quoref / quoref.py
system's picture
system HF staff
Update files from the datasets library (from 1.6.0)
7755d36
raw
history blame
4.9 kB
"""TODO(quoref): Add a description here."""
import json
import os
import datasets
# TODO(quoref): BibTeX citation
_CITATION = """\
@article{allenai:quoref,
author = {Pradeep Dasigi and Nelson F. Liu and Ana Marasovic and Noah A. Smith and Matt Gardner},
title = {Quoref: A Reading Comprehension Dataset with Questions Requiring Coreferential Reasoning},
journal = {arXiv:1908.05803v2 },
year = {2019},
}
"""
# TODO(quoref):
_DESCRIPTION = """\
Quoref is a QA dataset which tests the coreferential reasoning capability of reading comprehension systems. In this
span-selection benchmark containing 24K questions over 4.7K paragraphs from Wikipedia, a system must resolve hard
coreferences before selecting the appropriate span(s) in the paragraphs for answering questions.
"""
_URL = "https://quoref-dataset.s3-us-west-2.amazonaws.com/train_and_dev/quoref-train-dev-v0.1.zip"
class Quoref(datasets.GeneratorBasedBuilder):
"""TODO(quoref): Short description of my dataset."""
# TODO(quoref): Set up version.
VERSION = datasets.Version("0.1.0")
def _info(self):
# TODO(quoref): Specifies the datasets.DatasetInfo object
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# datasets.features.FeatureConnectors
features=datasets.Features(
{
"id": datasets.Value("string"),
"question": datasets.Value("string"),
"context": datasets.Value("string"),
"title": datasets.Value("string"),
"url": datasets.Value("string"),
"answers": datasets.features.Sequence(
{
"answer_start": datasets.Value("int32"),
"text": datasets.Value("string"),
}
)
# These are the features of your dataset like images, labels ...
}
),
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage="https://leaderboard.allenai.org/quoref/submissions/get-started",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# TODO(quoref): Downloads the data and defines the splits
# dl_manager is a datasets.download.DownloadManager that can be used to
# download and extract URLs
dl_dir = dl_manager.download_and_extract(_URL)
data_dir = os.path.join(dl_dir, "quoref-train-dev-v0.1")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(data_dir, "quoref-train-v0.1.json")},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(data_dir, "quoref-dev-v0.1.json")},
),
]
def _generate_examples(self, filepath):
"""Yields examples."""
# TODO(quoref): Yields (key, example) tuples from the dataset
with open(filepath, encoding="utf-8") as f:
data = json.load(f)
for article in data["data"]:
title = article.get("title", "").strip()
url = article.get("url", "").strip()
for paragraph in article["paragraphs"]:
context = paragraph["context"].strip()
for qa in paragraph["qas"]:
question = qa["question"].strip()
id_ = qa["id"]
answer_starts = [answer["answer_start"] for answer in qa["answers"]]
answers = [answer["text"].strip() for answer in qa["answers"]]
# Features currently used are "context", "question", and "answers".
# Others are extracted here for the ease of future expansions.
yield id_, {
"title": title,
"context": context,
"question": question,
"id": id_,
"answers": {
"answer_start": answer_starts,
"text": answers,
},
"url": url,
}