Datasets:
Tasks:
Question Answering
Modalities:
Text
Sub-tasks:
closed-domain-qa
Languages:
English
Size:
1K - 10K
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""Qasper: A Dataset of Information-Seeking Questions and Answers Anchored in Research Papers.""" | |
import json | |
import os | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """\ | |
@inproceedings{Dasigi2021ADO, | |
title={A Dataset of Information-Seeking Questions and Answers Anchored in Research Papers}, | |
author={Pradeep Dasigi and Kyle Lo and Iz Beltagy and Arman Cohan and Noah A. Smith and Matt Gardner}, | |
year={2021} | |
} | |
""" | |
_LICENSE = "CC BY 4.0" | |
_DESCRIPTION = """\ | |
A dataset containing 1585 papers with 5049 information-seeking questions asked by regular readers of NLP papers, and answered by a separate set of NLP practitioners. | |
""" | |
_HOMEPAGE = "https://allenai.org/data/qasper" | |
_DOWNLOAD_URLS = {"data": "https://qasper-dataset.s3-us-west-2.amazonaws.com/qasper-train-dev-v0.1.tgz"} | |
data_files = {"train": "qasper-train-v0.1.json", "dev": "qasper-dev-v0.1.json"} | |
_VERSION = "0.1.0" | |
class Qasper(datasets.GeneratorBasedBuilder): | |
"""Qasper: A Dataset of Information-Seeking Q&A Anchored in Research Papers.""" | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig( | |
name="qasper", | |
version=datasets.Version(_VERSION), | |
description=_DESCRIPTION, | |
) | |
] | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"title": datasets.Value("string"), | |
"abstract": datasets.Value("string"), | |
"full_text": datasets.features.Sequence( | |
{ | |
"section_name": datasets.Value("string"), | |
"paragraphs": [datasets.Value("string")], | |
} | |
), | |
"qas": datasets.features.Sequence( | |
{ | |
"question": datasets.Value("string"), | |
"question_id": datasets.Value("string"), | |
"nlp_background": datasets.Value("string"), | |
"topic_background": datasets.Value("string"), | |
"paper_read": datasets.Value("string"), | |
"search_query": datasets.Value("string"), | |
"question_writer": datasets.Value("string"), | |
"answers": datasets.features.Sequence( | |
{ | |
"answer": { | |
"unanswerable": datasets.Value("bool"), | |
"extractive_spans": datasets.features.Sequence(datasets.Value("string")), | |
"yes_no": datasets.Value("bool"), | |
"free_form_answer": datasets.Value("string"), | |
"evidence": datasets.features.Sequence(datasets.Value("string")), | |
"highlighted_evidence": datasets.features.Sequence(datasets.Value("string")), | |
}, | |
"annotation_id": datasets.Value("string"), | |
"worker_id": datasets.Value("string"), | |
} | |
), | |
} | |
), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
downloaded_files = dl_manager.download_and_extract(_DOWNLOAD_URLS) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"filepath": os.path.join(downloaded_files["data"], data_files["train"])}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={"filepath": os.path.join(downloaded_files["data"], data_files["dev"])}, | |
), | |
] | |
def _generate_examples(self, filepath): | |
"""This function returns the examples in the raw (text) form.""" | |
logger.info("generating examples from = %s", filepath) | |
with open(filepath, encoding="utf-8") as f: | |
qasper = json.load(f) | |
for id_ in qasper: | |
qasper[id_]["id"] = id_ | |
yield id_, qasper[id_] | |