Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
qasper / qasper.py
system's picture
system HF staff
Update files from the datasets library (from 1.7.0)
3234a60
raw
history blame
5.09 kB
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Qasper: A Dataset of Information-Seeking Questions and Answers Anchored in Research Papers."""
import json
import os
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@inproceedings{Dasigi2021ADO,
title={A Dataset of Information-Seeking Questions and Answers Anchored in Research Papers},
author={Pradeep Dasigi and Kyle Lo and Iz Beltagy and Arman Cohan and Noah A. Smith and Matt Gardner},
year={2021}
}
"""
_LICENSE = "CC BY 4.0"
_DESCRIPTION = """\
A dataset containing 1585 papers with 5049 information-seeking questions asked by regular readers of NLP papers, and answered by a separate set of NLP practitioners.
"""
_HOMEPAGE = "https://allenai.org/data/qasper"
_DOWNLOAD_URLS = {"data": "https://qasper-dataset.s3-us-west-2.amazonaws.com/qasper-train-dev-v0.1.tgz"}
data_files = {"train": "qasper-train-v0.1.json", "dev": "qasper-dev-v0.1.json"}
_VERSION = "0.1.0"
class Qasper(datasets.GeneratorBasedBuilder):
"""Qasper: A Dataset of Information-Seeking Q&A Anchored in Research Papers."""
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="qasper",
version=datasets.Version(_VERSION),
description=_DESCRIPTION,
)
]
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("string"),
"title": datasets.Value("string"),
"abstract": datasets.Value("string"),
"full_text": datasets.features.Sequence(
{
"section_name": datasets.Value("string"),
"paragraphs": [datasets.Value("string")],
}
),
"qas": datasets.features.Sequence(
{
"question": datasets.Value("string"),
"question_id": datasets.Value("string"),
"nlp_background": datasets.Value("string"),
"topic_background": datasets.Value("string"),
"paper_read": datasets.Value("string"),
"search_query": datasets.Value("string"),
"question_writer": datasets.Value("string"),
"answers": datasets.features.Sequence(
{
"answer": {
"unanswerable": datasets.Value("bool"),
"extractive_spans": datasets.features.Sequence(datasets.Value("string")),
"yes_no": datasets.Value("bool"),
"free_form_answer": datasets.Value("string"),
"evidence": datasets.features.Sequence(datasets.Value("string")),
"highlighted_evidence": datasets.features.Sequence(datasets.Value("string")),
},
"annotation_id": datasets.Value("string"),
"worker_id": datasets.Value("string"),
}
),
}
),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
downloaded_files = dl_manager.download_and_extract(_DOWNLOAD_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": os.path.join(downloaded_files["data"], data_files["train"])},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": os.path.join(downloaded_files["data"], data_files["dev"])},
),
]
def _generate_examples(self, filepath):
"""This function returns the examples in the raw (text) form."""
logger.info("generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
qasper = json.load(f)
for id_ in qasper:
qasper[id_]["id"] = id_
yield id_, qasper[id_]