Datasets:
Tasks:
Text2Text Generation
Modalities:
Text
Formats:
parquet
Sub-tasks:
open-domain-abstractive-qa
Languages:
English
Size:
100K - 1M
License:
Commit
•
8e45a81
1
Parent(s):
0441e53
Delete loading script
Browse files- break_data.py +0 -261
break_data.py
DELETED
@@ -1,261 +0,0 @@
|
|
1 |
-
"""TODO(break_data): Add a description here."""
|
2 |
-
|
3 |
-
|
4 |
-
import csv
|
5 |
-
import json
|
6 |
-
import os
|
7 |
-
import textwrap
|
8 |
-
|
9 |
-
import datasets
|
10 |
-
|
11 |
-
|
12 |
-
# TODO(break): BibTeX citation
|
13 |
-
_CITATION = """\
|
14 |
-
@article{Wolfson2020Break,
|
15 |
-
title={Break It Down: A Question Understanding Benchmark},
|
16 |
-
author={Wolfson, Tomer and Geva, Mor and Gupta, Ankit and Gardner, Matt and Goldberg, Yoav and Deutch, Daniel and Berant, Jonathan},
|
17 |
-
journal={Transactions of the Association for Computational Linguistics},
|
18 |
-
year={2020},
|
19 |
-
}
|
20 |
-
"""
|
21 |
-
|
22 |
-
# TODO(break):
|
23 |
-
_DESCRIPTION = """\
|
24 |
-
Break is a human annotated dataset of natural language questions and their Question Decomposition Meaning Representations
|
25 |
-
(QDMRs). Break consists of 83,978 examples sampled from 10 question answering datasets over text, images and databases.
|
26 |
-
This repository contains the Break dataset along with information on the exact data format.
|
27 |
-
"""
|
28 |
-
_URL = "https://github.com/allenai/Break/raw/master/break_dataset/Break-dataset.zip"
|
29 |
-
|
30 |
-
|
31 |
-
class BreakDataConfig(datasets.BuilderConfig):
|
32 |
-
|
33 |
-
"""BuilderConfig for Break"""
|
34 |
-
|
35 |
-
def __init__(self, text_features, lexicon_tokens, **kwargs):
|
36 |
-
"""
|
37 |
-
|
38 |
-
Args:
|
39 |
-
text_features: `dict[string, string]`, map from the name of the feature
|
40 |
-
dict for each text field to the name of the column in the tsv file
|
41 |
-
lexicon_tokens: to define if we want to load the lexicon_tokens files or not
|
42 |
-
**kwargs: keyword arguments forwarded to super.
|
43 |
-
"""
|
44 |
-
super(BreakDataConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
|
45 |
-
self.text_features = text_features
|
46 |
-
self.lexicon_tokens = lexicon_tokens
|
47 |
-
|
48 |
-
|
49 |
-
class BreakData(datasets.GeneratorBasedBuilder):
|
50 |
-
"""TODO(break_data): Short description of my dataset."""
|
51 |
-
|
52 |
-
# TODO(break_data): Set up version.
|
53 |
-
VERSION = datasets.Version("0.1.0")
|
54 |
-
BUILDER_CONFIGS = [
|
55 |
-
BreakDataConfig(
|
56 |
-
name="QDMR-high-level",
|
57 |
-
description=textwrap.dedent(
|
58 |
-
"""
|
59 |
-
Contains questions annotated with the high-level variant of QDMR. These decomposition are exclusive to Reading
|
60 |
-
Comprehension tasks (Section 2). lexicon_tokens files are also provided."""
|
61 |
-
),
|
62 |
-
text_features={
|
63 |
-
"question_id": "question_id",
|
64 |
-
"question_text": "question_text",
|
65 |
-
"decomposition": "decomposition",
|
66 |
-
"operators": "operators",
|
67 |
-
"split": "split",
|
68 |
-
},
|
69 |
-
lexicon_tokens=False,
|
70 |
-
),
|
71 |
-
BreakDataConfig(
|
72 |
-
name="QDMR-high-level-lexicon",
|
73 |
-
description=textwrap.dedent(
|
74 |
-
"""
|
75 |
-
Contains questions annotated with the high-level variant of QDMR. These decomposition are exclusive to Reading
|
76 |
-
Comprehension tasks (Section 2). lexicon_tokens files are also provided."""
|
77 |
-
),
|
78 |
-
text_features={
|
79 |
-
"source": "source",
|
80 |
-
"allowed_tokens": "allowed_tokens",
|
81 |
-
},
|
82 |
-
lexicon_tokens=True,
|
83 |
-
),
|
84 |
-
BreakDataConfig(
|
85 |
-
name="QDMR",
|
86 |
-
description=textwrap.dedent(
|
87 |
-
"""
|
88 |
-
Contains questions over text, images and databases annotated with their Question Decomposition Meaning
|
89 |
-
Representation. In addition to the train, dev and (hidden) test sets we provide lexicon_tokens files. For
|
90 |
-
each question, the lexicon file contains the set of valid tokens that could potentially appear in its
|
91 |
-
decomposition """
|
92 |
-
),
|
93 |
-
text_features={
|
94 |
-
"question_id": "question_id",
|
95 |
-
"question_text": "question_text",
|
96 |
-
"decomposition": "decomposition",
|
97 |
-
"operators": "operators",
|
98 |
-
"split": "split",
|
99 |
-
},
|
100 |
-
lexicon_tokens=False,
|
101 |
-
),
|
102 |
-
BreakDataConfig(
|
103 |
-
name="QDMR-lexicon",
|
104 |
-
description=textwrap.dedent(
|
105 |
-
"""
|
106 |
-
Contains questions over text, images and databases annotated with their Question Decomposition Meaning
|
107 |
-
Representation. In addition to the train, dev and (hidden) test sets we provide lexicon_tokens files. For
|
108 |
-
each question, the lexicon file contains the set of valid tokens that could potentially appear in its
|
109 |
-
decomposition """
|
110 |
-
),
|
111 |
-
text_features={
|
112 |
-
"source": "source",
|
113 |
-
"allowed_tokens": "allowed_tokens",
|
114 |
-
},
|
115 |
-
lexicon_tokens=True,
|
116 |
-
),
|
117 |
-
BreakDataConfig(
|
118 |
-
name="logical-forms",
|
119 |
-
description=textwrap.dedent(
|
120 |
-
"""
|
121 |
-
Contains questions and QDMRs annotated with full logical-forms of QDMR operators + arguments. Full logical-forms
|
122 |
-
were inferred by the annotation-consistency algorithm described in """
|
123 |
-
),
|
124 |
-
lexicon_tokens=False,
|
125 |
-
text_features={
|
126 |
-
"question_id": "question_id",
|
127 |
-
"question_text": "question_text",
|
128 |
-
"decomposition": "decomposition",
|
129 |
-
"operators": "operators",
|
130 |
-
"split": "split",
|
131 |
-
"program": "program",
|
132 |
-
},
|
133 |
-
),
|
134 |
-
]
|
135 |
-
|
136 |
-
def _info(self):
|
137 |
-
# TODO(break_data): Specifies the datasets.DatasetInfo object
|
138 |
-
features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features.keys()}
|
139 |
-
return datasets.DatasetInfo(
|
140 |
-
# This is the description that will appear on the datasets page.
|
141 |
-
description=_DESCRIPTION,
|
142 |
-
# datasets.features.FeatureConnectors
|
143 |
-
features=datasets.Features(
|
144 |
-
features
|
145 |
-
# These are the features of your dataset like images, labels ...
|
146 |
-
),
|
147 |
-
# If there's a common (input, target) tuple from the features,
|
148 |
-
# specify them here. They'll be used if as_supervised=True in
|
149 |
-
# builder.as_dataset.
|
150 |
-
supervised_keys=None,
|
151 |
-
# Homepage of the dataset for documentation
|
152 |
-
homepage="https://github.com/allenai/Break",
|
153 |
-
citation=_CITATION,
|
154 |
-
)
|
155 |
-
# if
|
156 |
-
|
157 |
-
def _split_generators(self, dl_manager):
|
158 |
-
"""Returns SplitGenerators."""
|
159 |
-
# TODO(break_data): Downloads the data and defines the splits
|
160 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to
|
161 |
-
# download and extract URLs
|
162 |
-
dl_dir = dl_manager.download_and_extract(_URL)
|
163 |
-
data_dir = os.path.join(dl_dir, "Break-dataset")
|
164 |
-
qdmr_high_level = os.path.join(data_dir, "QDMR-high-level")
|
165 |
-
qdmr = os.path.join(data_dir, "QDMR")
|
166 |
-
logical = os.path.join(data_dir, "logical-forms")
|
167 |
-
if self.config.name == "QDMR" or self.config.name == "QDMR-lexicon":
|
168 |
-
return [
|
169 |
-
datasets.SplitGenerator(
|
170 |
-
name=datasets.Split.TRAIN,
|
171 |
-
# These kwargs will be passed to _generate_examples
|
172 |
-
gen_kwargs={
|
173 |
-
"filepath": os.path.join(qdmr, "train.csv")
|
174 |
-
if not self.config.lexicon_tokens
|
175 |
-
else os.path.join(qdmr, "train_lexicon_tokens.json")
|
176 |
-
},
|
177 |
-
),
|
178 |
-
datasets.SplitGenerator(
|
179 |
-
name=datasets.Split.VALIDATION,
|
180 |
-
# These kwargs will be passed to _generate_examples
|
181 |
-
gen_kwargs={
|
182 |
-
"filepath": os.path.join(qdmr, "dev.csv")
|
183 |
-
if not self.config.lexicon_tokens
|
184 |
-
else os.path.join(qdmr, "dev_lexicon_tokens.json")
|
185 |
-
},
|
186 |
-
),
|
187 |
-
datasets.SplitGenerator(
|
188 |
-
name=datasets.Split.TEST,
|
189 |
-
# These kwargs will be passed to _generate_examples
|
190 |
-
gen_kwargs={
|
191 |
-
"filepath": os.path.join(qdmr, "test.csv")
|
192 |
-
if not self.config.lexicon_tokens
|
193 |
-
else os.path.join(qdmr, "test_lexicon_tokens.json")
|
194 |
-
},
|
195 |
-
),
|
196 |
-
]
|
197 |
-
elif self.config.name == "QDMR-high-level" or self.config.name == "QDMR-high-level-lexicon":
|
198 |
-
return [
|
199 |
-
datasets.SplitGenerator(
|
200 |
-
name=datasets.Split.TRAIN,
|
201 |
-
# These kwargs will be passed to _generate_examples
|
202 |
-
gen_kwargs={
|
203 |
-
"filepath": os.path.join(qdmr_high_level, "train.csv")
|
204 |
-
if not self.config.lexicon_tokens
|
205 |
-
else os.path.join(qdmr_high_level, "train_lexicon_tokens.json")
|
206 |
-
},
|
207 |
-
),
|
208 |
-
datasets.SplitGenerator(
|
209 |
-
name=datasets.Split.VALIDATION,
|
210 |
-
# These kwargs will be passed to _generate_examples
|
211 |
-
gen_kwargs={
|
212 |
-
"filepath": os.path.join(qdmr_high_level, "dev.csv")
|
213 |
-
if not self.config.lexicon_tokens
|
214 |
-
else os.path.join(qdmr_high_level, "dev_lexicon_tokens.json")
|
215 |
-
},
|
216 |
-
),
|
217 |
-
datasets.SplitGenerator(
|
218 |
-
name=datasets.Split.TEST,
|
219 |
-
# These kwargs will be passed to _generate_examples
|
220 |
-
gen_kwargs={
|
221 |
-
"filepath": os.path.join(qdmr_high_level, "test.csv")
|
222 |
-
if not self.config.lexicon_tokens
|
223 |
-
else os.path.join(qdmr_high_level, "test_lexicon_tokens.json")
|
224 |
-
},
|
225 |
-
),
|
226 |
-
]
|
227 |
-
elif self.config.name == "logical-forms":
|
228 |
-
return [
|
229 |
-
datasets.SplitGenerator(
|
230 |
-
name=datasets.Split.TRAIN,
|
231 |
-
# These kwargs will be passed to _generate_examples
|
232 |
-
gen_kwargs={"filepath": os.path.join(logical, "train.csv")},
|
233 |
-
),
|
234 |
-
datasets.SplitGenerator(
|
235 |
-
name=datasets.Split.VALIDATION,
|
236 |
-
# These kwargs will be passed to _generate_examples
|
237 |
-
gen_kwargs={"filepath": os.path.join(logical, "dev.csv")},
|
238 |
-
),
|
239 |
-
datasets.SplitGenerator(
|
240 |
-
name=datasets.Split.TEST,
|
241 |
-
# These kwargs will be passed to _generate_examples
|
242 |
-
gen_kwargs={"filepath": os.path.join(logical, "test.csv")},
|
243 |
-
),
|
244 |
-
]
|
245 |
-
|
246 |
-
def _generate_examples(self, filepath):
|
247 |
-
"""Yields examples."""
|
248 |
-
# TODO(break_data): Yields (key, example) tuples from the dataset
|
249 |
-
with open(filepath, encoding="utf-8") as f:
|
250 |
-
if (
|
251 |
-
self.config.name == "QDMR-high-level"
|
252 |
-
or self.config.name == "QDMR"
|
253 |
-
or self.config.name == "logical-forms"
|
254 |
-
):
|
255 |
-
data = csv.DictReader(f)
|
256 |
-
for id_, row in enumerate(data):
|
257 |
-
yield id_, row
|
258 |
-
elif self.config.name == "QDMR-high-level-lexicon" or self.config.name == "QDMR-lexicon":
|
259 |
-
for id_, row in enumerate(f):
|
260 |
-
data = json.loads(row)
|
261 |
-
yield id_, data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|