Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Languages:
English
Size:
10K - 100K
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""ROPES dataset. | |
Code is heavily inspired from https://github.com/huggingface/datasets/blob/master/datasets/squad/squad.py""" | |
from __future__ import absolute_import, division, print_function | |
import json | |
import os | |
import datasets | |
_CITATION = """\ | |
@inproceedings{Lin2019ReasoningOP, | |
title={Reasoning Over Paragraph Effects in Situations}, | |
author={Kevin Lin and Oyvind Tafjord and Peter Clark and Matt Gardner}, | |
booktitle={MRQA@EMNLP}, | |
year={2019} | |
} | |
""" | |
_DESCRIPTION = """\ | |
ROPES (Reasoning Over Paragraph Effects in Situations) is a QA dataset | |
which tests a system's ability to apply knowledge from a passage | |
of text to a new situation. A system is presented a background | |
passage containing a causal or qualitative relation(s) (e.g., | |
"animal pollinators increase efficiency of fertilization in flowers"), | |
a novel situation that uses this background, and questions that require | |
reasoning about effects of the relationships in the background | |
passage in the background of the situation. | |
""" | |
_LICENSE = "CC BY 4.0" | |
_URLs = { | |
"train+dev": "https://ropes-dataset.s3-us-west-2.amazonaws.com/train_and_dev/ropes-train-dev-v1.0.tar.gz", | |
"test": "https://ropes-dataset.s3-us-west-2.amazonaws.com/test/ropes-test-questions-v1.0.tar.gz", | |
} | |
class Ropes(datasets.GeneratorBasedBuilder): | |
"""ROPES datset: testing a system's ability | |
to apply knowledge from a passage of text to a new situation..""" | |
VERSION = datasets.Version("1.1.0") | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig(name="plain_text", description="Plain text", version=VERSION), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"background": datasets.Value("string"), | |
"situation": datasets.Value("string"), | |
"question": datasets.Value("string"), | |
"answers": datasets.features.Sequence( | |
{ | |
"text": datasets.Value("string"), | |
} | |
), | |
} | |
), | |
supervised_keys=None, | |
homepage="https://allenai.org/data/ropes", | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
data_dir = dl_manager.download_and_extract(_URLs) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir["train+dev"], "ropes-train-dev-v1.0", "train-v1.0.json"), | |
"split": "train", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir["test"], "ropes-test-questions-v1.0", "test-1.0.json"), | |
"split": "test", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir["train+dev"], "ropes-train-dev-v1.0", "dev-v1.0.json"), | |
"split": "dev", | |
}, | |
), | |
] | |
def _generate_examples(self, filepath, split): | |
""" Yields examples. """ | |
with open(filepath, encoding="utf-8") as f: | |
ropes = json.load(f) | |
for article in ropes["data"]: | |
for paragraph in article["paragraphs"]: | |
background = paragraph["background"].strip() | |
situation = paragraph["situation"].strip() | |
for qa in paragraph["qas"]: | |
question = qa["question"].strip() | |
id_ = qa["id"] | |
answers = [] if split == "test" else [answer["text"].strip() for answer in qa["answers"]] | |
yield id_, { | |
"background": background, | |
"situation": situation, | |
"question": question, | |
"id": id_, | |
"answers": { | |
"text": answers, | |
}, | |
} | |