json
import os
import datasets
_CITATION = """\
@inproceedings{Lin2019ReasoningOP,
title={Reasoning Over Paragraph Effects in Situations},
author={Kevin Lin and Oyvind Tafjord and Peter Clark and Matt Gardner},
booktitle={MRQA@EMNLP},
year={2019}
}
"""
_DESCRIPTION = """\
ROPES (Reasoning Over Paragraph Effects in Situations) is a QA dataset
which tests a system's ability to apply knowledge from a passage
of text to a new situation. A system is presented a background
passage containing a causal or qualitative relation(s) (e.g.,
"animal pollinators increase efficiency of fertilization in flowers"),
a novel situation that uses this background, and questions that require
reasoning about effects of the relationships in the background
passage in the background of the situation.
"""
_LICENSE = "CC BY 4.0"
_URLs = {
"train+dev": "https://ropes-dataset.s3-us-west-2.amazonaws.com/train_and_dev/ropes-train-dev-v1.0.tar.gz",
"test": "https://ropes-dataset.s3-us-west-2.amazonaws.com/test/ropes-test-questions-v1.0.tar.gz",
}
class Ropes(datasets.GeneratorBasedBuilder):
"""ROPES datset: testing a system's ability
to apply knowledge from a passage of text to a new situation.."""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="plain_text", description="Plain text", version=VERSION),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"background": datasets.Value("string"),
"situation": datasets.Value("string"),
"question": datasets.Value("string"),
"answers": datasets.features.Sequence(
{
"text": datasets.Value("string"),
}
),
}
),
supervised_keys=None,
homepage="https://allenai.org/data/ropes",
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
data_dir = dl_manager.download_and_extract(_URLs)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir["train+dev"], "ropes-train-dev-v1.0", "train-v1.0.json"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir["test"], "ropes-test-questions-v1.0", "test-1.0.json"),
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(data_dir["train+dev"], "ropes-train-dev-v1.0", "dev-v1.0.json"),
"split": "dev",
},
),
]
def _generate_examples(self, filepath, split):
""" Yields examples. """
with open(filepath, encoding="utf-8") as f:
ropes = json.load(f)
for article in ropes["data"]:
for paragraph in article["paragraphs"]:
background = paragraph["background"].strip()
situation = paragraph["situation"].strip()
for qa in paragraph["qas"]:
question = qa["question"].strip()
id_ = qa["id"]
answers = [] if split == "test" else [answer["text"].strip() for answer in qa["answers"]]
yield id_, {
"background": background,
"situation": situation,
"question": question,
"id": id_,
"answers": {
"text": answers,
},
}