Title
stringlengths 3
81
| Description
stringlengths 219
5.66k
⌀ | C
stringclasses 154
values | C#
stringclasses 299
values | C++
stringlengths 88
4.55k
⌀ | Cangjie
stringclasses 3
values | Dart
stringclasses 2
values | Go
stringlengths 47
3.11k
⌀ | Java
stringlengths 86
5.36k
⌀ | JavaScript
stringclasses 465
values | Kotlin
stringclasses 15
values | MySQL
stringclasses 282
values | Nim
stringclasses 4
values | PHP
stringclasses 111
values | Pandas
stringclasses 31
values | Python3
stringlengths 82
4.27k
⌀ | Ruby
stringclasses 8
values | Rust
stringlengths 83
4.8k
⌀ | Scala
stringclasses 5
values | Shell
stringclasses 4
values | Swift
stringclasses 13
values | TypeScript
stringlengths 65
20.6k
⌀ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Make Sum Divisible by P
|
Given an array of positive integers
nums
, remove the
smallest
subarray (possibly
empty
) such that the
sum
of the remaining elements is divisible by
p
. It is
not
allowed to remove the whole array.
Return
the length of the smallest subarray that you need to remove, or
-1
if it's impossible
.
A
subarray
is defined as a contiguous block of elements in the array.
Example 1:
Input:
nums = [3,1,4,2], p = 6
Output:
1
Explanation:
The sum of the elements in nums is 10, which is not divisible by 6. We can remove the subarray [4], and the sum of the remaining elements is 6, which is divisible by 6.
Example 2:
Input:
nums = [6,3,5,2], p = 9
Output:
2
Explanation:
We cannot remove a single element to get a sum divisible by 9. The best way is to remove the subarray [5,2], leaving us with [6,3] with sum 9.
Example 3:
Input:
nums = [1,2,3], p = 3
Output:
0
Explanation:
Here the sum is 6. which is already divisible by 3. Thus we do not need to remove anything.
Constraints:
1 <= nums.length <= 10
5
1 <= nums[i] <= 10
9
1 <= p <= 10
9
| null | null |
class Solution {
public:
int minSubarray(vector<int>& nums, int p) {
int k = 0;
for (int& x : nums) {
k = (k + x) % p;
}
if (k == 0) {
return 0;
}
unordered_map<int, int> last;
last[0] = -1;
int n = nums.size();
int ans = n;
int cur = 0;
for (int i = 0; i < n; ++i) {
cur = (cur + nums[i]) % p;
int target = (cur - k + p) % p;
if (last.count(target)) {
ans = min(ans, i - last[target]);
}
last[cur] = i;
}
return ans == n ? -1 : ans;
}
};
| null | null |
func minSubarray(nums []int, p int) int {
k := 0
for _, x := range nums {
k = (k + x) % p
}
if k == 0 {
return 0
}
last := map[int]int{0: -1}
n := len(nums)
ans := n
cur := 0
for i, x := range nums {
cur = (cur + x) % p
target := (cur - k + p) % p
if j, ok := last[target]; ok {
ans = min(ans, i-j)
}
last[cur] = i
}
if ans == n {
return -1
}
return ans
}
|
class Solution {
public int minSubarray(int[] nums, int p) {
int k = 0;
for (int x : nums) {
k = (k + x) % p;
}
if (k == 0) {
return 0;
}
Map<Integer, Integer> last = new HashMap<>();
last.put(0, -1);
int n = nums.length;
int ans = n;
int cur = 0;
for (int i = 0; i < n; ++i) {
cur = (cur + nums[i]) % p;
int target = (cur - k + p) % p;
if (last.containsKey(target)) {
ans = Math.min(ans, i - last.get(target));
}
last.put(cur, i);
}
return ans == n ? -1 : ans;
}
}
|
/**
* @param {number[]} nums
* @param {number} p
* @return {number}
*/
var minSubarray = function (nums, p) {
let k = 0;
for (const x of nums) {
k = (k + x) % p;
}
if (k === 0) {
return 0;
}
const last = new Map();
last.set(0, -1);
const n = nums.length;
let ans = n;
let cur = 0;
for (let i = 0; i < n; ++i) {
cur = (cur + nums[i]) % p;
const target = (cur - k + p) % p;
if (last.has(target)) {
const j = last.get(target);
ans = Math.min(ans, i - j);
}
last.set(cur, i);
}
return ans === n ? -1 : ans;
};
| null | null | null | null | null |
class Solution:
def minSubarray(self, nums: List[int], p: int) -> int:
k = sum(nums) % p
if k == 0:
return 0
last = {0: -1}
cur = 0
ans = len(nums)
for i, x in enumerate(nums):
cur = (cur + x) % p
target = (cur - k + p) % p
if target in last:
ans = min(ans, i - last[target])
last[cur] = i
return -1 if ans == len(nums) else ans
| null |
use std::collections::HashMap;
impl Solution {
pub fn min_subarray(nums: Vec<i32>, p: i32) -> i32 {
let mut k = 0;
for &x in &nums {
k = (k + x) % p;
}
if k == 0 {
return 0;
}
let mut last = HashMap::new();
last.insert(0, -1);
let n = nums.len();
let mut ans = n as i32;
let mut cur = 0;
for i in 0..n {
cur = (cur + nums[i]) % p;
let target = (cur - k + p) % p;
if let Some(&prev_idx) = last.get(&target) {
ans = ans.min(i as i32 - prev_idx);
}
last.insert(cur, i as i32);
}
if ans == n as i32 {
-1
} else {
ans
}
}
}
| null | null | null |
function minSubarray(nums: number[], p: number): number {
let k = 0;
for (const x of nums) {
k = (k + x) % p;
}
if (k === 0) {
return 0;
}
const last = new Map<number, number>();
last.set(0, -1);
const n = nums.length;
let ans = n;
let cur = 0;
for (let i = 0; i < n; ++i) {
cur = (cur + nums[i]) % p;
const target = (cur - k + p) % p;
if (last.has(target)) {
const j = last.get(target)!;
ans = Math.min(ans, i - j);
}
last.set(cur, i);
}
return ans === n ? -1 : ans;
}
|
Largest Subarray Length K 🔒
|
An array
A
is larger than some array
B
if for the first index
i
where
A[i] != B[i]
,
A[i] > B[i]
.
For example, consider
0
-indexing:
[1,3,2,4] > [1,2,2,4]
, since at index
1
,
3 > 2
.
[1,4,4,4] < [2,1,1,1]
, since at index
0
,
1 < 2
.
A subarray is a contiguous subsequence of the array.
Given an integer array
nums
of
distinct
integers, return the
largest
subarray of
nums
of length
k
.
Example 1:
Input:
nums = [1,4,5,2,3], k = 3
Output:
[5,2,3]
Explanation:
The subarrays of size 3 are: [1,4,5], [4,5,2], and [5,2,3].
Of these, [5,2,3] is the largest.
Example 2:
Input:
nums = [1,4,5,2,3], k = 4
Output:
[4,5,2,3]
Explanation:
The subarrays of size 4 are: [1,4,5,2], and [4,5,2,3].
Of these, [4,5,2,3] is the largest.
Example 3:
Input:
nums = [1,4,5,2,3], k = 1
Output:
[5]
Constraints:
1 <= k <= nums.length <= 10
5
1 <= nums[i] <= 10
9
All the integers of
nums
are
unique
.
Follow up:
What if the integers in
nums
are not distinct?
| null | null |
class Solution {
public:
vector<int> largestSubarray(vector<int>& nums, int k) {
auto i = max_element(nums.begin(), nums.end() - k + 1);
return {i, i + k};
}
};
| null | null |
func largestSubarray(nums []int, k int) []int {
j := 0
for i := 1; i < len(nums)-k+1; i++ {
if nums[j] < nums[i] {
j = i
}
}
return nums[j : j+k]
}
|
class Solution {
public int[] largestSubarray(int[] nums, int k) {
int j = 0;
for (int i = 1; i < nums.length - k + 1; ++i) {
if (nums[j] < nums[i]) {
j = i;
}
}
return Arrays.copyOfRange(nums, j, j + k);
}
}
| null | null | null | null | null | null |
class Solution:
def largestSubarray(self, nums: List[int], k: int) -> List[int]:
i = nums.index(max(nums[: len(nums) - k + 1]))
return nums[i : i + k]
| null |
impl Solution {
pub fn largest_subarray(nums: Vec<i32>, k: i32) -> Vec<i32> {
let mut j = 0;
for i in 1..=nums.len() - (k as usize) {
if nums[i] > nums[j] {
j = i;
}
}
nums[j..j + (k as usize)].to_vec()
}
}
| null | null | null |
function largestSubarray(nums: number[], k: number): number[] {
let j = 0;
for (let i = 1; i < nums.length - k + 1; ++i) {
if (nums[j] < nums[i]) {
j = i;
}
}
return nums.slice(j, j + k);
}
|
Zero Array Transformation II
|
You are given an integer array
nums
of length
n
and a 2D array
queries
where
queries[i] = [l
i
, r
i
, val
i
]
.
Each
queries[i]
represents the following action on
nums
:
Decrement the value at each index in the range
[l
i
, r
i
]
in
nums
by
at most
val
i
.
The amount by which each value is decremented
can be chosen
independently
for each index.
A
Zero Array
is an array with all its elements equal to 0.
Return the
minimum
possible
non-negative
value of
k
, such that after processing the first
k
queries in
sequence
,
nums
becomes a
Zero Array
. If no such
k
exists, return -1.
Example 1:
Input:
nums = [2,0,2], queries = [[0,2,1],[0,2,1],[1,1,3]]
Output:
2
Explanation:
For i = 0 (l = 0, r = 2, val = 1):
Decrement values at indices
[0, 1, 2]
by
[1, 0, 1]
respectively.
The array will become
[1, 0, 1]
.
For i = 1 (l = 0, r = 2, val = 1):
Decrement values at indices
[0, 1, 2]
by
[1, 0, 1]
respectively.
The array will become
[0, 0, 0]
, which is a Zero Array. Therefore, the minimum value of
k
is 2.
Example 2:
Input:
nums = [4,3,2,1], queries = [[1,3,2],[0,2,1]]
Output:
-1
Explanation:
For i = 0 (l = 1, r = 3, val = 2):
Decrement values at indices
[1, 2, 3]
by
[2, 2, 1]
respectively.
The array will become
[4, 1, 0, 0]
.
For i = 1 (l = 0, r = 2, val
= 1):
Decrement values at indices
[0, 1, 2]
by
[1, 1, 0]
respectively.
The array will become
[3, 0, 0, 0]
, which is not a Zero Array.
Constraints:
1 <= nums.length <= 10
5
0 <= nums[i] <= 5 * 10
5
1 <= queries.length <= 10
5
queries[i].length == 3
0 <= l
i
<= r
i
< nums.length
1 <= val
i
<= 5
| null | null |
class Solution {
public:
int minZeroArray(vector<int>& nums, vector<vector<int>>& queries) {
int n = nums.size();
int d[n + 1];
int m = queries.size();
int l = 0, r = m + 1;
auto check = [&](int k) -> bool {
memset(d, 0, sizeof(d));
for (int i = 0; i < k; ++i) {
int l = queries[i][0], r = queries[i][1], val = queries[i][2];
d[l] += val;
d[r + 1] -= val;
}
for (int i = 0, s = 0; i < n; ++i) {
s += d[i];
if (nums[i] > s) {
return false;
}
}
return true;
};
while (l < r) {
int mid = (l + r) >> 1;
if (check(mid)) {
r = mid;
} else {
l = mid + 1;
}
}
return l > m ? -1 : l;
}
};
| null | null |
func minZeroArray(nums []int, queries [][]int) int {
n, m := len(nums), len(queries)
l := sort.Search(m+1, func(k int) bool {
d := make([]int, n+1)
for _, q := range queries[:k] {
l, r, val := q[0], q[1], q[2]
d[l] += val
d[r+1] -= val
}
s := 0
for i, x := range nums {
s += d[i]
if x > s {
return false
}
}
return true
})
if l > m {
return -1
}
return l
}
|
class Solution {
private int n;
private int[] nums;
private int[][] queries;
public int minZeroArray(int[] nums, int[][] queries) {
this.nums = nums;
this.queries = queries;
n = nums.length;
int m = queries.length;
int l = 0, r = m + 1;
while (l < r) {
int mid = (l + r) >> 1;
if (check(mid)) {
r = mid;
} else {
l = mid + 1;
}
}
return l > m ? -1 : l;
}
private boolean check(int k) {
int[] d = new int[n + 1];
for (int i = 0; i < k; ++i) {
int l = queries[i][0], r = queries[i][1], val = queries[i][2];
d[l] += val;
d[r + 1] -= val;
}
for (int i = 0, s = 0; i < n; ++i) {
s += d[i];
if (nums[i] > s) {
return false;
}
}
return true;
}
}
| null | null | null | null | null | null |
class Solution:
def minZeroArray(self, nums: List[int], queries: List[List[int]]) -> int:
def check(k: int) -> bool:
d = [0] * (len(nums) + 1)
for l, r, val in queries[:k]:
d[l] += val
d[r + 1] -= val
s = 0
for x, y in zip(nums, d):
s += y
if x > s:
return False
return True
m = len(queries)
l = bisect_left(range(m + 1), True, key=check)
return -1 if l > m else l
| null |
impl Solution {
pub fn min_zero_array(nums: Vec<i32>, queries: Vec<Vec<i32>>) -> i32 {
let n = nums.len();
let m = queries.len();
let mut d: Vec<i64> = vec![0; n + 1];
let (mut l, mut r) = (0_usize, m + 1);
let check = |k: usize, d: &mut Vec<i64>| -> bool {
d.fill(0);
for i in 0..k {
let (l, r, val) = (
queries[i][0] as usize,
queries[i][1] as usize,
queries[i][2] as i64,
);
d[l] += val;
d[r + 1] -= val;
}
let mut s: i64 = 0;
for i in 0..n {
s += d[i];
if nums[i] as i64 > s {
return false;
}
}
true
};
while l < r {
let mid = (l + r) >> 1;
if check(mid, &mut d) {
r = mid;
} else {
l = mid + 1;
}
}
if l > m { -1 } else { l as i32 }
}
}
| null | null | null |
function minZeroArray(nums: number[], queries: number[][]): number {
const [n, m] = [nums.length, queries.length];
const d: number[] = Array(n + 1);
let [l, r] = [0, m + 1];
const check = (k: number): boolean => {
d.fill(0);
for (let i = 0; i < k; ++i) {
const [l, r, val] = queries[i];
d[l] += val;
d[r + 1] -= val;
}
for (let i = 0, s = 0; i < n; ++i) {
s += d[i];
if (nums[i] > s) {
return false;
}
}
return true;
};
while (l < r) {
const mid = (l + r) >> 1;
if (check(mid)) {
r = mid;
} else {
l = mid + 1;
}
}
return l > m ? -1 : l;
}
|
Immediate Food Delivery II
|
Table:
Delivery
+-----------------------------+---------+
| Column Name | Type |
+-----------------------------+---------+
| delivery_id | int |
| customer_id | int |
| order_date | date |
| customer_pref_delivery_date | date |
+-----------------------------+---------+
delivery_id is the column of unique values of this table.
The table holds information about food delivery to customers that make orders at some date and specify a preferred delivery date (on the same order date or after it).
If the customer's preferred delivery date is the same as the order date, then the order is called
immediate;
otherwise, it is called
scheduled
.
The
first order
of a customer is the order with the earliest order date that the customer made. It is guaranteed that a customer has precisely one first order.
Write a solution to find the percentage of immediate orders in the first orders of all customers,
rounded to 2 decimal places
.
The result format is in the following example.
Example 1:
Input:
Delivery table:
+-------------+-------------+------------+-----------------------------+
| delivery_id | customer_id | order_date | customer_pref_delivery_date |
+-------------+-------------+------------+-----------------------------+
| 1 | 1 | 2019-08-01 | 2019-08-02 |
| 2 | 2 | 2019-08-02 | 2019-08-02 |
| 3 | 1 | 2019-08-11 | 2019-08-12 |
| 4 | 3 | 2019-08-24 | 2019-08-24 |
| 5 | 3 | 2019-08-21 | 2019-08-22 |
| 6 | 2 | 2019-08-11 | 2019-08-13 |
| 7 | 4 | 2019-08-09 | 2019-08-09 |
+-------------+-------------+------------+-----------------------------+
Output:
+----------------------+
| immediate_percentage |
+----------------------+
| 50.00 |
+----------------------+
Explanation:
The customer id 1 has a first order with delivery id 1 and it is scheduled.
The customer id 2 has a first order with delivery id 2 and it is immediate.
The customer id 3 has a first order with delivery id 5 and it is scheduled.
The customer id 4 has a first order with delivery id 7 and it is immediate.
Hence, half the customers have immediate first orders.
| null | null | null | null | null | null | null | null | null |
# Write your MySQL query statement below
WITH
T AS (
SELECT
*,
RANK() OVER (
PARTITION BY customer_id
ORDER BY order_date
) AS rk
FROM Delivery
)
SELECT
ROUND(AVG(order_date = customer_pref_delivery_date) * 100, 2) AS immediate_percentage
FROM T
WHERE rk = 1;
| null | null | null | null | null | null | null | null | null | null |
Rearranging Fruits
|
You have two fruit baskets containing
n
fruits each. You are given two
0-indexed
integer arrays
basket1
and
basket2
representing the cost of fruit in each basket. You want to make both baskets
equal
. To do so, you can use the following operation as many times as you want:
Chose two indices
i
and
j
, and swap the
i
th
fruit of
basket1
with the
j
th
fruit of
basket2
.
The cost of the swap is
min(basket1[i],basket2[j])
.
Two baskets are considered equal if sorting them according to the fruit cost makes them exactly the same baskets.
Return
the minimum cost to make both the baskets equal or
-1
if impossible.
Example 1:
Input:
basket1 = [4,2,2,2], basket2 = [1,4,1,2]
Output:
1
Explanation:
Swap index 1 of basket1 with index 0 of basket2, which has cost 1. Now basket1 = [4,1,2,2] and basket2 = [2,4,1,2]. Rearranging both the arrays makes them equal.
Example 2:
Input:
basket1 = [2,3,4,1], basket2 = [3,2,5,1]
Output:
-1
Explanation:
It can be shown that it is impossible to make both the baskets equal.
Constraints:
basket1.length == basket2.length
1 <= basket1.length <= 10
5
1 <= basket1[i],basket2[i] <= 10
9
| null | null |
class Solution {
public:
long long minCost(vector<int>& basket1, vector<int>& basket2) {
int n = basket1.size();
unordered_map<int, int> cnt;
for (int i = 0; i < n; ++i) {
cnt[basket1[i]]++;
cnt[basket2[i]]--;
}
int mi = 1 << 30;
vector<int> nums;
for (auto& [x, v] : cnt) {
if (v % 2) {
return -1;
}
for (int i = abs(v) / 2; i; --i) {
nums.push_back(x);
}
mi = min(mi, x);
}
ranges::sort(nums);
int m = nums.size();
long long ans = 0;
for (int i = 0; i < m / 2; ++i) {
ans += min(nums[i], mi * 2);
}
return ans;
}
};
| null | null |
func minCost(basket1 []int, basket2 []int) (ans int64) {
cnt := map[int]int{}
for i, a := range basket1 {
cnt[a]++
cnt[basket2[i]]--
}
mi := 1 << 30
nums := []int{}
for x, v := range cnt {
if v%2 != 0 {
return -1
}
for i := abs(v) / 2; i > 0; i-- {
nums = append(nums, x)
}
mi = min(mi, x)
}
sort.Ints(nums)
m := len(nums)
for i := 0; i < m/2; i++ {
ans += int64(min(nums[i], mi*2))
}
return
}
func abs(x int) int {
if x < 0 {
return -x
}
return x
}
|
class Solution {
public long minCost(int[] basket1, int[] basket2) {
int n = basket1.length;
Map<Integer, Integer> cnt = new HashMap<>();
for (int i = 0; i < n; ++i) {
cnt.merge(basket1[i], 1, Integer::sum);
cnt.merge(basket2[i], -1, Integer::sum);
}
int mi = 1 << 30;
List<Integer> nums = new ArrayList<>();
for (var e : cnt.entrySet()) {
int x = e.getKey(), v = e.getValue();
if (v % 2 != 0) {
return -1;
}
for (int i = Math.abs(v) / 2; i > 0; --i) {
nums.add(x);
}
mi = Math.min(mi, x);
}
Collections.sort(nums);
int m = nums.size();
long ans = 0;
for (int i = 0; i < m / 2; ++i) {
ans += Math.min(nums.get(i), mi * 2);
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def minCost(self, basket1: List[int], basket2: List[int]) -> int:
cnt = Counter()
for a, b in zip(basket1, basket2):
cnt[a] += 1
cnt[b] -= 1
mi = min(cnt)
nums = []
for x, v in cnt.items():
if v % 2:
return -1
nums.extend([x] * (abs(v) // 2))
nums.sort()
m = len(nums) // 2
return sum(min(x, mi * 2) for x in nums[:m])
| null |
use std::collections::HashMap;
impl Solution {
pub fn min_cost(basket1: Vec<i32>, basket2: Vec<i32>) -> i64 {
let n = basket1.len();
let mut cnt: HashMap<i32, i32> = HashMap::new();
for i in 0..n {
*cnt.entry(basket1[i]).or_insert(0) += 1;
*cnt.entry(basket2[i]).or_insert(0) -= 1;
}
let mut mi = i32::MAX;
let mut nums = Vec::new();
for (x, v) in cnt {
if v % 2 != 0 {
return -1;
}
for _ in 0..(v.abs() / 2) {
nums.push(x);
}
mi = mi.min(x);
}
nums.sort();
let m = nums.len();
let mut ans = 0;
for i in 0..(m / 2) {
ans += nums[i].min(mi * 2) as i64;
}
ans
}
}
| null | null | null |
function minCost(basket1: number[], basket2: number[]): number {
const n = basket1.length;
const cnt: Map<number, number> = new Map();
for (let i = 0; i < n; i++) {
cnt.set(basket1[i], (cnt.get(basket1[i]) || 0) + 1);
cnt.set(basket2[i], (cnt.get(basket2[i]) || 0) - 1);
}
let mi = Number.MAX_SAFE_INTEGER;
const nums: number[] = [];
for (const [x, v] of cnt.entries()) {
if (v % 2 !== 0) {
return -1;
}
for (let i = 0; i < Math.abs(v) / 2; i++) {
nums.push(x);
}
mi = Math.min(mi, x);
}
nums.sort((a, b) => a - b);
const m = nums.length;
let ans = 0;
for (let i = 0; i < m / 2; i++) {
ans += Math.min(nums[i], mi * 2);
}
return ans;
}
|
Minimum Number of Chairs in a Waiting Room
|
You are given a string
s
. Simulate events at each second
i
:
If
s[i] == 'E'
, a person enters the waiting room and takes one of the chairs in it.
If
s[i] == 'L'
, a person leaves the waiting room, freeing up a chair.
Return the
minimum
number of chairs needed so that a chair is available for every person who enters the waiting room given that it is initially
empty
.
Example 1:
Input:
s = "EEEEEEE"
Output:
7
Explanation:
After each second, a person enters the waiting room and no person leaves it. Therefore, a minimum of 7 chairs is needed.
Example 2:
Input:
s = "ELELEEL"
Output:
2
Explanation:
Let's consider that there are 2 chairs in the waiting room. The table below shows the state of the waiting room at each second.
Second
Event
People in the Waiting Room
Available Chairs
0
Enter
1
1
1
Leave
0
2
2
Enter
1
1
3
Leave
0
2
4
Enter
1
1
5
Enter
2
0
6
Leave
1
1
Example 3:
Input:
s = "ELEELEELLL"
Output:
3
Explanation:
Let's consider that there are 3 chairs in the waiting room. The table below shows the state of the waiting room at each second.
Second
Event
People in the Waiting Room
Available Chairs
0
Enter
1
2
1
Leave
0
3
2
Enter
1
2
3
Enter
2
1
4
Leave
1
2
5
Enter
2
1
6
Enter
3
0
7
Leave
2
1
8
Leave
1
2
9
Leave
0
3
Constraints:
1 <= s.length <= 50
s
consists only of the letters
'E'
and
'L'
.
s
represents a valid sequence of entries and exits.
| null | null |
class Solution {
public:
int minimumChairs(string s) {
int cnt = 0, left = 0;
for (char& c : s) {
if (c == 'E') {
if (left > 0) {
--left;
} else {
++cnt;
}
} else {
++left;
}
}
return cnt;
}
};
| null | null |
func minimumChairs(s string) int {
cnt, left := 0, 0
for _, c := range s {
if c == 'E' {
if left > 0 {
left--
} else {
cnt++
}
} else {
left++
}
}
return cnt
}
|
class Solution {
public int minimumChairs(String s) {
int cnt = 0, left = 0;
for (int i = 0; i < s.length(); ++i) {
if (s.charAt(i) == 'E') {
if (left > 0) {
--left;
} else {
++cnt;
}
} else {
++left;
}
}
return cnt;
}
}
| null | null | null | null | null | null |
class Solution:
def minimumChairs(self, s: str) -> int:
cnt = left = 0
for c in s:
if c == "E":
if left:
left -= 1
else:
cnt += 1
else:
left += 1
return cnt
| null | null | null | null | null |
function minimumChairs(s: string): number {
let [cnt, left] = [0, 0];
for (const c of s) {
if (c === 'E') {
if (left > 0) {
--left;
} else {
++cnt;
}
} else {
++left;
}
}
return cnt;
}
|
Rotate String
|
Given two strings
s
and
goal
, return
true
if and only if
s
can become
goal
after some number of
shifts
on
s
.
A
shift
on
s
consists of moving the leftmost character of
s
to the rightmost position.
For example, if
s = "abcde"
, then it will be
"bcdea"
after one shift.
Example 1:
Input:
s = "abcde", goal = "cdeab"
Output:
true
Example 2:
Input:
s = "abcde", goal = "abced"
Output:
false
Constraints:
1 <= s.length, goal.length <= 100
s
and
goal
consist of lowercase English letters.
| null | null |
class Solution {
public:
bool rotateString(string s, string goal) {
return s.size() == goal.size() && strstr((s + s).data(), goal.data());
}
};
| null | null |
func rotateString(s string, goal string) bool {
return len(s) == len(goal) && strings.Contains(s+s, goal)
}
|
class Solution {
public boolean rotateString(String s, String goal) {
return s.length() == goal.length() && (s + s).contains(goal);
}
}
| null | null | null | null |
class Solution {
/**
* @param String $s
* @param String $goal
* @return Boolean
*/
function rotateString($s, $goal) {
return strlen($goal) === strlen($s) && strpos($s . $s, $goal) !== false;
}
}
| null |
class Solution:
def rotateString(self, s: str, goal: str) -> bool:
return len(s) == len(goal) and goal in s + s
| null |
impl Solution {
pub fn rotate_string(s: String, goal: String) -> bool {
s.len() == goal.len() && (s.clone() + &s).contains(&goal)
}
}
| null | null | null |
function rotateString(s: string, goal: string): boolean {
return s.length === goal.length && (goal + goal).includes(s);
}
|
Kth Smallest Product of Two Sorted Arrays
|
Given two
sorted 0-indexed
integer arrays
nums1
and
nums2
as well as an integer
k
, return
the
k
th
(
1-based
) smallest product of
nums1[i] \* nums2[j]
where
0 <= i < nums1.length
and
0 <= j < nums2.length
.
Example 1:
Input:
nums1 = [2,5], nums2 = [3,4], k = 2
Output:
8
Explanation:
The 2 smallest products are:
- nums1[0] * nums2[0] = 2 * 3 = 6
- nums1[0] * nums2[1] = 2 * 4 = 8
The 2
nd
smallest product is 8.
Example 2:
Input:
nums1 = [-4,-2,0,3], nums2 = [2,4], k = 6
Output:
0
Explanation:
The 6 smallest products are:
- nums1[0] * nums2[1] = (-4) * 4 = -16
- nums1[0] * nums2[0] = (-4) * 2 = -8
- nums1[1] * nums2[1] = (-2) * 4 = -8
- nums1[1] * nums2[0] = (-2) * 2 = -4
- nums1[2] * nums2[0] = 0 * 2 = 0
- nums1[2] * nums2[1] = 0 * 4 = 0
The 6
th
smallest product is 0.
Example 3:
Input:
nums1 = [-2,-1,0,1,2], nums2 = [-3,-1,2,4,5], k = 3
Output:
-6
Explanation:
The 3 smallest products are:
- nums1[0] * nums2[4] = (-2) * 5 = -10
- nums1[0] * nums2[3] = (-2) * 4 = -8
- nums1[4] * nums2[0] = 2 * (-3) = -6
The 3
rd
smallest product is -6.
Constraints:
1 <= nums1.length, nums2.length <= 5 * 10
4
-10
5
<= nums1[i], nums2[j] <= 10
5
1 <= k <= nums1.length * nums2.length
nums1
and
nums2
are sorted.
| null | null |
class Solution {
public:
long long kthSmallestProduct(vector<int>& nums1, vector<int>& nums2, long long k) {
int m = nums1.size(), n = nums2.size();
int a = max(abs(nums1[0]), abs(nums1[m - 1]));
int b = max(abs(nums2[0]), abs(nums2[n - 1]));
long long r = 1LL * a * b;
long long l = -r;
auto count = [&](long long p) {
long long cnt = 0;
for (int x : nums1) {
if (x > 0) {
int l = 0, r = n;
while (l < r) {
int mid = (l + r) >> 1;
if (1LL * x * nums2[mid] > p) {
r = mid;
} else {
l = mid + 1;
}
}
cnt += l;
} else if (x < 0) {
int l = 0, r = n;
while (l < r) {
int mid = (l + r) >> 1;
if (1LL * x * nums2[mid] <= p) {
r = mid;
} else {
l = mid + 1;
}
}
cnt += n - l;
} else if (p >= 0) {
cnt += n;
}
}
return cnt;
};
while (l < r) {
long long mid = (l + r) >> 1;
if (count(mid) >= k) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
};
| null | null |
func kthSmallestProduct(nums1 []int, nums2 []int, k int64) int64 {
m := len(nums1)
n := len(nums2)
a := max(abs(nums1[0]), abs(nums1[m-1]))
b := max(abs(nums2[0]), abs(nums2[n-1]))
r := int64(a) * int64(b)
l := -r
count := func(p int64) int64 {
var cnt int64
for _, x := range nums1 {
if x > 0 {
l, r := 0, n
for l < r {
mid := (l + r) >> 1
if int64(x)*int64(nums2[mid]) > p {
r = mid
} else {
l = mid + 1
}
}
cnt += int64(l)
} else if x < 0 {
l, r := 0, n
for l < r {
mid := (l + r) >> 1
if int64(x)*int64(nums2[mid]) <= p {
r = mid
} else {
l = mid + 1
}
}
cnt += int64(n - l)
} else if p >= 0 {
cnt += int64(n)
}
}
return cnt
}
for l < r {
mid := (l + r) >> 1
if count(mid) >= k {
r = mid
} else {
l = mid + 1
}
}
return l
}
func abs(x int) int {
if x < 0 {
return -x
}
return x
}
|
class Solution {
private int[] nums1;
private int[] nums2;
public long kthSmallestProduct(int[] nums1, int[] nums2, long k) {
this.nums1 = nums1;
this.nums2 = nums2;
int m = nums1.length;
int n = nums2.length;
int a = Math.max(Math.abs(nums1[0]), Math.abs(nums1[m - 1]));
int b = Math.max(Math.abs(nums2[0]), Math.abs(nums2[n - 1]));
long r = (long) a * b;
long l = (long) -a * b;
while (l < r) {
long mid = (l + r) >> 1;
if (count(mid) >= k) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
private long count(long p) {
long cnt = 0;
int n = nums2.length;
for (int x : nums1) {
if (x > 0) {
int l = 0, r = n;
while (l < r) {
int mid = (l + r) >> 1;
if ((long) x * nums2[mid] > p) {
r = mid;
} else {
l = mid + 1;
}
}
cnt += l;
} else if (x < 0) {
int l = 0, r = n;
while (l < r) {
int mid = (l + r) >> 1;
if ((long) x * nums2[mid] <= p) {
r = mid;
} else {
l = mid + 1;
}
}
cnt += n - l;
} else if (p >= 0) {
cnt += n;
}
}
return cnt;
}
}
| null | null | null | null | null | null |
class Solution:
def kthSmallestProduct(self, nums1: List[int], nums2: List[int], k: int) -> int:
def count(p: int) -> int:
cnt = 0
n = len(nums2)
for x in nums1:
if x > 0:
cnt += bisect_right(nums2, p / x)
elif x < 0:
cnt += n - bisect_left(nums2, p / x)
else:
cnt += n * int(p >= 0)
return cnt
mx = max(abs(nums1[0]), abs(nums1[-1])) * max(abs(nums2[0]), abs(nums2[-1]))
return bisect_left(range(-mx, mx + 1), k, key=count) - mx
| null |
impl Solution {
pub fn kth_smallest_product(nums1: Vec<i32>, nums2: Vec<i32>, k: i64) -> i64 {
let m = nums1.len();
let n = nums2.len();
let a = nums1[0].abs().max(nums1[m - 1].abs()) as i64;
let b = nums2[0].abs().max(nums2[n - 1].abs()) as i64;
let mut l = -a * b;
let mut r = a * b;
let count = |p: i64| -> i64 {
let mut cnt = 0i64;
for &x in &nums1 {
if x > 0 {
let mut left = 0;
let mut right = n;
while left < right {
let mid = (left + right) / 2;
if (x as i64) * (nums2[mid] as i64) > p {
right = mid;
} else {
left = mid + 1;
}
}
cnt += left as i64;
} else if x < 0 {
let mut left = 0;
let mut right = n;
while left < right {
let mid = (left + right) / 2;
if (x as i64) * (nums2[mid] as i64) <= p {
right = mid;
} else {
left = mid + 1;
}
}
cnt += (n - left) as i64;
} else if p >= 0 {
cnt += n as i64;
}
}
cnt
};
while l < r {
let mid = l + (r - l) / 2;
if count(mid) >= k {
r = mid;
} else {
l = mid + 1;
}
}
l
}
}
| null | null | null |
function kthSmallestProduct(nums1: number[], nums2: number[], k: number): number {
const m = nums1.length;
const n = nums2.length;
const a = BigInt(Math.max(Math.abs(nums1[0]), Math.abs(nums1[m - 1])));
const b = BigInt(Math.max(Math.abs(nums2[0]), Math.abs(nums2[n - 1])));
let l = -a * b;
let r = a * b;
const count = (p: bigint): bigint => {
let cnt = 0n;
for (const x of nums1) {
const bx = BigInt(x);
if (bx > 0n) {
let l = 0,
r = n;
while (l < r) {
const mid = (l + r) >> 1;
const prod = bx * BigInt(nums2[mid]);
if (prod > p) {
r = mid;
} else {
l = mid + 1;
}
}
cnt += BigInt(l);
} else if (bx < 0n) {
let l = 0,
r = n;
while (l < r) {
const mid = (l + r) >> 1;
const prod = bx * BigInt(nums2[mid]);
if (prod <= p) {
r = mid;
} else {
l = mid + 1;
}
}
cnt += BigInt(n - l);
} else if (p >= 0n) {
cnt += BigInt(n);
}
}
return cnt;
};
while (l < r) {
const mid = (l + r) >> 1n;
if (count(mid) >= BigInt(k)) {
r = mid;
} else {
l = mid + 1n;
}
}
return Number(l);
}
|
Before and After Puzzle 🔒
|
Given a list of
phrases
, generate a list of Before and After puzzles.
A
phrase
is a string that consists of lowercase English letters and spaces only. No space appears in the start or the end of a phrase. There are no consecutive spaces in a phrase.
Before and After puzzles
are phrases that are formed by merging two phrases where the
last word of the first phrase
is the same as the
first word of the second phrase
.
Return the Before and After puzzles that can be formed by every two phrases
phrases[i]
and
phrases[j]
where
i != j
. Note that the order of matching two phrases matters, we want to consider both orders.
You should return a list of
distinct
strings
sorted lexicographically
.
Example 1:
Input:
phrases = ["writing code","code rocks"]
Output:
["writing code rocks"]
Example 2:
Input:
phrases = ["mission statement",
"a quick bite to eat",
"a chip off the old block",
"chocolate bar",
"mission impossible",
"a man on a mission",
"block party",
"eat my words",
"bar of soap"]
Output:
["a chip off the old block party",
"a man on a mission impossible",
"a man on a mission statement",
"a quick bite to eat my words",
"chocolate bar of soap"]
Example 3:
Input:
phrases = ["a","b","a"]
Output:
["a"]
Constraints:
1 <= phrases.length <= 100
1 <= phrases[i].length <= 100
| null | null |
class Solution {
public:
vector<string> beforeAndAfterPuzzles(vector<string>& phrases) {
int n = phrases.size();
pair<string, string> ps[n];
for (int i = 0; i < n; ++i) {
int j = phrases[i].find(' ');
if (j == string::npos) {
ps[i] = {phrases[i], phrases[i]};
} else {
int k = phrases[i].rfind(' ');
ps[i] = {phrases[i].substr(0, j), phrases[i].substr(k + 1)};
}
}
unordered_set<string> s;
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
if (i != j && ps[i].second == ps[j].first) {
s.insert(phrases[i] + phrases[j].substr(ps[i].second.size()));
}
}
}
vector<string> ans(s.begin(), s.end());
sort(ans.begin(), ans.end());
return ans;
}
};
| null | null |
func beforeAndAfterPuzzles(phrases []string) []string {
n := len(phrases)
ps := make([][2]string, n)
for i, p := range phrases {
ws := strings.Split(p, " ")
ps[i] = [2]string{ws[0], ws[len(ws)-1]}
}
s := map[string]bool{}
for i := 0; i < n; i++ {
for j := 0; j < n; j++ {
if i != j && ps[i][1] == ps[j][0] {
s[phrases[i]+phrases[j][len(ps[j][0]):]] = true
}
}
}
ans := make([]string, 0, len(s))
for k := range s {
ans = append(ans, k)
}
sort.Strings(ans)
return ans
}
|
class Solution {
public List<String> beforeAndAfterPuzzles(String[] phrases) {
int n = phrases.length;
var ps = new String[n][];
for (int i = 0; i < n; ++i) {
var ws = phrases[i].split(" ");
ps[i] = new String[] {ws[0], ws[ws.length - 1]};
}
Set<String> s = new HashSet<>();
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
if (i != j && ps[i][1].equals(ps[j][0])) {
s.add(phrases[i] + phrases[j].substring(ps[j][0].length()));
}
}
}
var ans = new ArrayList<>(s);
Collections.sort(ans);
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def beforeAndAfterPuzzles(self, phrases: List[str]) -> List[str]:
ps = []
for p in phrases:
ws = p.split()
ps.append((ws[0], ws[-1]))
n = len(ps)
ans = []
for i in range(n):
for j in range(n):
if i != j and ps[i][1] == ps[j][0]:
ans.append(phrases[i] + phrases[j][len(ps[j][0]) :])
return sorted(set(ans))
| null | null | null | null | null |
function beforeAndAfterPuzzles(phrases: string[]): string[] {
const ps: string[][] = [];
for (const p of phrases) {
const ws = p.split(' ');
ps.push([ws[0], ws[ws.length - 1]]);
}
const n = ps.length;
const s: Set<string> = new Set();
for (let i = 0; i < n; ++i) {
for (let j = 0; j < n; ++j) {
if (i !== j && ps[i][1] === ps[j][0]) {
s.add(`${phrases[i]}${phrases[j].substring(ps[j][0].length)}`);
}
}
}
return [...s].sort();
}
|
Lowest Common Ancestor of a Binary Tree III 🔒
|
Given two nodes of a binary tree
p
and
q
, return
their lowest common ancestor (LCA)
.
Each node will have a reference to its parent node. The definition for
Node
is below:
class Node {
public int val;
public Node left;
public Node right;
public Node parent;
}
According to the
definition of LCA on Wikipedia
: "The lowest common ancestor of two nodes p and q in a tree T is the lowest node that has both p and q as descendants (where we allow
a node to be a descendant of itself
)."
Example 1:
Input:
root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
Output:
3
Explanation:
The LCA of nodes 5 and 1 is 3.
Example 2:
Input:
root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
Output:
5
Explanation:
The LCA of nodes 5 and 4 is 5 since a node can be a descendant of itself according to the LCA definition.
Example 3:
Input:
root = [1,2], p = 1, q = 2
Output:
1
Constraints:
The number of nodes in the tree is in the range
[2, 10
5
]
.
-10
9
<= Node.val <= 10
9
All
Node.val
are
unique
.
p != q
p
and
q
exist in the tree.
| null | null |
/*
// Definition for a Node.
class Node {
public:
int val;
Node* left;
Node* right;
Node* parent;
};
*/
class Solution {
public:
Node* lowestCommonAncestor(Node* p, Node* q) {
Node* a = p;
Node* b = q;
while (a != b) {
a = a->parent ? a->parent : q;
b = b->parent ? b->parent : p;
}
return a;
}
};
| null | null |
/**
* Definition for Node.
* type Node struct {
* Val int
* Left *Node
* Right *Node
* Parent *Node
* }
*/
func lowestCommonAncestor(p *Node, q *Node) *Node {
a, b := p, q
for a != b {
if a.Parent != nil {
a = a.Parent
} else {
a = q
}
if b.Parent != nil {
b = b.Parent
} else {
b = p
}
}
return a
}
|
/*
// Definition for a Node.
class Node {
public int val;
public Node left;
public Node right;
public Node parent;
};
*/
class Solution {
public Node lowestCommonAncestor(Node p, Node q) {
Node a = p, b = q;
while (a != b) {
a = a.parent == null ? q : a.parent;
b = b.parent == null ? p : b.parent;
}
return a;
}
}
| null | null | null | null | null | null |
"""
# Definition for a Node.
class Node:
def __init__(self, val):
self.val = val
self.left = None
self.right = None
self.parent = None
"""
class Solution:
def lowestCommonAncestor(self, p: 'Node', q: 'Node') -> 'Node':
a, b = p, q
while a != b:
a = a.parent if a.parent else q
b = b.parent if b.parent else p
return a
| null | null | null | null | null |
/**
* Definition for a binary tree node.
* class Node {
* val: number
* left: Node | null
* right: Node | null
* parent: Node | null
* constructor(val?: number, left?: Node | null, right?: Node | null, parent?: Node | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* this.parent = (parent===undefined ? null : parent)
* }
* }
*/
function lowestCommonAncestor(p: Node | null, q: Node | null): Node | null {
let [a, b] = [p, q];
while (a != b) {
a = a.parent ?? q;
b = b.parent ?? p;
}
return a;
}
|
Letter Tile Possibilities
|
You have
n
tiles
, where each tile has one letter
tiles[i]
printed on it.
Return
the number of possible non-empty sequences of letters
you can make using the letters printed on those
tiles
.
Example 1:
Input:
tiles = "AAB"
Output:
8
Explanation:
The possible sequences are "A", "B", "AA", "AB", "BA", "AAB", "ABA", "BAA".
Example 2:
Input:
tiles = "AAABBC"
Output:
188
Example 3:
Input:
tiles = "V"
Output:
1
Constraints:
1 <= tiles.length <= 7
tiles
consists of uppercase English letters.
| null | null |
class Solution {
public:
int numTilePossibilities(string tiles) {
int cnt[26]{};
for (char c : tiles) {
++cnt[c - 'A'];
}
function<int(int* cnt)> dfs = [&](int* cnt) -> int {
int res = 0;
for (int i = 0; i < 26; ++i) {
if (cnt[i] > 0) {
++res;
--cnt[i];
res += dfs(cnt);
++cnt[i];
}
}
return res;
};
return dfs(cnt);
}
};
| null | null |
func numTilePossibilities(tiles string) int {
cnt := [26]int{}
for _, c := range tiles {
cnt[c-'A']++
}
var dfs func(cnt [26]int) int
dfs = func(cnt [26]int) (res int) {
for i, x := range cnt {
if x > 0 {
res++
cnt[i]--
res += dfs(cnt)
cnt[i]++
}
}
return
}
return dfs(cnt)
}
|
class Solution {
public int numTilePossibilities(String tiles) {
int[] cnt = new int[26];
for (char c : tiles.toCharArray()) {
++cnt[c - 'A'];
}
return dfs(cnt);
}
private int dfs(int[] cnt) {
int res = 0;
for (int i = 0; i < cnt.length; ++i) {
if (cnt[i] > 0) {
++res;
--cnt[i];
res += dfs(cnt);
++cnt[i];
}
}
return res;
}
}
| null | null | null | null | null | null |
class Solution:
def numTilePossibilities(self, tiles: str) -> int:
def dfs(cnt: Counter) -> int:
ans = 0
for i, x in cnt.items():
if x > 0:
ans += 1
cnt[i] -= 1
ans += dfs(cnt)
cnt[i] += 1
return ans
cnt = Counter(tiles)
return dfs(cnt)
| null | null | null | null | null |
function numTilePossibilities(tiles: string): number {
const cnt: number[] = new Array(26).fill(0);
for (const c of tiles) {
++cnt[c.charCodeAt(0) - 'A'.charCodeAt(0)];
}
const dfs = (cnt: number[]): number => {
let res = 0;
for (let i = 0; i < 26; ++i) {
if (cnt[i] > 0) {
++res;
--cnt[i];
res += dfs(cnt);
++cnt[i];
}
}
return res;
};
return dfs(cnt);
}
|
Most Popular Video Creator
|
You are given two string arrays
creators
and
ids
, and an integer array
views
, all of length
n
. The
i
th
video on a platform was created by
creators[i]
, has an id of
ids[i]
, and has
views[i]
views.
The
popularity
of a creator is the
sum
of the number of views on
all
of the creator's videos. Find the creator with the
highest
popularity and the id of their
most
viewed video.
If multiple creators have the highest popularity, find all of them.
If multiple videos have the highest view count for a creator, find the lexicographically
smallest
id.
Note: It is possible for different videos to have the same
id
, meaning that
id
s do not uniquely identify a video. For example, two videos with the same ID are considered as distinct videos with their own viewcount.
Return
a
2D array
of
strings
answer
where
answer[i] = [creators
i
, id
i
]
means that
creators
i
has the
highest
popularity and
id
i
is the
id
of their most
popular
video. The answer can be returned in any order.
Example 1:
Input:
creators = ["alice","bob","alice","chris"], ids = ["one","two","three","four"], views = [5,10,5,4]
Output:
[["alice","one"],["bob","two"]]
Explanation:
The popularity of alice is 5 + 5 = 10.
The popularity of bob is 10.
The popularity of chris is 4.
alice and bob are the most popular creators.
For bob, the video with the highest view count is "two".
For alice, the videos with the highest view count are "one" and "three". Since "one" is lexicographically smaller than "three", it is included in the answer.
Example 2:
Input:
creators = ["alice","alice","alice"], ids = ["a","b","c"], views = [1,2,2]
Output:
[["alice","b"]]
Explanation:
The videos with id "b" and "c" have the highest view count.
Since "b" is lexicographically smaller than "c", it is included in the answer.
Constraints:
n == creators.length == ids.length == views.length
1 <= n <= 10
5
1 <= creators[i].length, ids[i].length <= 5
creators[i]
and
ids[i]
consist only of lowercase English letters.
0 <= views[i] <= 10
5
| null | null |
class Solution {
public:
vector<vector<string>> mostPopularCreator(vector<string>& creators, vector<string>& ids, vector<int>& views) {
unordered_map<string, long long> cnt;
unordered_map<string, int> d;
int n = ids.size();
for (int k = 0; k < n; ++k) {
auto c = creators[k], id = ids[k];
int v = views[k];
cnt[c] += v;
if (!d.count(c) || views[d[c]] < v || (views[d[c]] == v && ids[d[c]] > id)) {
d[c] = k;
}
}
long long mx = 0;
for (auto& [_, x] : cnt) {
mx = max(mx, x);
}
vector<vector<string>> ans;
for (auto& [c, x] : cnt) {
if (x == mx) {
ans.push_back({c, ids[d[c]]});
}
}
return ans;
}
};
| null | null |
func mostPopularCreator(creators []string, ids []string, views []int) (ans [][]string) {
cnt := map[string]int{}
d := map[string]int{}
for k, c := range creators {
i, v := ids[k], views[k]
cnt[c] += v
if j, ok := d[c]; !ok || views[j] < v || (views[j] == v && ids[j] > i) {
d[c] = k
}
}
mx := 0
for _, x := range cnt {
if mx < x {
mx = x
}
}
for c, x := range cnt {
if x == mx {
ans = append(ans, []string{c, ids[d[c]]})
}
}
return
}
|
class Solution {
public List<List<String>> mostPopularCreator(String[] creators, String[] ids, int[] views) {
int n = ids.length;
Map<String, Long> cnt = new HashMap<>(n);
Map<String, Integer> d = new HashMap<>(n);
for (int k = 0; k < n; ++k) {
String c = creators[k], i = ids[k];
long v = views[k];
cnt.merge(c, v, Long::sum);
if (!d.containsKey(c) || views[d.get(c)] < v
|| (views[d.get(c)] == v && ids[d.get(c)].compareTo(i) > 0)) {
d.put(c, k);
}
}
long mx = 0;
for (long x : cnt.values()) {
mx = Math.max(mx, x);
}
List<List<String>> ans = new ArrayList<>();
for (var e : cnt.entrySet()) {
if (e.getValue() == mx) {
String c = e.getKey();
ans.add(List.of(c, ids[d.get(c)]));
}
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def mostPopularCreator(
self, creators: List[str], ids: List[str], views: List[int]
) -> List[List[str]]:
cnt = defaultdict(int)
d = defaultdict(int)
for k, (c, i, v) in enumerate(zip(creators, ids, views)):
cnt[c] += v
if c not in d or views[d[c]] < v or (views[d[c]] == v and ids[d[c]] > i):
d[c] = k
mx = max(cnt.values())
return [[c, ids[d[c]]] for c, x in cnt.items() if x == mx]
| null | null | null | null | null |
function mostPopularCreator(creators: string[], ids: string[], views: number[]): string[][] {
const cnt: Map<string, number> = new Map();
const d: Map<string, number> = new Map();
const n = ids.length;
for (let k = 0; k < n; ++k) {
const [c, i, v] = [creators[k], ids[k], views[k]];
cnt.set(c, (cnt.get(c) ?? 0) + v);
if (!d.has(c) || views[d.get(c)!] < v || (views[d.get(c)!] === v && ids[d.get(c)!] > i)) {
d.set(c, k);
}
}
const mx = Math.max(...cnt.values());
const ans: string[][] = [];
for (const [c, x] of cnt) {
if (x === mx) {
ans.push([c, ids[d.get(c)!]]);
}
}
return ans;
}
|
Shortest Impossible Sequence of Rolls
|
You are given an integer array
rolls
of length
n
and an integer
k
. You roll a
k
sided dice numbered from
1
to
k
,
n
times, where the result of the
i
th
roll is
rolls[i]
.
Return
the length of the
shortest
sequence of rolls so that there's no such
subsequence
in
rolls
.
A
sequence of rolls
of length
len
is the result of rolling a
k
sided dice
len
times.
Example 1:
Input:
rolls = [4,2,1,2,3,3,2,4,1], k = 4
Output:
3
Explanation:
Every sequence of rolls of length 1, [1], [2], [3], [4], can be taken from rolls.
Every sequence of rolls of length 2, [1, 1], [1, 2], ..., [4, 4], can be taken from rolls.
The sequence [1, 4, 2] cannot be taken from rolls, so we return 3.
Note that there are other sequences that cannot be taken from rolls.
Example 2:
Input:
rolls = [1,1,2,2], k = 2
Output:
2
Explanation:
Every sequence of rolls of length 1, [1], [2], can be taken from rolls.
The sequence [2, 1] cannot be taken from rolls, so we return 2.
Note that there are other sequences that cannot be taken from rolls but [2, 1] is the shortest.
Example 3:
Input:
rolls = [1,1,3,2,2,2,3,3], k = 4
Output:
1
Explanation:
The sequence [4] cannot be taken from rolls, so we return 1.
Note that there are other sequences that cannot be taken from rolls but [4] is the shortest.
Constraints:
n == rolls.length
1 <= n <= 10
5
1 <= rolls[i] <= k <= 10
5
| null | null |
class Solution {
public:
int shortestSequence(vector<int>& rolls, int k) {
unordered_set<int> s;
int ans = 1;
for (int v : rolls) {
s.insert(v);
if (s.size() == k) {
s.clear();
++ans;
}
}
return ans;
}
};
| null | null |
func shortestSequence(rolls []int, k int) int {
s := map[int]bool{}
ans := 1
for _, v := range rolls {
s[v] = true
if len(s) == k {
ans++
s = map[int]bool{}
}
}
return ans
}
|
class Solution {
public int shortestSequence(int[] rolls, int k) {
Set<Integer> s = new HashSet<>();
int ans = 1;
for (int v : rolls) {
s.add(v);
if (s.size() == k) {
s.clear();
++ans;
}
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def shortestSequence(self, rolls: List[int], k: int) -> int:
ans = 1
s = set()
for v in rolls:
s.add(v)
if len(s) == k:
ans += 1
s.clear()
return ans
| null | null | null | null | null | null |
Product's Worth Over Invoices 🔒
|
Table:
Product
+-------------+---------+
| Column Name | Type |
+-------------+---------+
| product_id | int |
| name | varchar |
+-------------+---------+
product_id is the column with unique values for this table.
This table contains the ID and the name of the product. The name consists of only lowercase English letters. No two products have the same name.
Table:
Invoice
+-------------+------+
| Column Name | Type |
+-------------+------+
| invoice_id | int |
| product_id | int |
| rest | int |
| paid | int |
| canceled | int |
| refunded | int |
+-------------+------+
invoice_id is the column with unique values for this table and the id of this invoice.
product_id is the id of the product for this invoice.
rest is the amount left to pay for this invoice.
paid is the amount paid for this invoice.
canceled is the amount canceled for this invoice.
refunded is the amount refunded for this invoice.
Write a solution that will, for all products, return each product name with the total amount due, paid, canceled, and refunded across all invoices.
Return the result table ordered by
product_name
.
The result format is in the following example.
Example 1:
Input:
Product table:
+------------+-------+
| product_id | name |
+------------+-------+
| 0 | ham |
| 1 | bacon |
+------------+-------+
Invoice table:
+------------+------------+------+------+----------+----------+
| invoice_id | product_id | rest | paid | canceled | refunded |
+------------+------------+------+------+----------+----------+
| 23 | 0 | 2 | 0 | 5 | 0 |
| 12 | 0 | 0 | 4 | 0 | 3 |
| 1 | 1 | 1 | 1 | 0 | 1 |
| 2 | 1 | 1 | 0 | 1 | 1 |
| 3 | 1 | 0 | 1 | 1 | 1 |
| 4 | 1 | 1 | 1 | 1 | 0 |
+------------+------------+------+------+----------+----------+
Output:
+-------+------+------+----------+----------+
| name | rest | paid | canceled | refunded |
+-------+------+------+----------+----------+
| bacon | 3 | 3 | 3 | 3 |
| ham | 2 | 4 | 5 | 3 |
+-------+------+------+----------+----------+
Explanation:
- The amount of money left to pay for bacon is 1 + 1 + 0 + 1 = 3
- The amount of money paid for bacon is 1 + 0 + 1 + 1 = 3
- The amount of money canceled for bacon is 0 + 1 + 1 + 1 = 3
- The amount of money refunded for bacon is 1 + 1 + 1 + 0 = 3
- The amount of money left to pay for ham is 2 + 0 = 2
- The amount of money paid for ham is 0 + 4 = 4
- The amount of money canceled for ham is 5 + 0 = 5
- The amount of money refunded for ham is 0 + 3 = 3
| null | null | null | null | null | null | null | null | null |
# Write your MySQL query statement below
SELECT
name,
IFNULL(SUM(rest), 0) AS rest,
IFNULL(SUM(paid), 0) AS paid,
IFNULL(SUM(canceled), 0) AS canceled,
IFNULL(SUM(refunded), 0) AS refunded
FROM
Product
LEFT JOIN Invoice USING (product_id)
GROUP BY product_id
ORDER BY name;
| null | null | null | null | null | null | null | null | null | null |
Number of Valid Clock Times
|
You are given a string of length
5
called
time
, representing the current time on a digital clock in the format
"hh:mm"
. The
earliest
possible time is
"00:00"
and the
latest
possible time is
"23:59"
.
In the string
time
, the digits represented by the
?
symbol are
unknown
, and must be
replaced
with a digit from
0
to
9
.
Return
an integer
answer
, the number of valid clock times that can be created by replacing every
?
with a digit from
0
to
9
.
Example 1:
Input:
time = "?5:00"
Output:
2
Explanation:
We can replace the ? with either a 0 or 1, producing "05:00" or "15:00". Note that we cannot replace it with a 2, since the time "25:00" is invalid. In total, we have two choices.
Example 2:
Input:
time = "0?:0?"
Output:
100
Explanation:
Each ? can be replaced by any digit from 0 to 9, so we have 100 total choices.
Example 3:
Input:
time = "??:??"
Output:
1440
Explanation:
There are 24 possible choices for the hours, and 60 possible choices for the minutes. In total, we have 24 * 60 = 1440 choices.
Constraints:
time
is a valid string of length
5
in the format
"hh:mm"
.
"00" <= hh <= "23"
"00" <= mm <= "59"
Some of the digits might be replaced with
'?'
and need to be replaced with digits from
0
to
9
.
| null | null |
class Solution {
public:
int countTime(string time) {
auto f = [](string s, int m) {
int cnt = 0;
for (int i = 0; i < m; ++i) {
bool a = s[0] == '?' || s[0] - '0' == i / 10;
bool b = s[1] == '?' || s[1] - '0' == i % 10;
cnt += a && b;
}
return cnt;
};
return f(time.substr(0, 2), 24) * f(time.substr(3, 2), 60);
}
};
| null | null |
func countTime(time string) int {
f := func(s string, m int) (cnt int) {
for i := 0; i < m; i++ {
a := s[0] == '?' || int(s[0]-'0') == i/10
b := s[1] == '?' || int(s[1]-'0') == i%10
if a && b {
cnt++
}
}
return
}
return f(time[:2], 24) * f(time[3:], 60)
}
|
class Solution {
public int countTime(String time) {
return f(time.substring(0, 2), 24) * f(time.substring(3), 60);
}
private int f(String s, int m) {
int cnt = 0;
for (int i = 0; i < m; ++i) {
boolean a = s.charAt(0) == '?' || s.charAt(0) - '0' == i / 10;
boolean b = s.charAt(1) == '?' || s.charAt(1) - '0' == i % 10;
cnt += a && b ? 1 : 0;
}
return cnt;
}
}
| null | null | null | null | null | null |
class Solution:
def countTime(self, time: str) -> int:
def f(s: str, m: int) -> int:
cnt = 0
for i in range(m):
a = s[0] == '?' or (int(s[0]) == i // 10)
b = s[1] == '?' or (int(s[1]) == i % 10)
cnt += a and b
return cnt
return f(time[:2], 24) * f(time[3:], 60)
| null |
impl Solution {
pub fn count_time(time: String) -> i32 {
let f = |s: &str, m: usize| -> i32 {
let mut cnt = 0;
let first = s.chars().nth(0).unwrap();
let second = s.chars().nth(1).unwrap();
for i in 0..m {
let a = first == '?' || (first.to_digit(10).unwrap() as usize) == i / 10;
let b = second == '?' || (second.to_digit(10).unwrap() as usize) == i % 10;
if a && b {
cnt += 1;
}
}
cnt
};
f(&time[..2], 24) * f(&time[3..], 60)
}
}
| null | null | null |
function countTime(time: string): number {
const f = (s: string, m: number): number => {
let cnt = 0;
for (let i = 0; i < m; ++i) {
const a = s[0] === '?' || s[0] === Math.floor(i / 10).toString();
const b = s[1] === '?' || s[1] === (i % 10).toString();
if (a && b) {
++cnt;
}
}
return cnt;
};
return f(time.slice(0, 2), 24) * f(time.slice(3), 60);
}
|
Maximum Number of Moves to Kill All Pawns
|
There is a
50 x 50
chessboard with
one
knight and some pawns on it. You are given two integers
kx
and
ky
where
(kx, ky)
denotes the position of the knight, and a 2D array
positions
where
positions[i] = [x
i
, y
i
]
denotes the position of the pawns on the chessboard.
Alice and Bob play a
turn-based
game, where Alice goes first. In each player's turn:
The player
selects
a pawn that still exists on the board and captures it with the knight in the
fewest
possible
moves
.
Note
that the player can select
any
pawn, it
might not
be one that can be captured in the
least
number of moves.
In the process of capturing the
selected
pawn, the knight
may
pass other pawns
without
capturing them
.
Only
the
selected
pawn can be captured in
this
turn.
Alice is trying to
maximize
the
sum
of the number of moves made by
both
players until there are no more pawns on the board, whereas Bob tries to
minimize
them.
Return the
maximum
total
number of moves made during the game that Alice can achieve, assuming both players play
optimally
.
Note that in one
move,
a chess knight has eight possible positions it can move to, as illustrated below. Each move is two cells in a cardinal direction, then one cell in an orthogonal direction.
Example 1:
Input:
kx = 1, ky = 1, positions = [[0,0]]
Output:
4
Explanation:
The knight takes 4 moves to reach the pawn at
(0, 0)
.
Example 2:
Input:
kx = 0, ky = 2, positions = [[1,1],[2,2],[3,3]]
Output:
8
Explanation:
Alice picks the pawn at
(2, 2)
and captures it in two moves:
(0, 2) -> (1, 4) -> (2, 2)
.
Bob picks the pawn at
(3, 3)
and captures it in two moves:
(2, 2) -> (4, 1) -> (3, 3)
.
Alice picks the pawn at
(1, 1)
and captures it in four moves:
(3, 3) -> (4, 1) -> (2, 2) -> (0, 3) -> (1, 1)
.
Example 3:
Input:
kx = 0, ky = 0, positions = [[1,2],[2,4]]
Output:
3
Explanation:
Alice picks the pawn at
(2, 4)
and captures it in two moves:
(0, 0) -> (1, 2) -> (2, 4)
. Note that the pawn at
(1, 2)
is not captured.
Bob picks the pawn at
(1, 2)
and captures it in one move:
(2, 4) -> (1, 2)
.
Constraints:
0 <= kx, ky <= 49
1 <= positions.length <= 15
positions[i].length == 2
0 <= positions[i][0], positions[i][1] <= 49
All
positions[i]
are unique.
The input is generated such that
positions[i] != [kx, ky]
for all
0 <= i < positions.length
.
| null | null |
class Solution {
public:
int maxMoves(int kx, int ky, vector<vector<int>>& positions) {
int n = positions.size();
const int m = 50;
const int dx[8] = {1, 1, 2, 2, -1, -1, -2, -2};
const int dy[8] = {2, -2, 1, -1, 2, -2, 1, -1};
int dist[n + 1][m][m];
memset(dist, -1, sizeof(dist));
for (int i = 0; i <= n; ++i) {
int x = (i < n) ? positions[i][0] : kx;
int y = (i < n) ? positions[i][1] : ky;
queue<pair<int, int>> q;
q.push({x, y});
dist[i][x][y] = 0;
for (int step = 1; !q.empty(); ++step) {
for (int k = q.size(); k > 0; --k) {
auto [x1, y1] = q.front();
q.pop();
for (int j = 0; j < 8; ++j) {
int x2 = x1 + dx[j], y2 = y1 + dy[j];
if (x2 >= 0 && x2 < m && y2 >= 0 && y2 < m && dist[i][x2][y2] == -1) {
dist[i][x2][y2] = step;
q.push({x2, y2});
}
}
}
}
}
int f[n + 1][1 << n][2];
memset(f, -1, sizeof(f));
auto dfs = [&](this auto&& dfs, int last, int state, int k) -> int {
if (state == 0) {
return 0;
}
if (f[last][state][k] != -1) {
return f[last][state][k];
}
int res = (k == 1) ? 0 : INT_MAX;
for (int i = 0; i < positions.size(); ++i) {
int x = positions[i][0], y = positions[i][1];
if ((state >> i) & 1) {
int t = dfs(i, state ^ (1 << i), k ^ 1) + dist[last][x][y];
if (k == 1) {
res = max(res, t);
} else {
res = min(res, t);
}
}
}
return f[last][state][k] = res;
};
return dfs(n, (1 << n) - 1, 1);
}
};
| null | null |
func maxMoves(kx int, ky int, positions [][]int) int {
n := len(positions)
const m = 50
dx := []int{1, 1, 2, 2, -1, -1, -2, -2}
dy := []int{2, -2, 1, -1, 2, -2, 1, -1}
dist := make([][][]int, n+1)
for i := range dist {
dist[i] = make([][]int, m)
for j := range dist[i] {
dist[i][j] = make([]int, m)
for k := range dist[i][j] {
dist[i][j][k] = -1
}
}
}
for i := 0; i <= n; i++ {
x := kx
y := ky
if i < n {
x = positions[i][0]
y = positions[i][1]
}
q := [][2]int{[2]int{x, y}}
dist[i][x][y] = 0
for step := 1; len(q) > 0; step++ {
for k := len(q); k > 0; k-- {
p := q[0]
q = q[1:]
x1, y1 := p[0], p[1]
for j := 0; j < 8; j++ {
x2 := x1 + dx[j]
y2 := y1 + dy[j]
if x2 >= 0 && x2 < m && y2 >= 0 && y2 < m && dist[i][x2][y2] == -1 {
dist[i][x2][y2] = step
q = append(q, [2]int{x2, y2})
}
}
}
}
}
f := make([][][]int, n+1)
for i := range f {
f[i] = make([][]int, 1<<n)
for j := range f[i] {
f[i][j] = make([]int, 2)
for k := range f[i][j] {
f[i][j][k] = -1
}
}
}
var dfs func(last, state, k int) int
dfs = func(last, state, k int) int {
if state == 0 {
return 0
}
if f[last][state][k] != -1 {
return f[last][state][k]
}
var res int
if k == 0 {
res = math.MaxInt32
}
for i, p := range positions {
x, y := p[0], p[1]
if (state>>i)&1 == 1 {
t := dfs(i, state^(1<<i), k^1) + dist[last][x][y]
if k == 1 {
res = max(res, t)
} else {
res = min(res, t)
}
}
}
f[last][state][k] = res
return res
}
return dfs(n, (1<<n)-1, 1)
}
|
class Solution {
private Integer[][][] f;
private Integer[][][] dist;
private int[][] positions;
private final int[] dx = {1, 1, 2, 2, -1, -1, -2, -2};
private final int[] dy = {2, -2, 1, -1, 2, -2, 1, -1};
public int maxMoves(int kx, int ky, int[][] positions) {
int n = positions.length;
final int m = 50;
dist = new Integer[n + 1][m][m];
this.positions = positions;
for (int i = 0; i <= n; ++i) {
int x = i < n ? positions[i][0] : kx;
int y = i < n ? positions[i][1] : ky;
Deque<int[]> q = new ArrayDeque<>();
q.offer(new int[] {x, y});
for (int step = 1; !q.isEmpty(); ++step) {
for (int k = q.size(); k > 0; --k) {
var p = q.poll();
int x1 = p[0], y1 = p[1];
for (int j = 0; j < 8; ++j) {
int x2 = x1 + dx[j], y2 = y1 + dy[j];
if (x2 >= 0 && x2 < m && y2 >= 0 && y2 < m && dist[i][x2][y2] == null) {
dist[i][x2][y2] = step;
q.offer(new int[] {x2, y2});
}
}
}
}
}
f = new Integer[n + 1][1 << n][2];
return dfs(n, (1 << n) - 1, 1);
}
private int dfs(int last, int state, int k) {
if (state == 0) {
return 0;
}
if (f[last][state][k] != null) {
return f[last][state][k];
}
int res = k == 1 ? 0 : Integer.MAX_VALUE;
for (int i = 0; i < positions.length; ++i) {
int x = positions[i][0], y = positions[i][1];
if ((state >> i & 1) == 1) {
int t = dfs(i, state ^ (1 << i), k ^ 1) + dist[last][x][y];
res = k == 1 ? Math.max(res, t) : Math.min(res, t);
}
}
return f[last][state][k] = res;
}
}
| null | null | null | null | null | null |
class Solution:
def maxMoves(self, kx: int, ky: int, positions: List[List[int]]) -> int:
@cache
def dfs(last: int, state: int, k: int) -> int:
if state == 0:
return 0
if k:
res = 0
for i, (x, y) in enumerate(positions):
if state >> i & 1:
t = dfs(i, state ^ (1 << i), k ^ 1) + dist[last][x][y]
if res < t:
res = t
return res
else:
res = inf
for i, (x, y) in enumerate(positions):
if state >> i & 1:
t = dfs(i, state ^ (1 << i), k ^ 1) + dist[last][x][y]
if res > t:
res = t
return res
n = len(positions)
m = 50
dist = [[[-1] * m for _ in range(m)] for _ in range(n + 1)]
dx = [1, 1, 2, 2, -1, -1, -2, -2]
dy = [2, -2, 1, -1, 2, -2, 1, -1]
positions.append([kx, ky])
for i, (x, y) in enumerate(positions):
dist[i][x][y] = 0
q = deque([(x, y)])
step = 0
while q:
step += 1
for _ in range(len(q)):
x1, y1 = q.popleft()
for j in range(8):
x2, y2 = x1 + dx[j], y1 + dy[j]
if 0 <= x2 < m and 0 <= y2 < m and dist[i][x2][y2] == -1:
dist[i][x2][y2] = step
q.append((x2, y2))
ans = dfs(n, (1 << n) - 1, 1)
dfs.cache_clear()
return ans
| null | null | null | null | null | null |
Number of Students Unable to Eat Lunch
|
The school cafeteria offers circular and square sandwiches at lunch break, referred to by numbers
0
and
1
respectively. All students stand in a queue. Each student either prefers square or circular sandwiches.
The number of sandwiches in the cafeteria is equal to the number of students. The sandwiches are placed in a
stack
. At each step:
If the student at the front of the queue
prefers
the sandwich on the top of the stack, they will
take it
and leave the queue.
Otherwise, they will
leave it
and go to the queue's end.
This continues until none of the queue students want to take the top sandwich and are thus unable to eat.
You are given two integer arrays
students
and
sandwiches
where
sandwiches[i]
is the type of the
i
th
sandwich in the stack (
i = 0
is the top of the stack) and
students[j]
is the preference of the
j
th
student in the initial queue (
j = 0
is the front of the queue). Return
the number of students that are unable to eat.
Example 1:
Input:
students = [1,1,0,0], sandwiches = [0,1,0,1]
Output:
0
Explanation:
- Front student leaves the top sandwich and returns to the end of the line making students = [1,0,0,1].
- Front student leaves the top sandwich and returns to the end of the line making students = [0,0,1,1].
- Front student takes the top sandwich and leaves the line making students = [0,1,1] and sandwiches = [1,0,1].
- Front student leaves the top sandwich and returns to the end of the line making students = [1,1,0].
- Front student takes the top sandwich and leaves the line making students = [1,0] and sandwiches = [0,1].
- Front student leaves the top sandwich and returns to the end of the line making students = [0,1].
- Front student takes the top sandwich and leaves the line making students = [1] and sandwiches = [1].
- Front student takes the top sandwich and leaves the line making students = [] and sandwiches = [].
Hence all students are able to eat.
Example 2:
Input:
students = [1,1,1,0,0,1], sandwiches = [1,0,0,0,1,1]
Output:
3
Constraints:
1 <= students.length, sandwiches.length <= 100
students.length == sandwiches.length
sandwiches[i]
is
0
or
1
.
students[i]
is
0
or
1
.
|
int countStudents(int* students, int studentsSize, int* sandwiches, int sandwichesSize) {
int count[2] = {0};
for (int i = 0; i < studentsSize; i++) {
count[students[i]]++;
}
for (int i = 0; i < sandwichesSize; i++) {
int j = sandwiches[i];
if (count[j] == 0) {
return count[j ^ 1];
}
count[j]--;
}
return 0;
}
| null |
class Solution {
public:
int countStudents(vector<int>& students, vector<int>& sandwiches) {
int cnt[2] = {0};
for (int& v : students) ++cnt[v];
for (int& v : sandwiches) {
if (cnt[v]-- == 0) {
return cnt[v ^ 1];
}
}
return 0;
}
};
| null | null |
func countStudents(students []int, sandwiches []int) int {
cnt := [2]int{}
for _, v := range students {
cnt[v]++
}
for _, v := range sandwiches {
if cnt[v] == 0 {
return cnt[v^1]
}
cnt[v]--
}
return 0
}
|
class Solution {
public int countStudents(int[] students, int[] sandwiches) {
int[] cnt = new int[2];
for (int v : students) {
++cnt[v];
}
for (int v : sandwiches) {
if (cnt[v]-- == 0) {
return cnt[v ^ 1];
}
}
return 0;
}
}
| null | null | null | null | null | null |
class Solution:
def countStudents(self, students: List[int], sandwiches: List[int]) -> int:
cnt = Counter(students)
for v in sandwiches:
if cnt[v] == 0:
return cnt[v ^ 1]
cnt[v] -= 1
return 0
| null |
impl Solution {
pub fn count_students(students: Vec<i32>, sandwiches: Vec<i32>) -> i32 {
let mut count = [0, 0];
for &v in students.iter() {
count[v as usize] += 1;
}
for &v in sandwiches.iter() {
let v = v as usize;
if count[v as usize] == 0 {
return count[v ^ 1];
}
count[v] -= 1;
}
0
}
}
| null | null | null |
function countStudents(students: number[], sandwiches: number[]): number {
const count = [0, 0];
for (const v of students) {
count[v]++;
}
for (const v of sandwiches) {
if (count[v] === 0) {
return count[v ^ 1];
}
count[v]--;
}
return 0;
}
|
Maximize Items 🔒
|
Table:
Inventory
+----------------+---------+
| Column Name | Type |
+----------------+---------+
| item_id | int |
| item_type | varchar |
| item_category | varchar |
| square_footage | decimal |
+----------------+---------+
item_id is the column of unique values for this table.
Each row includes item id, item type, item category and sqaure footage.
Leetcode warehouse wants to maximize the number of items it can stock in a
500,000
square feet warehouse. It wants to stock as many
prime
items as possible, and afterwards use the
remaining
square footage to stock the most number of
non-prime
items.
Write a solution to find the number of
prime
and
non-prime
items that can be
stored
in the
500,000
square feet warehouse. Output the item type with
prime_eligible
followed by
not_prime
and the maximum number of items that can be stocked.
Note:
Item
count
must be a whole number (integer).
If the count for the
not_prime
category is
0
, you should
output
0
for that particular category.
Return
the result table ordered by item count in
descending order
.
The result format is in the following example.
Example 1:
Input:
Inventory table:
+---------+----------------+---------------+----------------+
| item_id | item_type | item_category | square_footage |
+---------+----------------+---------------+----------------+
| 1374 | prime_eligible | Watches | 68.00 |
| 4245 | not_prime | Art | 26.40 |
| 5743 | prime_eligible | Software | 325.00 |
| 8543 | not_prime | Clothing | 64.50 |
| 2556 | not_prime | Shoes | 15.00 |
| 2452 | prime_eligible | Scientific | 85.00 |
| 3255 | not_prime | Furniture | 22.60 |
| 1672 | prime_eligible | Beauty | 8.50 |
| 4256 | prime_eligible | Furniture | 55.50 |
| 6325 | prime_eligible | Food | 13.20 |
+---------+----------------+---------------+----------------+
Output:
+----------------+-------------+
| item_type | item_count |
+----------------+-------------+
| prime_eligible | 5400 |
| not_prime | 8 |
+----------------+-------------+
Explanation:
- The prime-eligible category comprises a total of 6 items, amounting to a combined square footage of 555.20 (68 + 325 + 85 + 8.50 + 55.50 + 13.20). It is possible to store 900 combinations of these 6 items, totaling 5400 items and occupying 499,680 square footage.
- In the not_prime category, there are a total of 4 items with a combined square footage of 128.50. After deducting the storage used by prime-eligible items (500,000 - 499,680 = 320), there is room for 2 combinations of non-prime items, accommodating a total of 8 non-prime items within the available 320 square footage.
Output table is ordered by item count in descending order.
| null | null | null | null | null | null | null | null | null |
# Write your MySQL query statement below
WITH
T AS (
SELECT SUM(square_footage) AS s
FROM Inventory
WHERE item_type = 'prime_eligible'
)
SELECT
'prime_eligible' AS item_type,
COUNT(1) * FLOOR(500000 / s) AS item_count
FROM
Inventory
JOIN T
WHERE item_type = 'prime_eligible'
UNION ALL
SELECT
'not_prime',
IFNULL(COUNT(1) * FLOOR(IF(s = 0, 500000, 500000 % s) / SUM(square_footage)), 0)
FROM
Inventory
JOIN T
WHERE item_type = 'not_prime';
| null | null | null | null | null | null | null | null | null | null |
Minimum Path Cost in a Grid
|
You are given a
0-indexed
m x n
integer matrix
grid
consisting of
distinct
integers from
0
to
m * n - 1
. You can move in this matrix from a cell to any other cell in the
next
row. That is, if you are in cell
(x, y)
such that
x < m - 1
, you can move to any of the cells
(x + 1, 0)
,
(x + 1, 1)
, ...,
(x + 1, n - 1)
.
Note
that it is not possible to move from cells in the last row.
Each possible move has a cost given by a
0-indexed
2D array
moveCost
of size
(m * n) x n
, where
moveCost[i][j]
is the cost of moving from a cell with value
i
to a cell in column
j
of the next row. The cost of moving from cells in the last row of
grid
can be ignored.
The cost of a path in
grid
is the
sum
of all values of cells visited plus the
sum
of costs of all the moves made. Return
the
minimum
cost of a path that starts from any cell in the
first
row and ends at any cell in the
last
row.
Example 1:
Input:
grid = [[5,3],[4,0],[2,1]], moveCost = [[9,8],[1,5],[10,12],[18,6],[2,4],[14,3]]
Output:
17
Explanation:
The path with the minimum possible cost is the path 5 -> 0 -> 1.
- The sum of the values of cells visited is 5 + 0 + 1 = 6.
- The cost of moving from 5 to 0 is 3.
- The cost of moving from 0 to 1 is 8.
So the total cost of the path is 6 + 3 + 8 = 17.
Example 2:
Input:
grid = [[5,1,2],[4,0,3]], moveCost = [[12,10,15],[20,23,8],[21,7,1],[8,1,13],[9,10,25],[5,3,2]]
Output:
6
Explanation:
The path with the minimum possible cost is the path 2 -> 3.
- The sum of the values of cells visited is 2 + 3 = 5.
- The cost of moving from 2 to 3 is 1.
So the total cost of this path is 5 + 1 = 6.
Constraints:
m == grid.length
n == grid[i].length
2 <= m, n <= 50
grid
consists of distinct integers from
0
to
m * n - 1
.
moveCost.length == m * n
moveCost[i].length == n
1 <= moveCost[i][j] <= 100
| null | null |
class Solution {
public:
int minPathCost(vector<vector<int>>& grid, vector<vector<int>>& moveCost) {
int m = grid.size(), n = grid[0].size();
const int inf = 1 << 30;
vector<int> f = grid[0];
for (int i = 1; i < m; ++i) {
vector<int> g(n, inf);
for (int j = 0; j < n; ++j) {
for (int k = 0; k < n; ++k) {
g[j] = min(g[j], f[k] + moveCost[grid[i - 1][k]][j] + grid[i][j]);
}
}
f = move(g);
}
return *min_element(f.begin(), f.end());
}
};
| null | null |
func minPathCost(grid [][]int, moveCost [][]int) int {
m, n := len(grid), len(grid[0])
f := grid[0]
for i := 1; i < m; i++ {
g := make([]int, n)
for j := 0; j < n; j++ {
g[j] = 1 << 30
for k := 0; k < n; k++ {
g[j] = min(g[j], f[k]+moveCost[grid[i-1][k]][j]+grid[i][j])
}
}
f = g
}
return slices.Min(f)
}
|
class Solution {
public int minPathCost(int[][] grid, int[][] moveCost) {
int m = grid.length, n = grid[0].length;
int[] f = grid[0];
final int inf = 1 << 30;
for (int i = 1; i < m; ++i) {
int[] g = new int[n];
Arrays.fill(g, inf);
for (int j = 0; j < n; ++j) {
for (int k = 0; k < n; ++k) {
g[j] = Math.min(g[j], f[k] + moveCost[grid[i - 1][k]][j] + grid[i][j]);
}
}
f = g;
}
// return Arrays.stream(f).min().getAsInt();
int ans = inf;
for (int v : f) {
ans = Math.min(ans, v);
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def minPathCost(self, grid: List[List[int]], moveCost: List[List[int]]) -> int:
m, n = len(grid), len(grid[0])
f = grid[0]
for i in range(1, m):
g = [inf] * n
for j in range(n):
for k in range(n):
g[j] = min(g[j], f[k] + moveCost[grid[i - 1][k]][j] + grid[i][j])
f = g
return min(f)
| null |
impl Solution {
pub fn min_path_cost(grid: Vec<Vec<i32>>, move_cost: Vec<Vec<i32>>) -> i32 {
let m = grid.len();
let n = grid[0].len();
let mut f = grid[0].clone();
for i in 1..m {
let mut g: Vec<i32> = vec![i32::MAX; n];
for j in 0..n {
for k in 0..n {
g[j] = g[j].min(f[k] + move_cost[grid[i - 1][k] as usize][j] + grid[i][j]);
}
}
f.copy_from_slice(&g);
}
f.iter().cloned().min().unwrap_or(0)
}
}
| null | null | null |
function minPathCost(grid: number[][], moveCost: number[][]): number {
const m = grid.length;
const n = grid[0].length;
const f = grid[0];
for (let i = 1; i < m; ++i) {
const g: number[] = Array(n).fill(Infinity);
for (let j = 0; j < n; ++j) {
for (let k = 0; k < n; ++k) {
g[j] = Math.min(g[j], f[k] + moveCost[grid[i - 1][k]][j] + grid[i][j]);
}
}
f.splice(0, n, ...g);
}
return Math.min(...f);
}
|
Find Closest Number to Zero
|
Given an integer array
nums
of size
n
, return
the number with the value
closest
to
0
in
nums
. If there are multiple answers, return
the number with the
largest
value
.
Example 1:
Input:
nums = [-4,-2,1,4,8]
Output:
1
Explanation:
The distance from -4 to 0 is |-4| = 4.
The distance from -2 to 0 is |-2| = 2.
The distance from 1 to 0 is |1| = 1.
The distance from 4 to 0 is |4| = 4.
The distance from 8 to 0 is |8| = 8.
Thus, the closest number to 0 in the array is 1.
Example 2:
Input:
nums = [2,-1,1]
Output:
1
Explanation:
1 and -1 are both the closest numbers to 0, so 1 being larger is returned.
Constraints:
1 <= n <= 1000
-10
5
<= nums[i] <= 10
5
| null | null |
class Solution {
public:
int findClosestNumber(vector<int>& nums) {
int ans = 0, d = 1 << 30;
for (int x : nums) {
int y = abs(x);
if (y < d || (y == d && x > ans)) {
ans = x;
d = y;
}
}
return ans;
}
};
| null | null |
func findClosestNumber(nums []int) int {
ans, d := 0, 1<<30
for _, x := range nums {
if y := abs(x); y < d || (y == d && x > ans) {
ans, d = x, y
}
}
return ans
}
func abs(x int) int {
if x < 0 {
return -x
}
return x
}
|
class Solution {
public int findClosestNumber(int[] nums) {
int ans = 0, d = 1 << 30;
for (int x : nums) {
int y = Math.abs(x);
if (y < d || (y == d && x > ans)) {
ans = x;
d = y;
}
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def findClosestNumber(self, nums: List[int]) -> int:
ans, d = 0, inf
for x in nums:
if (y := abs(x)) < d or (y == d and x > ans):
ans, d = x, y
return ans
| null | null | null | null | null |
function findClosestNumber(nums: number[]): number {
let [ans, d] = [0, 1 << 30];
for (const x of nums) {
const y = Math.abs(x);
if (y < d || (y == d && x > ans)) {
[ans, d] = [x, y];
}
}
return ans;
}
|
Minimum Number of Operations to Reinitialize a Permutation
|
You are given an
even
integer
n
. You initially have a permutation
perm
of size
n
where
perm[i] == i
(0-indexed)
.
In one operation, you will create a new array
arr
, and for each
i
:
If
i % 2 == 0
, then
arr[i] = perm[i / 2]
.
If
i % 2 == 1
, then
arr[i] = perm[n / 2 + (i - 1) / 2]
.
You will then assign
arr
to
perm
.
Return
the minimum
non-zero
number of operations you need to perform on
perm
to return the permutation to its initial value.
Example 1:
Input:
n = 2
Output:
1
Explanation:
perm = [0,1] initially.
After the 1
st
operation, perm = [0,1]
So it takes only 1 operation.
Example 2:
Input:
n = 4
Output:
2
Explanation:
perm = [0,1,2,3] initially.
After the 1
st
operation, perm = [0,2,1,3]
After the 2
nd
operation, perm = [0,1,2,3]
So it takes only 2 operations.
Example 3:
Input:
n = 6
Output:
4
Constraints:
2 <= n <= 1000
n
is even.
| null | null |
class Solution {
public:
int reinitializePermutation(int n) {
int ans = 0;
for (int i = 1;;) {
++ans;
if (i < (n >> 1)) {
i <<= 1;
} else {
i = (i - (n >> 1)) << 1 | 1;
}
if (i == 1) {
return ans;
}
}
}
};
| null | null |
func reinitializePermutation(n int) (ans int) {
for i := 1; ; {
ans++
if i < (n >> 1) {
i <<= 1
} else {
i = (i-(n>>1))<<1 | 1
}
if i == 1 {
return ans
}
}
}
|
class Solution {
public int reinitializePermutation(int n) {
int ans = 0;
for (int i = 1;;) {
++ans;
if (i < (n >> 1)) {
i <<= 1;
} else {
i = (i - (n >> 1)) << 1 | 1;
}
if (i == 1) {
return ans;
}
}
}
}
| null | null | null | null | null | null |
class Solution:
def reinitializePermutation(self, n: int) -> int:
ans, i = 0, 1
while 1:
ans += 1
if i < n >> 1:
i <<= 1
else:
i = (i - (n >> 1)) << 1 | 1
if i == 1:
return ans
| null | null | null | null | null | null |
Minimum Health to Beat Game 🔒
|
You are playing a game that has
n
levels numbered from
0
to
n - 1
. You are given a
0-indexed
integer array
damage
where
damage[i]
is the amount of health you will lose to complete the
i
th
level.
You are also given an integer
armor
. You may use your armor ability
at most once
during the game on
any
level which will protect you from
at most
armor
damage.
You must complete the levels in order and your health must be
greater than
0
at all times to beat the game.
Return
the
minimum
health you need to start with to beat the game.
Example 1:
Input:
damage = [2,7,4,3], armor = 4
Output:
13
Explanation:
One optimal way to beat the game starting at 13 health is:
On round 1, take 2 damage. You have 13 - 2 = 11 health.
On round 2, take 7 damage. You have 11 - 7 = 4 health.
On round 3, use your armor to protect you from 4 damage. You have 4 - 0 = 4 health.
On round 4, take 3 damage. You have 4 - 3 = 1 health.
Note that 13 is the minimum health you need to start with to beat the game.
Example 2:
Input:
damage = [2,5,3,4], armor = 7
Output:
10
Explanation:
One optimal way to beat the game starting at 10 health is:
On round 1, take 2 damage. You have 10 - 2 = 8 health.
On round 2, use your armor to protect you from 5 damage. You have 8 - 0 = 8 health.
On round 3, take 3 damage. You have 8 - 3 = 5 health.
On round 4, take 4 damage. You have 5 - 4 = 1 health.
Note that 10 is the minimum health you need to start with to beat the game.
Example 3:
Input:
damage = [3,3,3], armor = 0
Output:
10
Explanation:
One optimal way to beat the game starting at 10 health is:
On round 1, take 3 damage. You have 10 - 3 = 7 health.
On round 2, take 3 damage. You have 7 - 3 = 4 health.
On round 3, take 3 damage. You have 4 - 3 = 1 health.
Note that you did not use your armor ability.
Constraints:
n == damage.length
1 <= n <= 10
5
0 <= damage[i] <= 10
5
0 <= armor <= 10
5
| null | null |
class Solution {
public:
long long minimumHealth(vector<int>& damage, int armor) {
long long s = 0;
int mx = damage[0];
for (int& v : damage) {
s += v;
mx = max(mx, v);
}
return s - min(mx, armor) + 1;
}
};
| null | null |
func minimumHealth(damage []int, armor int) int64 {
var s int64
var mx int
for _, v := range damage {
s += int64(v)
mx = max(mx, v)
}
return s - int64(min(mx, armor)) + 1
}
|
class Solution {
public long minimumHealth(int[] damage, int armor) {
long s = 0;
int mx = damage[0];
for (int v : damage) {
s += v;
mx = Math.max(mx, v);
}
return s - Math.min(mx, armor) + 1;
}
}
| null | null | null | null | null | null |
class Solution:
def minimumHealth(self, damage: List[int], armor: int) -> int:
return sum(damage) - min(max(damage), armor) + 1
| null | null | null | null | null |
function minimumHealth(damage: number[], armor: number): number {
let s = 0;
let mx = 0;
for (const v of damage) {
mx = Math.max(mx, v);
s += v;
}
return s - Math.min(mx, armor) + 1;
}
|
Partition Array into Disjoint Intervals
|
Given an integer array
nums
, partition it into two (contiguous) subarrays
left
and
right
so that:
Every element in
left
is less than or equal to every element in
right
.
left
and
right
are non-empty.
left
has the smallest possible size.
Return
the length of
left
after such a partitioning
.
Test cases are generated such that partitioning exists.
Example 1:
Input:
nums = [5,0,3,8,6]
Output:
3
Explanation:
left = [5,0,3], right = [8,6]
Example 2:
Input:
nums = [1,1,1,0,6,12]
Output:
4
Explanation:
left = [1,1,1,0], right = [6,12]
Constraints:
2 <= nums.length <= 10
5
0 <= nums[i] <= 10
6
There is at least one valid answer for the given input.
| null | null |
class Solution {
public:
int partitionDisjoint(vector<int>& nums) {
int n = nums.size();
vector<int> mi(n + 1, INT_MAX);
for (int i = n - 1; ~i; --i) {
mi[i] = min(nums[i], mi[i + 1]);
}
int mx = 0;
for (int i = 1;; ++i) {
int v = nums[i - 1];
mx = max(mx, v);
if (mx <= mi[i]) {
return i;
}
}
}
};
| null | null |
func partitionDisjoint(nums []int) int {
n := len(nums)
mi := make([]int, n+1)
mi[n] = nums[n-1]
for i := n - 1; i >= 0; i-- {
mi[i] = min(nums[i], mi[i+1])
}
mx := 0
for i := 1; ; i++ {
v := nums[i-1]
mx = max(mx, v)
if mx <= mi[i] {
return i
}
}
}
|
class Solution {
public int partitionDisjoint(int[] nums) {
int n = nums.length;
int[] mi = new int[n + 1];
mi[n] = nums[n - 1];
for (int i = n - 1; i >= 0; --i) {
mi[i] = Math.min(nums[i], mi[i + 1]);
}
int mx = 0;
for (int i = 1;; ++i) {
int v = nums[i - 1];
mx = Math.max(mx, v);
if (mx <= mi[i]) {
return i;
}
}
}
}
| null | null | null | null | null | null |
class Solution:
def partitionDisjoint(self, nums: List[int]) -> int:
n = len(nums)
mi = [inf] * (n + 1)
for i in range(n - 1, -1, -1):
mi[i] = min(nums[i], mi[i + 1])
mx = 0
for i, v in enumerate(nums, 1):
mx = max(mx, v)
if mx <= mi[i]:
return i
| null | null | null | null | null | null |
Find the Lexicographically Smallest Valid Sequence
|
You are given two strings
word1
and
word2
.
A string
x
is called
almost equal
to
y
if you can change
at most
one character in
x
to make it
identical
to
y
.
A sequence of indices
seq
is called
valid
if:
The indices are sorted in
ascending
order.
Concatenating
the characters at these indices in
word1
in
the same
order results in a string that is
almost equal
to
word2
.
Return an array of size
word2.length
representing the
lexicographically smallest
valid
sequence of indices. If no such sequence of indices exists, return an
empty
array.
Note
that the answer must represent the
lexicographically smallest array
,
not
the corresponding string formed by those indices.
Example 1:
Input:
word1 = "vbcca", word2 = "abc"
Output:
[0,1,2]
Explanation:
The lexicographically smallest valid sequence of indices is
[0, 1, 2]
:
Change
word1[0]
to
'a'
.
word1[1]
is already
'b'
.
word1[2]
is already
'c'
.
Example 2:
Input:
word1 = "bacdc", word2 = "abc"
Output:
[1,2,4]
Explanation:
The lexicographically smallest valid sequence of indices is
[1, 2, 4]
:
word1[1]
is already
'a'
.
Change
word1[2]
to
'b'
.
word1[4]
is already
'c'
.
Example 3:
Input:
word1 = "aaaaaa", word2 = "aaabc"
Output:
[]
Explanation:
There is no valid sequence of indices.
Example 4:
Input:
word1 = "abc", word2 = "ab"
Output:
[0,1]
Constraints:
1 <= word2.length < word1.length <= 3 * 10
5
word1
and
word2
consist only of lowercase English letters.
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
Median of Two Sorted Arrays
|
Given two sorted arrays
nums1
and
nums2
of size
m
and
n
respectively, return
the median
of the two sorted arrays.
The overall run time complexity should be
O(log (m+n))
.
Example 1:
Input:
nums1 = [1,3], nums2 = [2]
Output:
2.00000
Explanation:
merged array = [1,2,3] and median is 2.
Example 2:
Input:
nums1 = [1,2], nums2 = [3,4]
Output:
2.50000
Explanation:
merged array = [1,2,3,4] and median is (2 + 3) / 2 = 2.5.
Constraints:
nums1.length == m
nums2.length == n
0 <= m <= 1000
0 <= n <= 1000
1 <= m + n <= 2000
-10
6
<= nums1[i], nums2[i] <= 10
6
|
int findKth(int* nums1, int m, int i, int* nums2, int n, int j, int k) {
if (i >= m)
return nums2[j + k - 1];
if (j >= n)
return nums1[i + k - 1];
if (k == 1)
return nums1[i] < nums2[j] ? nums1[i] : nums2[j];
int p = k / 2;
int x = (i + p - 1 < m) ? nums1[i + p - 1] : INT_MAX;
int y = (j + p - 1 < n) ? nums2[j + p - 1] : INT_MAX;
if (x < y)
return findKth(nums1, m, i + p, nums2, n, j, k - p);
else
return findKth(nums1, m, i, nums2, n, j + p, k - p);
}
double findMedianSortedArrays(int* nums1, int m, int* nums2, int n) {
int total = m + n;
int a = findKth(nums1, m, 0, nums2, n, 0, (total + 1) / 2);
int b = findKth(nums1, m, 0, nums2, n, 0, (total + 2) / 2);
return (a + b) / 2.0;
}
|
public class Solution {
private int m;
private int n;
private int[] nums1;
private int[] nums2;
public double FindMedianSortedArrays(int[] nums1, int[] nums2) {
m = nums1.Length;
n = nums2.Length;
this.nums1 = nums1;
this.nums2 = nums2;
int a = f(0, 0, (m + n + 1) / 2);
int b = f(0, 0, (m + n + 2) / 2);
return (a + b) / 2.0;
}
private int f(int i, int j, int k) {
if (i >= m) {
return nums2[j + k - 1];
}
if (j >= n) {
return nums1[i + k - 1];
}
if (k == 1) {
return Math.Min(nums1[i], nums2[j]);
}
int p = k / 2;
int x = i + p - 1 < m ? nums1[i + p - 1] : 1 << 30;
int y = j + p - 1 < n ? nums2[j + p - 1] : 1 << 30;
return x < y ? f(i + p, j, k - p) : f(i, j + p, k - p);
}
}
|
class Solution {
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
int m = nums1.size(), n = nums2.size();
function<int(int, int, int)> f = [&](int i, int j, int k) {
if (i >= m) {
return nums2[j + k - 1];
}
if (j >= n) {
return nums1[i + k - 1];
}
if (k == 1) {
return min(nums1[i], nums2[j]);
}
int p = k / 2;
int x = i + p - 1 < m ? nums1[i + p - 1] : 1 << 30;
int y = j + p - 1 < n ? nums2[j + p - 1] : 1 << 30;
return x < y ? f(i + p, j, k - p) : f(i, j + p, k - p);
};
int a = f(0, 0, (m + n + 1) / 2);
int b = f(0, 0, (m + n + 2) / 2);
return (a + b) / 2.0;
}
};
| null | null |
func findMedianSortedArrays(nums1 []int, nums2 []int) float64 {
m, n := len(nums1), len(nums2)
var f func(i, j, k int) int
f = func(i, j, k int) int {
if i >= m {
return nums2[j+k-1]
}
if j >= n {
return nums1[i+k-1]
}
if k == 1 {
return min(nums1[i], nums2[j])
}
p := k / 2
x, y := 1<<30, 1<<30
if ni := i + p - 1; ni < m {
x = nums1[ni]
}
if nj := j + p - 1; nj < n {
y = nums2[nj]
}
if x < y {
return f(i+p, j, k-p)
}
return f(i, j+p, k-p)
}
a, b := f(0, 0, (m+n+1)/2), f(0, 0, (m+n+2)/2)
return float64(a+b) / 2.0
}
|
class Solution {
private int m;
private int n;
private int[] nums1;
private int[] nums2;
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
m = nums1.length;
n = nums2.length;
this.nums1 = nums1;
this.nums2 = nums2;
int a = f(0, 0, (m + n + 1) / 2);
int b = f(0, 0, (m + n + 2) / 2);
return (a + b) / 2.0;
}
private int f(int i, int j, int k) {
if (i >= m) {
return nums2[j + k - 1];
}
if (j >= n) {
return nums1[i + k - 1];
}
if (k == 1) {
return Math.min(nums1[i], nums2[j]);
}
int p = k / 2;
int x = i + p - 1 < m ? nums1[i + p - 1] : 1 << 30;
int y = j + p - 1 < n ? nums2[j + p - 1] : 1 << 30;
return x < y ? f(i + p, j, k - p) : f(i, j + p, k - p);
}
}
|
/**
* @param {number[]} nums1
* @param {number[]} nums2
* @return {number}
*/
var findMedianSortedArrays = function (nums1, nums2) {
const m = nums1.length;
const n = nums2.length;
const f = (i, j, k) => {
if (i >= m) {
return nums2[j + k - 1];
}
if (j >= n) {
return nums1[i + k - 1];
}
if (k == 1) {
return Math.min(nums1[i], nums2[j]);
}
const p = Math.floor(k / 2);
const x = i + p - 1 < m ? nums1[i + p - 1] : 1 << 30;
const y = j + p - 1 < n ? nums2[j + p - 1] : 1 << 30;
return x < y ? f(i + p, j, k - p) : f(i, j + p, k - p);
};
const a = f(0, 0, Math.floor((m + n + 1) / 2));
const b = f(0, 0, Math.floor((m + n + 2) / 2));
return (a + b) / 2;
};
| null | null |
import std/[algorithm, sequtils]
proc medianOfTwoSortedArrays(nums1: seq[int], nums2: seq[int]): float =
var
fullList: seq[int] = concat(nums1, nums2)
value: int = fullList.len div 2
fullList.sort()
if fullList.len mod 2 == 0:
result = (fullList[value - 1] + fullList[value]) / 2
else:
result = fullList[value].toFloat()
# Driver Code
# var
# arrA: seq[int] = @[1, 2]
# arrB: seq[int] = @[3, 4, 5]
# echo medianOfTwoSortedArrays(arrA, arrB)
|
class Solution {
/**
* @param int[] $nums1
* @param int[] $nums2
* @return float
*/
function findMedianSortedArrays($nums1, $nums2) {
$arr = array_merge($nums1, $nums2);
sort($arr);
$cnt_arr = count($arr);
if ($cnt_arr % 2) {
return $arr[$cnt_arr / 2];
} else {
return ($arr[intdiv($cnt_arr, 2) - 1] + $arr[intdiv($cnt_arr, 2)]) / 2;
}
}
}
| null |
class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
def f(i: int, j: int, k: int) -> int:
if i >= m:
return nums2[j + k - 1]
if j >= n:
return nums1[i + k - 1]
if k == 1:
return min(nums1[i], nums2[j])
p = k // 2
x = nums1[i + p - 1] if i + p - 1 < m else inf
y = nums2[j + p - 1] if j + p - 1 < n else inf
return f(i + p, j, k - p) if x < y else f(i, j + p, k - p)
m, n = len(nums1), len(nums2)
a = f(0, 0, (m + n + 1) // 2)
b = f(0, 0, (m + n + 2) // 2)
return (a + b) / 2
| null | null | null | null | null |
function findMedianSortedArrays(nums1: number[], nums2: number[]): number {
const m = nums1.length;
const n = nums2.length;
const f = (i: number, j: number, k: number): number => {
if (i >= m) {
return nums2[j + k - 1];
}
if (j >= n) {
return nums1[i + k - 1];
}
if (k == 1) {
return Math.min(nums1[i], nums2[j]);
}
const p = Math.floor(k / 2);
const x = i + p - 1 < m ? nums1[i + p - 1] : 1 << 30;
const y = j + p - 1 < n ? nums2[j + p - 1] : 1 << 30;
return x < y ? f(i + p, j, k - p) : f(i, j + p, k - p);
};
const a = f(0, 0, Math.floor((m + n + 1) / 2));
const b = f(0, 0, Math.floor((m + n + 2) / 2));
return (a + b) / 2;
}
|
Largest Element in an Array after Merge Operations
|
You are given a
0-indexed
array
nums
consisting of positive integers.
You can do the following operation on the array
any
number of times:
Choose an integer
i
such that
0 <= i < nums.length - 1
and
nums[i] <= nums[i + 1]
. Replace the element
nums[i + 1]
with
nums[i] + nums[i + 1]
and delete the element
nums[i]
from the array.
Return
the value of the
largest
element that you can possibly obtain in the final array.
Example 1:
Input:
nums = [2,3,7,9,3]
Output:
21
Explanation:
We can apply the following operations on the array:
- Choose i = 0. The resulting array will be nums = [
5
,7,9,3].
- Choose i = 1. The resulting array will be nums = [5,
16
,3].
- Choose i = 0. The resulting array will be nums = [
21
,3].
The largest element in the final array is 21. It can be shown that we cannot obtain a larger element.
Example 2:
Input:
nums = [5,3,3]
Output:
11
Explanation:
We can do the following operations on the array:
- Choose i = 1. The resulting array will be nums = [5,
6
].
- Choose i = 0. The resulting array will be nums = [
11
].
There is only one element in the final array, which is 11.
Constraints:
1 <= nums.length <= 10
5
1 <= nums[i] <= 10
6
| null | null |
class Solution {
public:
long long maxArrayValue(vector<int>& nums) {
int n = nums.size();
long long ans = nums[n - 1], t = nums[n - 1];
for (int i = n - 2; ~i; --i) {
if (nums[i] <= t) {
t += nums[i];
} else {
t = nums[i];
}
ans = max(ans, t);
}
return ans;
}
};
| null | null |
func maxArrayValue(nums []int) int64 {
n := len(nums)
ans, t := nums[n-1], nums[n-1]
for i := n - 2; i >= 0; i-- {
if nums[i] <= t {
t += nums[i]
} else {
t = nums[i]
}
ans = max(ans, t)
}
return int64(ans)
}
|
class Solution {
public long maxArrayValue(int[] nums) {
int n = nums.length;
long ans = nums[n - 1], t = nums[n - 1];
for (int i = n - 2; i >= 0; --i) {
if (nums[i] <= t) {
t += nums[i];
} else {
t = nums[i];
}
ans = Math.max(ans, t);
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def maxArrayValue(self, nums: List[int]) -> int:
for i in range(len(nums) - 2, -1, -1):
if nums[i] <= nums[i + 1]:
nums[i] += nums[i + 1]
return max(nums)
| null | null | null | null | null |
function maxArrayValue(nums: number[]): number {
for (let i = nums.length - 2; i >= 0; --i) {
if (nums[i] <= nums[i + 1]) {
nums[i] += nums[i + 1];
}
}
return Math.max(...nums);
}
|
Lonely Pixel I 🔒
|
Given an
m x n
picture
consisting of black
'B'
and white
'W'
pixels, return
the number of
black
lonely pixels
.
A black lonely pixel is a character
'B'
that located at a specific position where the same row and same column don't have
any other
black pixels.
Example 1:
Input:
picture = [["W","W","B"],["W","B","W"],["B","W","W"]]
Output:
3
Explanation:
All the three 'B's are black lonely pixels.
Example 2:
Input:
picture = [["B","B","B"],["B","B","W"],["B","B","B"]]
Output:
0
Constraints:
m == picture.length
n == picture[i].length
1 <= m, n <= 500
picture[i][j]
is
'W'
or
'B'
.
| null | null |
class Solution {
public:
int findLonelyPixel(vector<vector<char>>& picture) {
int m = picture.size(), n = picture[0].size();
vector<int> rows(m);
vector<int> cols(n);
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (picture[i][j] == 'B') {
++rows[i];
++cols[j];
}
}
}
int ans = 0;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (picture[i][j] == 'B' && rows[i] == 1 && cols[j] == 1) {
++ans;
}
}
}
return ans;
}
};
| null | null |
func findLonelyPixel(picture [][]byte) (ans int) {
rows := make([]int, len(picture))
cols := make([]int, len(picture[0]))
for i, row := range picture {
for j, x := range row {
if x == 'B' {
rows[i]++
cols[j]++
}
}
}
for i, row := range picture {
for j, x := range row {
if x == 'B' && rows[i] == 1 && cols[j] == 1 {
ans++
}
}
}
return
}
|
class Solution {
public int findLonelyPixel(char[][] picture) {
int m = picture.length, n = picture[0].length;
int[] rows = new int[m];
int[] cols = new int[n];
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (picture[i][j] == 'B') {
++rows[i];
++cols[j];
}
}
}
int ans = 0;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (picture[i][j] == 'B' && rows[i] == 1 && cols[j] == 1) {
++ans;
}
}
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def findLonelyPixel(self, picture: List[List[str]]) -> int:
rows = [0] * len(picture)
cols = [0] * len(picture[0])
for i, row in enumerate(picture):
for j, x in enumerate(row):
if x == "B":
rows[i] += 1
cols[j] += 1
ans = 0
for i, row in enumerate(picture):
for j, x in enumerate(row):
if x == "B" and rows[i] == 1 and cols[j] == 1:
ans += 1
return ans
| null | null | null | null | null |
function findLonelyPixel(picture: string[][]): number {
const m = picture.length;
const n = picture[0].length;
const rows: number[] = Array(m).fill(0);
const cols: number[] = Array(n).fill(0);
for (let i = 0; i < m; ++i) {
for (let j = 0; j < n; ++j) {
if (picture[i][j] === 'B') {
++rows[i];
++cols[j];
}
}
}
let ans = 0;
for (let i = 0; i < m; ++i) {
for (let j = 0; j < n; ++j) {
if (picture[i][j] === 'B' && rows[i] === 1 && cols[j] === 1) {
++ans;
}
}
}
return ans;
}
|
Count the Number of Good Nodes
|
There is an
undirected
tree with
n
nodes labeled from
0
to
n - 1
, and rooted at node
0
. You are given a 2D integer array
edges
of length
n - 1
, where
edges[i] = [a
i
, b
i
]
indicates that there is an edge between nodes
a
i
and
b
i
in the tree.
A node is
good
if all the
subtrees
rooted at its children have the same size.
Return the number of
good
nodes in the given tree.
A
subtree
of
treeName
is a tree consisting of a node in
treeName
and all of its descendants.
Example 1:
Input:
edges = [[0,1],[0,2],[1,3],[1,4],[2,5],[2,6]]
Output:
7
Explanation:
All of the nodes of the given tree are good.
Example 2:
Input:
edges = [[0,1],[1,2],[2,3],[3,4],[0,5],[1,6],[2,7],[3,8]]
Output:
6
Explanation:
There are 6 good nodes in the given tree. They are colored in the image above.
Example 3:
Input:
edges = [[0,1],[1,2],[1,3],[1,4],[0,5],[5,6],[6,7],[7,8],[0,9],[9,10],[9,12],[10,11]]
Output:
12
Explanation:
All nodes except node 9 are good.
Constraints:
2 <= n <= 10
5
edges.length == n - 1
edges[i].length == 2
0 <= a
i
, b
i
< n
The input is generated such that
edges
represents a valid tree.
| null | null |
class Solution {
public:
int countGoodNodes(vector<vector<int>>& edges) {
int n = edges.size() + 1;
vector<int> g[n];
for (const auto& e : edges) {
int a = e[0], b = e[1];
g[a].push_back(b);
g[b].push_back(a);
}
int ans = 0;
auto dfs = [&](this auto&& dfs, int a, int fa) -> int {
int pre = -1, cnt = 1, ok = 1;
for (int b : g[a]) {
if (b != fa) {
int cur = dfs(b, a);
cnt += cur;
if (pre < 0) {
pre = cur;
} else if (pre != cur) {
ok = 0;
}
}
}
ans += ok;
return cnt;
};
dfs(0, -1);
return ans;
}
};
| null | null |
func countGoodNodes(edges [][]int) (ans int) {
n := len(edges) + 1
g := make([][]int, n)
for _, e := range edges {
a, b := e[0], e[1]
g[a] = append(g[a], b)
g[b] = append(g[b], a)
}
var dfs func(int, int) int
dfs = func(a, fa int) int {
pre, cnt, ok := -1, 1, 1
for _, b := range g[a] {
if b != fa {
cur := dfs(b, a)
cnt += cur
if pre < 0 {
pre = cur
} else if pre != cur {
ok = 0
}
}
}
ans += ok
return cnt
}
dfs(0, -1)
return
}
|
class Solution {
private int ans;
private List<Integer>[] g;
public int countGoodNodes(int[][] edges) {
int n = edges.length + 1;
g = new List[n];
Arrays.setAll(g, k -> new ArrayList<>());
for (var e : edges) {
int a = e[0], b = e[1];
g[a].add(b);
g[b].add(a);
}
dfs(0, -1);
return ans;
}
private int dfs(int a, int fa) {
int pre = -1, cnt = 1, ok = 1;
for (int b : g[a]) {
if (b != fa) {
int cur = dfs(b, a);
cnt += cur;
if (pre < 0) {
pre = cur;
} else if (pre != cur) {
ok = 0;
}
}
}
ans += ok;
return cnt;
}
}
| null | null | null | null | null | null |
class Solution:
def countGoodNodes(self, edges: List[List[int]]) -> int:
def dfs(a: int, fa: int) -> int:
pre = -1
cnt = ok = 1
for b in g[a]:
if b != fa:
cur = dfs(b, a)
cnt += cur
if pre < 0:
pre = cur
elif pre != cur:
ok = 0
nonlocal ans
ans += ok
return cnt
g = defaultdict(list)
for a, b in edges:
g[a].append(b)
g[b].append(a)
ans = 0
dfs(0, -1)
return ans
| null | null | null | null | null |
function countGoodNodes(edges: number[][]): number {
const n = edges.length + 1;
const g: number[][] = Array.from({ length: n }, () => []);
for (const [a, b] of edges) {
g[a].push(b);
g[b].push(a);
}
let ans = 0;
const dfs = (a: number, fa: number): number => {
let [pre, cnt, ok] = [-1, 1, 1];
for (const b of g[a]) {
if (b !== fa) {
const cur = dfs(b, a);
cnt += cur;
if (pre < 0) {
pre = cur;
} else if (pre !== cur) {
ok = 0;
}
}
}
ans += ok;
return cnt;
};
dfs(0, -1);
return ans;
}
|
Count Elements With Maximum Frequency
|
You are given an array
nums
consisting of
positive
integers.
Return
the
total frequencies
of elements in
nums
such that those elements all have the
maximum
frequency
.
The
frequency
of an element is the number of occurrences of that element in the array.
Example 1:
Input:
nums = [1,2,2,3,1,4]
Output:
4
Explanation:
The elements 1 and 2 have a frequency of 2 which is the maximum frequency in the array.
So the number of elements in the array with maximum frequency is 4.
Example 2:
Input:
nums = [1,2,3,4,5]
Output:
5
Explanation:
All elements of the array have a frequency of 1 which is the maximum.
So the number of elements in the array with maximum frequency is 5.
Constraints:
1 <= nums.length <= 100
1 <= nums[i] <= 100
| null | null |
class Solution {
public:
int maxFrequencyElements(vector<int>& nums) {
int cnt[101]{};
for (int x : nums) {
++cnt[x];
}
int ans = 0, mx = -1;
for (int x : cnt) {
if (mx < x) {
mx = x;
ans = x;
} else if (mx == x) {
ans += x;
}
}
return ans;
}
};
| null | null |
func maxFrequencyElements(nums []int) (ans int) {
cnt := [101]int{}
for _, x := range nums {
cnt[x]++
}
mx := -1
for _, x := range cnt {
if mx < x {
mx, ans = x, x
} else if mx == x {
ans += x
}
}
return
}
|
class Solution {
public int maxFrequencyElements(int[] nums) {
int[] cnt = new int[101];
for (int x : nums) {
++cnt[x];
}
int ans = 0, mx = -1;
for (int x : cnt) {
if (mx < x) {
mx = x;
ans = x;
} else if (mx == x) {
ans += x;
}
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def maxFrequencyElements(self, nums: List[int]) -> int:
cnt = Counter(nums)
mx = max(cnt.values())
return sum(x for x in cnt.values() if x == mx)
| null | null | null | null | null |
function maxFrequencyElements(nums: number[]): number {
const cnt: number[] = Array(101).fill(0);
for (const x of nums) {
++cnt[x];
}
let [ans, mx] = [0, -1];
for (const x of cnt) {
if (mx < x) {
mx = x;
ans = x;
} else if (mx === x) {
ans += x;
}
}
return ans;
}
|
Maximum Sum of an Hourglass
|
You are given an
m x n
integer matrix
grid
.
We define an
hourglass
as a part of the matrix with the following form:
Return
the
maximum
sum of the elements of an hourglass
.
Note
that an hourglass cannot be rotated and must be entirely contained within the matrix.
Example 1:
Input:
grid = [[6,2,1,3],[4,2,1,5],[9,2,8,7],[4,1,2,9]]
Output:
30
Explanation:
The cells shown above represent the hourglass with the maximum sum: 6 + 2 + 1 + 2 + 9 + 2 + 8 = 30.
Example 2:
Input:
grid = [[1,2,3],[4,5,6],[7,8,9]]
Output:
35
Explanation:
There is only one hourglass in the matrix, with the sum: 1 + 2 + 3 + 5 + 7 + 8 + 9 = 35.
Constraints:
m == grid.length
n == grid[i].length
3 <= m, n <= 150
0 <= grid[i][j] <= 10
6
| null | null |
class Solution {
public:
int maxSum(vector<vector<int>>& grid) {
int m = grid.size(), n = grid[0].size();
int ans = 0;
for (int i = 1; i < m - 1; ++i) {
for (int j = 1; j < n - 1; ++j) {
int s = -grid[i][j - 1] - grid[i][j + 1];
for (int x = i - 1; x <= i + 1; ++x) {
for (int y = j - 1; y <= j + 1; ++y) {
s += grid[x][y];
}
}
ans = max(ans, s);
}
}
return ans;
}
};
| null | null |
func maxSum(grid [][]int) (ans int) {
m, n := len(grid), len(grid[0])
for i := 1; i < m-1; i++ {
for j := 1; j < n-1; j++ {
s := -grid[i][j-1] - grid[i][j+1]
for x := i - 1; x <= i+1; x++ {
for y := j - 1; y <= j+1; y++ {
s += grid[x][y]
}
}
ans = max(ans, s)
}
}
return
}
|
class Solution {
public int maxSum(int[][] grid) {
int m = grid.length, n = grid[0].length;
int ans = 0;
for (int i = 1; i < m - 1; ++i) {
for (int j = 1; j < n - 1; ++j) {
int s = -grid[i][j - 1] - grid[i][j + 1];
for (int x = i - 1; x <= i + 1; ++x) {
for (int y = j - 1; y <= j + 1; ++y) {
s += grid[x][y];
}
}
ans = Math.max(ans, s);
}
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def maxSum(self, grid: List[List[int]]) -> int:
m, n = len(grid), len(grid[0])
ans = 0
for i in range(1, m - 1):
for j in range(1, n - 1):
s = -grid[i][j - 1] - grid[i][j + 1]
s += sum(
grid[x][y] for x in range(i - 1, i + 2) for y in range(j - 1, j + 2)
)
ans = max(ans, s)
return ans
| null | null | null | null | null |
function maxSum(grid: number[][]): number {
const m = grid.length;
const n = grid[0].length;
let ans = 0;
for (let i = 1; i < m - 1; ++i) {
for (let j = 1; j < n - 1; ++j) {
let s = -grid[i][j - 1] - grid[i][j + 1];
for (let x = i - 1; x <= i + 1; ++x) {
for (let y = j - 1; y <= j + 1; ++y) {
s += grid[x][y];
}
}
ans = Math.max(ans, s);
}
}
return ans;
}
|
Winning Candidate 🔒
|
Table:
Candidate
+-------------+----------+
| Column Name | Type |
+-------------+----------+
| id | int |
| name | varchar |
+-------------+----------+
id is the column with unique values for this table.
Each row of this table contains information about the id and the name of a candidate.
Table:
Vote
+-------------+------+
| Column Name | Type |
+-------------+------+
| id | int |
| candidateId | int |
+-------------+------+
id is an auto-increment primary key (column with unique values).
candidateId is a foreign key (reference column) to id from the Candidate table.
Each row of this table determines the candidate who got the i
th
vote in the elections.
Write a solution to report the name of the winning candidate (i.e., the candidate who got the largest number of votes).
The test cases are generated so that
exactly one candidate wins
the elections.
The result format is in the following example.
Example 1:
Input:
Candidate table:
+----+------+
| id | name |
+----+------+
| 1 | A |
| 2 | B |
| 3 | C |
| 4 | D |
| 5 | E |
+----+------+
Vote table:
+----+-------------+
| id | candidateId |
+----+-------------+
| 1 | 2 |
| 2 | 4 |
| 3 | 3 |
| 4 | 2 |
| 5 | 5 |
+----+-------------+
Output:
+------+
| name |
+------+
| B |
+------+
Explanation:
Candidate B has 2 votes. Candidates C, D, and E have 1 vote each.
The winner is candidate B.
| null | null | null | null | null | null | null | null | null |
# Write your MySQL query statement below
SELECT name
FROM
Candidate AS c
LEFT JOIN Vote AS v ON c.id = v.candidateId
GROUP BY c.id
ORDER BY COUNT(1) DESC
LIMIT 1;
| null | null | null | null | null | null | null | null | null | null |
Find Consistently Improving Employees
|
Table:
employees
+-------------+---------+
| Column Name | Type |
+-------------+---------+
| employee_id | int |
| name | varchar |
+-------------+---------+
employee_id is the unique identifier for this table.
Each row contains information about an employee.
Table:
performance_reviews
+-------------+------+
| Column Name | Type |
+-------------+------+
| review_id | int |
| employee_id | int |
| review_date | date |
| rating | int |
+-------------+------+
review_id is the unique identifier for this table.
Each row represents a performance review for an employee. The rating is on a scale of 1-5 where 5 is excellent and 1 is poor.
Write a solution to find employees who have consistently improved their performance over
their last three reviews
.
An employee must have
at least
3
review
to be considered
The employee's
last
3
reviews
must show
strictly increasing ratings
(each review better than the previous)
Use the most recent
3
reviews based on
review_date
for each employee
Calculate the
improvement score
as the difference between the latest rating and the earliest rating among the last
3
reviews
Return
the result table ordered by
improvement score
in
descending
order, then by
name
in
ascending
order
.
The result format is in the following example.
Example:
Input:
employees table:
+-------------+----------------+
| employee_id | name |
+-------------+----------------+
| 1 | Alice Johnson |
| 2 | Bob Smith |
| 3 | Carol Davis |
| 4 | David Wilson |
| 5 | Emma Brown |
+-------------+----------------+
performance_reviews table:
+-----------+-------------+-------------+--------+
| review_id | employee_id | review_date | rating |
+-----------+-------------+-------------+--------+
| 1 | 1 | 2023-01-15 | 2 |
| 2 | 1 | 2023-04-15 | 3 |
| 3 | 1 | 2023-07-15 | 4 |
| 4 | 1 | 2023-10-15 | 5 |
| 5 | 2 | 2023-02-01 | 3 |
| 6 | 2 | 2023-05-01 | 2 |
| 7 | 2 | 2023-08-01 | 4 |
| 8 | 2 | 2023-11-01 | 5 |
| 9 | 3 | 2023-03-10 | 1 |
| 10 | 3 | 2023-06-10 | 2 |
| 11 | 3 | 2023-09-10 | 3 |
| 12 | 3 | 2023-12-10 | 4 |
| 13 | 4 | 2023-01-20 | 4 |
| 14 | 4 | 2023-04-20 | 4 |
| 15 | 4 | 2023-07-20 | 4 |
| 16 | 5 | 2023-02-15 | 3 |
| 17 | 5 | 2023-05-15 | 2 |
+-----------+-------------+-------------+--------+
Output:
+-------------+----------------+-------------------+
| employee_id | name | improvement_score |
+-------------+----------------+-------------------+
| 2 | Bob Smith | 3 |
| 1 | Alice Johnson | 2 |
| 3 | Carol Davis | 2 |
+-------------+----------------+-------------------+
Explanation:
Alice Johnson (employee_id = 1):
Has 4 reviews with ratings: 2, 3, 4, 5
Last 3 reviews (by date): 2023-04-15 (3), 2023-07-15 (4), 2023-10-15 (5)
Ratings are strictly increasing: 3 → 4 → 5
Improvement score: 5 - 3 = 2
Carol Davis (employee_id = 3):
Has 4 reviews with ratings: 1, 2, 3, 4
Last 3 reviews (by date): 2023-06-10 (2), 2023-09-10 (3), 2023-12-10 (4)
Ratings are strictly increasing: 2 → 3 → 4
Improvement score: 4 - 2 = 2
Bob Smith (employee_id = 2):
Has 4 reviews with ratings: 3, 2, 4, 5
Last 3 reviews (by date): 2023-05-01 (2), 2023-08-01 (4), 2023-11-01 (5)
Ratings are strictly increasing: 2 → 4 → 5
Improvement score: 5 - 2 = 3
Employees not included:
David Wilson (employee_id = 4): Last 3 reviews are all 4 (no improvement)
Emma Brown (employee_id = 5): Only has 2 reviews (needs at least 3)
The output table is ordered by improvement_score in descending order, then by name in ascending order.
| null | null | null | null | null | null | null | null | null |
WITH
recent AS (
SELECT
employee_id,
review_date,
ROW_NUMBER() OVER (
PARTITION BY employee_id
ORDER BY review_date DESC
) AS rn,
(
LAG(rating) OVER (
PARTITION BY employee_id
ORDER BY review_date DESC
) - rating
) AS delta
FROM performance_reviews
)
SELECT
employee_id,
name,
SUM(delta) AS improvement_score
FROM
recent
JOIN employees USING (employee_id)
WHERE rn > 1 AND rn <= 3
GROUP BY 1
HAVING COUNT(*) = 2 AND MIN(delta) > 0
ORDER BY 3 DESC, 2;
| null | null |
import pandas as pd
def find_consistently_improving_employees(
employees: pd.DataFrame, performance_reviews: pd.DataFrame
) -> pd.DataFrame:
performance_reviews = performance_reviews.sort_values(
["employee_id", "review_date"], ascending=[True, False]
)
performance_reviews["rn"] = (
performance_reviews.groupby("employee_id").cumcount() + 1
)
performance_reviews["lag_rating"] = performance_reviews.groupby("employee_id")[
"rating"
].shift(1)
performance_reviews["delta"] = (
performance_reviews["lag_rating"] - performance_reviews["rating"]
)
recent = performance_reviews[
(performance_reviews["rn"] > 1) & (performance_reviews["rn"] <= 3)
]
improvement = (
recent.groupby("employee_id")
.agg(
improvement_score=("delta", "sum"),
count=("delta", "count"),
min_delta=("delta", "min"),
)
.reset_index()
)
improvement = improvement[
(improvement["count"] == 2) & (improvement["min_delta"] > 0)
]
result = improvement.merge(employees[["employee_id", "name"]], on="employee_id")
result = result.sort_values(
by=["improvement_score", "name"], ascending=[False, True]
)
return result[["employee_id", "name", "improvement_score"]]
| null | null | null | null | null | null | null |
Find Median from Data Stream
|
The
median
is the middle value in an ordered integer list. If the size of the list is even, there is no middle value, and the median is the mean of the two middle values.
For example, for
arr = [2,3,4]
, the median is
3
.
For example, for
arr = [2,3]
, the median is
(2 + 3) / 2 = 2.5
.
Implement the MedianFinder class:
MedianFinder()
initializes the
MedianFinder
object.
void addNum(int num)
adds the integer
num
from the data stream to the data structure.
double findMedian()
returns the median of all elements so far. Answers within
10
-5
of the actual answer will be accepted.
Example 1:
Input
["MedianFinder", "addNum", "addNum", "findMedian", "addNum", "findMedian"]
[[], [1], [2], [], [3], []]
Output
[null, null, null, 1.5, null, 2.0]
Explanation
MedianFinder medianFinder = new MedianFinder();
medianFinder.addNum(1); // arr = [1]
medianFinder.addNum(2); // arr = [1, 2]
medianFinder.findMedian(); // return 1.5 (i.e., (1 + 2) / 2)
medianFinder.addNum(3); // arr[1, 2, 3]
medianFinder.findMedian(); // return 2.0
Constraints:
-10
5
<= num <= 10
5
There will be at least one element in the data structure before calling
findMedian
.
At most
5 * 10
4
calls will be made to
addNum
and
findMedian
.
Follow up:
If all integer numbers from the stream are in the range
[0, 100]
, how would you optimize your solution?
If
99%
of all integer numbers from the stream are in the range
[0, 100]
, how would you optimize your solution?
| null |
public class MedianFinder {
private PriorityQueue<int, int> minQ = new PriorityQueue<int, int>();
private PriorityQueue<int, int> maxQ = new PriorityQueue<int, int>(Comparer<int>.Create((a, b) => b.CompareTo(a)));
public MedianFinder() {
}
public void AddNum(int num) {
maxQ.Enqueue(num, num);
minQ.Enqueue(maxQ.Peek(), maxQ.Dequeue());
if (minQ.Count > maxQ.Count + 1) {
maxQ.Enqueue(minQ.Peek(), minQ.Dequeue());
}
}
public double FindMedian() {
return minQ.Count == maxQ.Count ? (minQ.Peek() + maxQ.Peek()) / 2.0 : minQ.Peek();
}
}
/**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.AddNum(num);
* double param_2 = obj.FindMedian();
*/
|
class MedianFinder {
public:
MedianFinder() {
}
void addNum(int num) {
maxQ.push(num);
minQ.push(maxQ.top());
maxQ.pop();
if (minQ.size() > maxQ.size() + 1) {
maxQ.push(minQ.top());
minQ.pop();
}
}
double findMedian() {
return minQ.size() == maxQ.size() ? (minQ.top() + maxQ.top()) / 2.0 : minQ.top();
}
private:
priority_queue<int> maxQ;
priority_queue<int, vector<int>, greater<int>> minQ;
};
/**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder* obj = new MedianFinder();
* obj->addNum(num);
* double param_2 = obj->findMedian();
*/
| null | null |
type MedianFinder struct {
minq hp
maxq hp
}
func Constructor() MedianFinder {
return MedianFinder{hp{}, hp{}}
}
func (this *MedianFinder) AddNum(num int) {
minq, maxq := &this.minq, &this.maxq
heap.Push(maxq, -num)
heap.Push(minq, -heap.Pop(maxq).(int))
if minq.Len()-maxq.Len() > 1 {
heap.Push(maxq, -heap.Pop(minq).(int))
}
}
func (this *MedianFinder) FindMedian() float64 {
minq, maxq := this.minq, this.maxq
if minq.Len() == maxq.Len() {
return float64(minq.IntSlice[0]-maxq.IntSlice[0]) / 2
}
return float64(minq.IntSlice[0])
}
type hp struct{ sort.IntSlice }
func (h hp) Less(i, j int) bool { return h.IntSlice[i] < h.IntSlice[j] }
func (h *hp) Push(v any) { h.IntSlice = append(h.IntSlice, v.(int)) }
func (h *hp) Pop() any {
a := h.IntSlice
v := a[len(a)-1]
h.IntSlice = a[:len(a)-1]
return v
}
/**
* Your MedianFinder object will be instantiated and called as such:
* obj := Constructor();
* obj.AddNum(num);
* param_2 := obj.FindMedian();
*/
|
class MedianFinder {
private PriorityQueue<Integer> minQ = new PriorityQueue<>();
private PriorityQueue<Integer> maxQ = new PriorityQueue<>(Collections.reverseOrder());
public MedianFinder() {
}
public void addNum(int num) {
maxQ.offer(num);
minQ.offer(maxQ.poll());
if (minQ.size() - maxQ.size() > 1) {
maxQ.offer(minQ.poll());
}
}
public double findMedian() {
return minQ.size() == maxQ.size() ? (minQ.peek() + maxQ.peek()) / 2.0 : minQ.peek();
}
}
/**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/
|
var MedianFinder = function () {
this.minQ = new MinPriorityQueue();
this.maxQ = new MaxPriorityQueue();
};
/**
* @param {number} num
* @return {void}
*/
MedianFinder.prototype.addNum = function (num) {
this.maxQ.enqueue(num);
this.minQ.enqueue(this.maxQ.dequeue().element);
if (this.minQ.size() - this.maxQ.size() > 1) {
this.maxQ.enqueue(this.minQ.dequeue().element);
}
};
/**
* @return {number}
*/
MedianFinder.prototype.findMedian = function () {
if (this.minQ.size() === this.maxQ.size()) {
return (this.minQ.front().element + this.maxQ.front().element) / 2;
}
return this.minQ.front().element;
};
/**
* Your MedianFinder object will be instantiated and called as such:
* var obj = new MedianFinder()
* obj.addNum(num)
* var param_2 = obj.findMedian()
*/
| null | null | null | null | null |
class MedianFinder:
def __init__(self):
self.minq = []
self.maxq = []
def addNum(self, num: int) -> None:
heappush(self.minq, -heappushpop(self.maxq, -num))
if len(self.minq) - len(self.maxq) > 1:
heappush(self.maxq, -heappop(self.minq))
def findMedian(self) -> float:
if len(self.minq) == len(self.maxq):
return (self.minq[0] - self.maxq[0]) / 2
return self.minq[0]
# Your MedianFinder object will be instantiated and called as such:
# obj = MedianFinder()
# obj.addNum(num)
# param_2 = obj.findMedian()
| null |
use std::cmp::Reverse;
use std::collections::BinaryHeap;
struct MedianFinder {
minQ: BinaryHeap<Reverse<i32>>,
maxQ: BinaryHeap<i32>,
}
impl MedianFinder {
fn new() -> Self {
MedianFinder {
minQ: BinaryHeap::new(),
maxQ: BinaryHeap::new(),
}
}
fn add_num(&mut self, num: i32) {
self.maxQ.push(num);
self.minQ.push(Reverse(self.maxQ.pop().unwrap()));
if self.minQ.len() > self.maxQ.len() + 1 {
self.maxQ.push(self.minQ.pop().unwrap().0);
}
}
fn find_median(&self) -> f64 {
if self.minQ.len() == self.maxQ.len() {
let min_top = self.minQ.peek().unwrap().0;
let max_top = *self.maxQ.peek().unwrap();
(min_top + max_top) as f64 / 2.0
} else {
self.minQ.peek().unwrap().0 as f64
}
}
}
| null | null |
class MedianFinder {
private var minQ = Heap<Int>(sort: <)
private var maxQ = Heap<Int>(sort: >)
init() {
}
func addNum(_ num: Int) {
maxQ.insert(num)
minQ.insert(maxQ.remove()!)
if maxQ.count < minQ.count {
maxQ.insert(minQ.remove()!)
}
}
func findMedian() -> Double {
if maxQ.count > minQ.count {
return Double(maxQ.peek()!)
}
return (Double(maxQ.peek()!) + Double(minQ.peek()!)) / 2.0
}
}
struct Heap<T> {
var elements: [T]
let sort: (T, T) -> Bool
init(sort: @escaping (T, T) -> Bool, elements: [T] = []) {
self.sort = sort
self.elements = elements
if !elements.isEmpty {
for i in stride(from: elements.count / 2 - 1, through: 0, by: -1) {
siftDown(from: i)
}
}
}
var isEmpty: Bool {
return elements.isEmpty
}
var count: Int {
return elements.count
}
func peek() -> T? {
return elements.first
}
mutating func insert(_ value: T) {
elements.append(value)
siftUp(from: elements.count - 1)
}
mutating func remove() -> T? {
guard !elements.isEmpty else { return nil }
elements.swapAt(0, elements.count - 1)
let removedValue = elements.removeLast()
siftDown(from: 0)
return removedValue
}
private mutating func siftUp(from index: Int) {
var child = index
var parent = parentIndex(ofChildAt: child)
while child > 0 && sort(elements[child], elements[parent]) {
elements.swapAt(child, parent)
child = parent
parent = parentIndex(ofChildAt: child)
}
}
private mutating func siftDown(from index: Int) {
var parent = index
while true {
let left = leftChildIndex(ofParentAt: parent)
let right = rightChildIndex(ofParentAt: parent)
var candidate = parent
if left < count && sort(elements[left], elements[candidate]) {
candidate = left
}
if right < count && sort(elements[right], elements[candidate]) {
candidate = right
}
if candidate == parent {
return
}
elements.swapAt(parent, candidate)
parent = candidate
}
}
private func parentIndex(ofChildAt index: Int) -> Int {
return (index - 1) / 2
}
private func leftChildIndex(ofParentAt index: Int) -> Int {
return 2 * index + 1
}
private func rightChildIndex(ofParentAt index: Int) -> Int {
return 2 * index + 2
}
}
/**
* Your MedianFinder object will be instantiated and called as such:
* let obj = MedianFinder()
* obj.addNum(num)
* let ret_2: Double = obj.findMedian()
*/
|
class MedianFinder {
#minQ = new MinPriorityQueue();
#maxQ = new MaxPriorityQueue();
addNum(num: number): void {
const [minQ, maxQ] = [this.#minQ, this.#maxQ];
maxQ.enqueue(num);
minQ.enqueue(maxQ.dequeue().element);
if (minQ.size() - maxQ.size() > 1) {
maxQ.enqueue(minQ.dequeue().element);
}
}
findMedian(): number {
const [minQ, maxQ] = [this.#minQ, this.#maxQ];
if (minQ.size() === maxQ.size()) {
return (minQ.front().element + maxQ.front().element) / 2;
}
return minQ.front().element;
}
}
/**
* Your MedianFinder object will be instantiated and called as such:
* var obj = new MedianFinder()
* obj.addNum(num)
* var param_2 = obj.findMedian()
*/
|
Array With Elements Not Equal to Average of Neighbors
|
You are given a
0-indexed
array
nums
of
distinct
integers. You want to rearrange the elements in the array such that every element in the rearranged array is
not
equal to the
average
of its neighbors.
More formally, the rearranged array should have the property such that for every
i
in the range
1 <= i < nums.length - 1
,
(nums[i-1] + nums[i+1]) / 2
is
not
equal to
nums[i]
.
Return
any
rearrangement of
nums
that meets the requirements
.
Example 1:
Input:
nums = [1,2,3,4,5]
Output:
[1,2,4,5,3]
Explanation:
When i=1, nums[i] = 2, and the average of its neighbors is (1+4) / 2 = 2.5.
When i=2, nums[i] = 4, and the average of its neighbors is (2+5) / 2 = 3.5.
When i=3, nums[i] = 5, and the average of its neighbors is (4+3) / 2 = 3.5.
Example 2:
Input:
nums = [6,2,0,9,7]
Output:
[9,7,6,2,0]
Explanation:
When i=1, nums[i] = 7, and the average of its neighbors is (9+6) / 2 = 7.5.
When i=2, nums[i] = 6, and the average of its neighbors is (7+2) / 2 = 4.5.
When i=3, nums[i] = 2, and the average of its neighbors is (6+0) / 2 = 3.
Note that the original array [6,2,0,9,7] also satisfies the conditions.
Constraints:
3 <= nums.length <= 10
5
0 <= nums[i] <= 10
5
| null | null |
class Solution {
public:
vector<int> rearrangeArray(vector<int>& nums) {
ranges::sort(nums);
vector<int> ans;
int n = nums.size();
int m = (n + 1) >> 1;
for (int i = 0; i < m; ++i) {
ans.push_back(nums[i]);
if (i + m < n) {
ans.push_back(nums[i + m]);
}
}
return ans;
}
};
| null | null |
func rearrangeArray(nums []int) (ans []int) {
sort.Ints(nums)
n := len(nums)
m := (n + 1) >> 1
for i := 0; i < m; i++ {
ans = append(ans, nums[i])
if i+m < n {
ans = append(ans, nums[i+m])
}
}
return
}
|
class Solution {
public int[] rearrangeArray(int[] nums) {
Arrays.sort(nums);
int n = nums.length;
int m = (n + 1) >> 1;
int[] ans = new int[n];
for (int i = 0, j = 0; i < n; i += 2, j++) {
ans[i] = nums[j];
if (j + m < n) {
ans[i + 1] = nums[j + m];
}
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def rearrangeArray(self, nums: List[int]) -> List[int]:
nums.sort()
n = len(nums)
m = (n + 1) // 2
ans = []
for i in range(m):
ans.append(nums[i])
if i + m < n:
ans.append(nums[i + m])
return ans
| null | null | null | null | null |
function rearrangeArray(nums: number[]): number[] {
nums.sort((a, b) => a - b);
const n = nums.length;
const m = (n + 1) >> 1;
const ans: number[] = [];
for (let i = 0; i < m; i++) {
ans.push(nums[i]);
if (i + m < n) {
ans.push(nums[i + m]);
}
}
return ans;
}
|
Maximum Number of Coins You Can Get
|
There are
3n
piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose
any
3
piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with the maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers
piles
where
piles[i]
is the number of coins in the
i
th
pile.
Return the maximum number of coins that you can have.
Example 1:
Input:
piles = [2,4,1,2,7,8]
Output:
9
Explanation:
Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with
7
coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with
2
coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1,
2
, 8), (2,
4
, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input:
piles = [2,4,5]
Output:
4
Example 3:
Input:
piles = [9,8,7,6,5,1,2,3,4]
Output:
18
Constraints:
3 <= piles.length <= 10
5
piles.length % 3 == 0
1 <= piles[i] <= 10
4
|
int compare(const void* a, const void* b) {
return (*(int*) a - *(int*) b);
}
int maxCoins(int* piles, int pilesSize) {
qsort(piles, pilesSize, sizeof(int), compare);
int ans = 0;
for (int i = pilesSize / 3; i < pilesSize; i += 2) {
ans += piles[i];
}
return ans;
}
| null |
class Solution {
public:
int maxCoins(vector<int>& piles) {
ranges::sort(piles);
int ans = 0;
for (int i = piles.size() / 3; i < piles.size(); i += 2) {
ans += piles[i];
}
return ans;
}
};
| null | null |
func maxCoins(piles []int) (ans int) {
sort.Ints(piles)
for i := len(piles) / 3; i < len(piles); i += 2 {
ans += piles[i]
}
return
}
|
class Solution {
public int maxCoins(int[] piles) {
Arrays.sort(piles);
int ans = 0;
for (int i = piles.length / 3; i < piles.length; i += 2) {
ans += piles[i];
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def maxCoins(self, piles: List[int]) -> int:
piles.sort()
return sum(piles[len(piles) // 3 :][::2])
| null |
impl Solution {
pub fn max_coins(mut piles: Vec<i32>) -> i32 {
piles.sort();
let mut ans = 0;
for i in (piles.len() / 3..piles.len()).step_by(2) {
ans += piles[i];
}
ans
}
}
| null | null | null |
function maxCoins(piles: number[]): number {
piles.sort((a, b) => a - b);
let ans = 0;
for (let i = piles.length / 3; i < piles.length; i += 2) {
ans += piles[i];
}
return ans;
}
|
Check If Digits Are Equal in String After Operations I
|
You are given a string
s
consisting of digits. Perform the following operation repeatedly until the string has
exactly
two digits:
For each pair of consecutive digits in
s
, starting from the first digit, calculate a new digit as the sum of the two digits
modulo
10.
Replace
s
with the sequence of newly calculated digits,
maintaining the order
in which they are computed.
Return
true
if the final two digits in
s
are the
same
; otherwise, return
false
.
Example 1:
Input:
s = "3902"
Output:
true
Explanation:
Initially,
s = "3902"
First operation:
(s[0] + s[1]) % 10 = (3 + 9) % 10 = 2
(s[1] + s[2]) % 10 = (9 + 0) % 10 = 9
(s[2] + s[3]) % 10 = (0 + 2) % 10 = 2
s
becomes
"292"
Second operation:
(s[0] + s[1]) % 10 = (2 + 9) % 10 = 1
(s[1] + s[2]) % 10 = (9 + 2) % 10 = 1
s
becomes
"11"
Since the digits in
"11"
are the same, the output is
true
.
Example 2:
Input:
s = "34789"
Output:
false
Explanation:
Initially,
s = "34789"
.
After the first operation,
s = "7157"
.
After the second operation,
s = "862"
.
After the third operation,
s = "48"
.
Since
'4' != '8'
, the output is
false
.
Constraints:
3 <= s.length <= 100
s
consists of only digits.
| null | null |
class Solution {
public:
bool hasSameDigits(string s) {
int n = s.size();
string t = s;
for (int k = n - 1; k > 1; --k) {
for (int i = 0; i < k; ++i) {
t[i] = (t[i] - '0' + t[i + 1] - '0') % 10 + '0';
}
}
return t[0] == t[1];
}
};
| null | null |
func hasSameDigits(s string) bool {
t := []byte(s)
n := len(t)
for k := n - 1; k > 1; k-- {
for i := 0; i < k; i++ {
t[i] = (t[i]-'0'+t[i+1]-'0')%10 + '0'
}
}
return t[0] == t[1]
}
|
class Solution {
public boolean hasSameDigits(String s) {
char[] t = s.toCharArray();
int n = t.length;
for (int k = n - 1; k > 1; --k) {
for (int i = 0; i < k; ++i) {
t[i] = (char) ((t[i] - '0' + t[i + 1] - '0') % 10 + '0');
}
}
return t[0] == t[1];
}
}
| null | null | null | null | null | null |
class Solution:
def hasSameDigits(self, s: str) -> bool:
t = list(map(int, s))
n = len(t)
for k in range(n - 1, 1, -1):
for i in range(k):
t[i] = (t[i] + t[i + 1]) % 10
return t[0] == t[1]
| null | null | null | null | null |
function hasSameDigits(s: string): boolean {
const t = s.split('').map(Number);
const n = t.length;
for (let k = n - 1; k > 1; --k) {
for (let i = 0; i < k; ++i) {
t[i] = (t[i] + t[i + 1]) % 10;
}
}
return t[0] === t[1];
}
|
Complete Binary Tree Inserter
|
A
complete binary tree
is a binary tree in which every level, except possibly the last, is completely filled, and all nodes are as far left as possible.
Design an algorithm to insert a new node to a complete binary tree keeping it complete after the insertion.
Implement the
CBTInserter
class:
CBTInserter(TreeNode root)
Initializes the data structure with the
root
of the complete binary tree.
int insert(int v)
Inserts a
TreeNode
into the tree with value
Node.val == val
so that the tree remains complete, and returns the value of the parent of the inserted
TreeNode
.
TreeNode get_root()
Returns the root node of the tree.
Example 1:
Input
["CBTInserter", "insert", "insert", "get_root"]
[[[1, 2]], [3], [4], []]
Output
[null, 1, 2, [1, 2, 3, 4]]
Explanation
CBTInserter cBTInserter = new CBTInserter([1, 2]);
cBTInserter.insert(3); // return 1
cBTInserter.insert(4); // return 2
cBTInserter.get_root(); // return [1, 2, 3, 4]
Constraints:
The number of nodes in the tree will be in the range
[1, 1000]
.
0 <= Node.val <= 5000
root
is a complete binary tree.
0 <= val <= 5000
At most
10
4
calls will be made to
insert
and
get_root
.
| null | null |
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class CBTInserter {
public:
CBTInserter(TreeNode* root) {
queue<TreeNode*> q{{root}};
while (q.size()) {
for (int i = q.size(); i; --i) {
auto node = q.front();
q.pop();
tree.push_back(node);
if (node->left) {
q.push(node->left);
}
if (node->right) {
q.push(node->right);
}
}
}
}
int insert(int val) {
auto p = tree[(tree.size() - 1) / 2];
auto node = new TreeNode(val);
tree.push_back(node);
if (!p->left) {
p->left = node;
} else {
p->right = node;
}
return p->val;
}
TreeNode* get_root() {
return tree[0];
}
private:
vector<TreeNode*> tree;
};
/**
* Your CBTInserter object will be instantiated and called as such:
* CBTInserter* obj = new CBTInserter(root);
* int param_1 = obj->insert(val);
* TreeNode* param_2 = obj->get_root();
*/
| null | null |
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
type CBTInserter struct {
tree []*TreeNode
}
func Constructor(root *TreeNode) CBTInserter {
q := []*TreeNode{root}
tree := []*TreeNode{}
for len(q) > 0 {
for i := len(q); i > 0; i-- {
node := q[0]
q = q[1:]
tree = append(tree, node)
if node.Left != nil {
q = append(q, node.Left)
}
if node.Right != nil {
q = append(q, node.Right)
}
}
}
return CBTInserter{tree}
}
func (this *CBTInserter) Insert(val int) int {
p := this.tree[(len(this.tree)-1)/2]
node := &TreeNode{val, nil, nil}
this.tree = append(this.tree, node)
if p.Left == nil {
p.Left = node
} else {
p.Right = node
}
return p.Val
}
func (this *CBTInserter) Get_root() *TreeNode {
return this.tree[0]
}
/**
* Your CBTInserter object will be instantiated and called as such:
* obj := Constructor(root);
* param_1 := obj.Insert(val);
* param_2 := obj.Get_root();
*/
|
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class CBTInserter {
private List<TreeNode> tree = new ArrayList<>();
public CBTInserter(TreeNode root) {
Deque<TreeNode> q = new ArrayDeque<>();
q.offer(root);
while (!q.isEmpty()) {
for (int i = q.size(); i > 0; --i) {
TreeNode node = q.poll();
tree.add(node);
if (node.left != null) {
q.offer(node.left);
}
if (node.right != null) {
q.offer(node.right);
}
}
}
}
public int insert(int val) {
TreeNode p = tree.get((tree.size() - 1) / 2);
TreeNode node = new TreeNode(val);
tree.add(node);
if (p.left == null) {
p.left = node;
} else {
p.right = node;
}
return p.val;
}
public TreeNode get_root() {
return tree.get(0);
}
}
/**
* Your CBTInserter object will be instantiated and called as such:
* CBTInserter obj = new CBTInserter(root);
* int param_1 = obj.insert(val);
* TreeNode param_2 = obj.get_root();
*/
|
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
*/
var CBTInserter = function (root) {
this.tree = [];
if (root === null) {
return;
}
const q = [root];
while (q.length) {
const t = [];
for (const node of q) {
this.tree.push(node);
node.left !== null && t.push(node.left);
node.right !== null && t.push(node.right);
}
q.splice(0, q.length, ...t);
}
};
/**
* @param {number} val
* @return {number}
*/
CBTInserter.prototype.insert = function (val) {
const p = this.tree[(this.tree.length - 1) >> 1];
const node = new TreeNode(val);
this.tree.push(node);
if (p.left === null) {
p.left = node;
} else {
p.right = node;
}
return p.val;
};
/**
* @return {TreeNode}
*/
CBTInserter.prototype.get_root = function () {
return this.tree[0];
};
/**
* Your CBTInserter object will be instantiated and called as such:
* var obj = new CBTInserter(root)
* var param_1 = obj.insert(val)
* var param_2 = obj.get_root()
*/
| null | null | null | null | null |
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class CBTInserter:
def __init__(self, root: Optional[TreeNode]):
self.tree = []
q = deque([root])
while q:
for _ in range(len(q)):
node = q.popleft()
self.tree.append(node)
if node.left:
q.append(node.left)
if node.right:
q.append(node.right)
def insert(self, val: int) -> int:
p = self.tree[(len(self.tree) - 1) // 2]
node = TreeNode(val)
self.tree.append(node)
if p.left is None:
p.left = node
else:
p.right = node
return p.val
def get_root(self) -> Optional[TreeNode]:
return self.tree[0]
# Your CBTInserter object will be instantiated and called as such:
# obj = CBTInserter(root)
# param_1 = obj.insert(val)
# param_2 = obj.get_root()
| null | null | null | null | null |
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
class CBTInserter {
private tree: TreeNode[] = [];
constructor(root: TreeNode | null) {
if (root === null) {
return;
}
const q: TreeNode[] = [root];
while (q.length) {
const t: TreeNode[] = [];
for (const node of q) {
this.tree.push(node);
node.left !== null && t.push(node.left);
node.right !== null && t.push(node.right);
}
q.splice(0, q.length, ...t);
}
}
insert(val: number): number {
const p = this.tree[(this.tree.length - 1) >> 1];
const node = new TreeNode(val);
this.tree.push(node);
if (p.left === null) {
p.left = node;
} else {
p.right = node;
}
return p.val;
}
get_root(): TreeNode | null {
return this.tree[0];
}
}
/**
* Your CBTInserter object will be instantiated and called as such:
* var obj = new CBTInserter(root)
* var param_1 = obj.insert(val)
* var param_2 = obj.get_root()
*/
|
Closest Fair Integer 🔒
|
You are given a
positive
integer
n
.
We call an integer
k
fair if the number of
even
digits in
k
is equal to the number of
odd
digits in it.
Return
the
smallest
fair integer that is
greater than or equal
to
n
.
Example 1:
Input:
n = 2
Output:
10
Explanation:
The smallest fair integer that is greater than or equal to 2 is 10.
10 is fair because it has an equal number of even and odd digits (one odd digit and one even digit).
Example 2:
Input:
n = 403
Output:
1001
Explanation:
The smallest fair integer that is greater than or equal to 403 is 1001.
1001 is fair because it has an equal number of even and odd digits (two odd digits and two even digits).
Constraints:
1 <= n <= 10
9
| null | null |
class Solution {
public:
int closestFair(int n) {
int a = 0, b = 0;
int t = n, k = 0;
while (t) {
if ((t % 10) & 1) {
++a;
} else {
++b;
}
++k;
t /= 10;
}
if (a == b) {
return n;
}
if (k % 2 == 1) {
int x = pow(10, k);
int y = 0;
for (int i = 0; i < k >> 1; ++i) {
y = y * 10 + 1;
}
return x + y;
}
return closestFair(n + 1);
}
};
| null | null |
func closestFair(n int) int {
a, b := 0, 0
t, k := n, 0
for t > 0 {
if (t%10)%2 == 1 {
a++
} else {
b++
}
k++
t /= 10
}
if a == b {
return n
}
if k%2 == 1 {
x := int(math.Pow(10, float64(k)))
y := 0
for i := 0; i < k>>1; i++ {
y = y*10 + 1
}
return x + y
}
return closestFair(n + 1)
}
|
class Solution {
public int closestFair(int n) {
int a = 0, b = 0;
int k = 0, t = n;
while (t > 0) {
if ((t % 10) % 2 == 1) {
++a;
} else {
++b;
}
t /= 10;
++k;
}
if (k % 2 == 1) {
int x = (int) Math.pow(10, k);
int y = 0;
for (int i = 0; i < k >> 1; ++i) {
y = y * 10 + 1;
}
return x + y;
}
if (a == b) {
return n;
}
return closestFair(n + 1);
}
}
| null | null | null | null | null | null |
class Solution:
def closestFair(self, n: int) -> int:
a = b = k = 0
t = n
while t:
if (t % 10) & 1:
a += 1
else:
b += 1
t //= 10
k += 1
if k & 1:
x = 10**k
y = int('1' * (k >> 1) or '0')
return x + y
if a == b:
return n
return self.closestFair(n + 1)
| null | null | null | null | null | null |
Minimum Subarrays in a Valid Split 🔒
|
You are given an integer array
nums
.
Splitting of an integer array
nums
into
subarrays
is
valid
if:
the
greatest common divisor
of the first and last elements of each subarray is
greater
than
1
, and
each element of
nums
belongs to exactly one subarray.
Return
the
minimum
number of subarrays in a
valid
subarray splitting of
nums
. If a valid subarray splitting is not possible, return
-1
.
Note
that:
The
greatest common divisor
of two numbers is the largest positive integer that evenly divides both numbers.
A
subarray
is a contiguous non-empty part of an array.
Example 1:
Input:
nums = [2,6,3,4,3]
Output:
2
Explanation:
We can create a valid split in the following way: [2,6] | [3,4,3].
- The starting element of the 1
st
subarray is 2 and the ending is 6. Their greatest common divisor is 2, which is greater than 1.
- The starting element of the 2
nd
subarray is 3 and the ending is 3. Their greatest common divisor is 3, which is greater than 1.
It can be proved that 2 is the minimum number of subarrays that we can obtain in a valid split.
Example 2:
Input:
nums = [3,5]
Output:
2
Explanation:
We can create a valid split in the following way: [3] | [5].
- The starting element of the 1
st
subarray is 3 and the ending is 3. Their greatest common divisor is 3, which is greater than 1.
- The starting element of the 2
nd
subarray is 5 and the ending is 5. Their greatest common divisor is 5, which is greater than 1.
It can be proved that 2 is the minimum number of subarrays that we can obtain in a valid split.
Example 3:
Input:
nums = [1,2,1]
Output:
-1
Explanation:
It is impossible to create valid split.
Constraints:
1 <= nums.length <= 1000
1 <= nums[i] <= 10
5
| null | null |
class Solution {
public:
const int inf = 0x3f3f3f3f;
int validSubarraySplit(vector<int>& nums) {
int n = nums.size();
vector<int> f(n);
function<int(int)> dfs = [&](int i) -> int {
if (i >= n) return 0;
if (f[i]) return f[i];
int ans = inf;
for (int j = i; j < n; ++j) {
if (__gcd(nums[i], nums[j]) > 1) {
ans = min(ans, 1 + dfs(j + 1));
}
}
f[i] = ans;
return ans;
};
int ans = dfs(0);
return ans < inf ? ans : -1;
}
};
| null | null |
func validSubarraySplit(nums []int) int {
n := len(nums)
f := make([]int, n)
var dfs func(int) int
const inf int = 0x3f3f3f3f
dfs = func(i int) int {
if i >= n {
return 0
}
if f[i] > 0 {
return f[i]
}
ans := inf
for j := i; j < n; j++ {
if gcd(nums[i], nums[j]) > 1 {
ans = min(ans, 1+dfs(j+1))
}
}
f[i] = ans
return ans
}
ans := dfs(0)
if ans < inf {
return ans
}
return -1
}
func gcd(a, b int) int {
if b == 0 {
return a
}
return gcd(b, a%b)
}
|
class Solution {
private int n;
private int[] f;
private int[] nums;
private int inf = 0x3f3f3f3f;
public int validSubarraySplit(int[] nums) {
n = nums.length;
f = new int[n];
this.nums = nums;
int ans = dfs(0);
return ans < inf ? ans : -1;
}
private int dfs(int i) {
if (i >= n) {
return 0;
}
if (f[i] > 0) {
return f[i];
}
int ans = inf;
for (int j = i; j < n; ++j) {
if (gcd(nums[i], nums[j]) > 1) {
ans = Math.min(ans, 1 + dfs(j + 1));
}
}
f[i] = ans;
return ans;
}
private int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
}
| null | null | null | null | null | null |
class Solution:
def validSubarraySplit(self, nums: List[int]) -> int:
@cache
def dfs(i):
if i >= n:
return 0
ans = inf
for j in range(i, n):
if gcd(nums[i], nums[j]) > 1:
ans = min(ans, 1 + dfs(j + 1))
return ans
n = len(nums)
ans = dfs(0)
dfs.cache_clear()
return ans if ans < inf else -1
| null | null | null | null | null | null |
Longest Palindrome by Concatenating Two Letter Words
|
You are given an array of strings
words
. Each element of
words
consists of
two
lowercase English letters.
Create the
longest possible palindrome
by selecting some elements from
words
and concatenating them in
any order
. Each element can be selected
at most once
.
Return
the
length
of the longest palindrome that you can create
. If it is impossible to create any palindrome, return
0
.
A
palindrome
is a string that reads the same forward and backward.
Example 1:
Input:
words = ["lc","cl","gg"]
Output:
6
Explanation:
One longest palindrome is "lc" + "gg" + "cl" = "lcggcl", of length 6.
Note that "clgglc" is another longest palindrome that can be created.
Example 2:
Input:
words = ["ab","ty","yt","lc","cl","ab"]
Output:
8
Explanation:
One longest palindrome is "ty" + "lc" + "cl" + "yt" = "tylcclyt", of length 8.
Note that "lcyttycl" is another longest palindrome that can be created.
Example 3:
Input:
words = ["cc","ll","xx"]
Output:
2
Explanation:
One longest palindrome is "cc", of length 2.
Note that "ll" is another longest palindrome that can be created, and so is "xx".
Constraints:
1 <= words.length <= 10
5
words[i].length == 2
words[i]
consists of lowercase English letters.
| null | null |
class Solution {
public:
int longestPalindrome(vector<string>& words) {
unordered_map<string, int> cnt;
for (auto& w : words) cnt[w]++;
int ans = 0, x = 0;
for (auto& [k, v] : cnt) {
string rk = k;
reverse(rk.begin(), rk.end());
if (k[0] == k[1]) {
x += v & 1;
ans += v / 2 * 2 * 2;
} else if (cnt.count(rk)) {
ans += min(v, cnt[rk]) * 2;
}
}
ans += x ? 2 : 0;
return ans;
}
};
| null | null |
func longestPalindrome(words []string) int {
cnt := map[string]int{}
for _, w := range words {
cnt[w]++
}
ans, x := 0, 0
for k, v := range cnt {
if k[0] == k[1] {
x += v & 1
ans += v / 2 * 2 * 2
} else {
rk := string([]byte{k[1], k[0]})
if y, ok := cnt[rk]; ok {
ans += min(v, y) * 2
}
}
}
if x > 0 {
ans += 2
}
return ans
}
|
class Solution {
public int longestPalindrome(String[] words) {
Map<String, Integer> cnt = new HashMap<>();
for (var w : words) {
cnt.merge(w, 1, Integer::sum);
}
int ans = 0, x = 0;
for (var e : cnt.entrySet()) {
var k = e.getKey();
var rk = new StringBuilder(k).reverse().toString();
int v = e.getValue();
if (k.charAt(0) == k.charAt(1)) {
x += v & 1;
ans += v / 2 * 2 * 2;
} else {
ans += Math.min(v, cnt.getOrDefault(rk, 0)) * 2;
}
}
ans += x > 0 ? 2 : 0;
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def longestPalindrome(self, words: List[str]) -> int:
cnt = Counter(words)
ans = x = 0
for k, v in cnt.items():
if k[0] == k[1]:
x += v & 1
ans += v // 2 * 2 * 2
else:
ans += min(v, cnt[k[::-1]]) * 2
ans += 2 if x else 0
return ans
| null | null | null | null | null |
function longestPalindrome(words: string[]): number {
const cnt = new Map<string, number>();
for (const w of words) cnt.set(w, (cnt.get(w) || 0) + 1);
let [ans, x] = [0, 0];
for (const [k, v] of cnt.entries()) {
if (k[0] === k[1]) {
x += v & 1;
ans += Math.floor(v / 2) * 2 * 2;
} else {
ans += Math.min(v, cnt.get(k[1] + k[0]) || 0) * 2;
}
}
ans += x ? 2 : 0;
return ans;
}
|
Maximum Segment Sum After Removals
|
You are given two
0-indexed
integer arrays
nums
and
removeQueries
, both of length
n
. For the
i
th
query, the element in
nums
at the index
removeQueries[i]
is removed, splitting
nums
into different segments.
A
segment
is a contiguous sequence of
positive
integers in
nums
. A
segment sum
is the sum of every element in a segment.
Return
an integer array
answer
, of length
n
, where
answer[i]
is the
maximum
segment sum after applying the
i
th
removal.
Note:
The same index will
not
be removed more than once.
Example 1:
Input:
nums = [1,2,5,6,1], removeQueries = [0,3,2,4,1]
Output:
[14,7,2,2,0]
Explanation:
Using 0 to indicate a removed element, the answer is as follows:
Query 1: Remove the 0th element, nums becomes [0,2,5,6,1] and the maximum segment sum is 14 for segment [2,5,6,1].
Query 2: Remove the 3rd element, nums becomes [0,2,5,0,1] and the maximum segment sum is 7 for segment [2,5].
Query 3: Remove the 2nd element, nums becomes [0,2,0,0,1] and the maximum segment sum is 2 for segment [2].
Query 4: Remove the 4th element, nums becomes [0,2,0,0,0] and the maximum segment sum is 2 for segment [2].
Query 5: Remove the 1st element, nums becomes [0,0,0,0,0] and the maximum segment sum is 0, since there are no segments.
Finally, we return [14,7,2,2,0].
Example 2:
Input:
nums = [3,2,11,1], removeQueries = [3,2,1,0]
Output:
[16,5,3,0]
Explanation:
Using 0 to indicate a removed element, the answer is as follows:
Query 1: Remove the 3rd element, nums becomes [3,2,11,0] and the maximum segment sum is 16 for segment [3,2,11].
Query 2: Remove the 2nd element, nums becomes [3,2,0,0] and the maximum segment sum is 5 for segment [3,2].
Query 3: Remove the 1st element, nums becomes [3,0,0,0] and the maximum segment sum is 3 for segment [3].
Query 4: Remove the 0th element, nums becomes [0,0,0,0] and the maximum segment sum is 0, since there are no segments.
Finally, we return [16,5,3,0].
Constraints:
n == nums.length == removeQueries.length
1 <= n <= 10
5
1 <= nums[i] <= 10
9
0 <= removeQueries[i] < n
All the values of
removeQueries
are
unique
.
| null | null |
using ll = long long;
class Solution {
public:
vector<int> p;
vector<ll> s;
vector<long long> maximumSegmentSum(vector<int>& nums, vector<int>& removeQueries) {
int n = nums.size();
p.resize(n);
for (int i = 0; i < n; ++i) p[i] = i;
s.assign(n, 0);
vector<ll> ans(n);
ll mx = 0;
for (int j = n - 1; j; --j) {
int i = removeQueries[j];
s[i] = nums[i];
if (i && s[find(i - 1)]) merge(i, i - 1);
if (i < n - 1 && s[find(i + 1)]) merge(i, i + 1);
mx = max(mx, s[find(i)]);
ans[j - 1] = mx;
}
return ans;
}
int find(int x) {
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
void merge(int a, int b) {
int pa = find(a), pb = find(b);
p[pa] = pb;
s[pb] += s[pa];
}
};
| null | null |
func maximumSegmentSum(nums []int, removeQueries []int) []int64 {
n := len(nums)
p := make([]int, n)
s := make([]int, n)
for i := range p {
p[i] = i
}
var find func(x int) int
find = func(x int) int {
if p[x] != x {
p[x] = find(p[x])
}
return p[x]
}
merge := func(a, b int) {
pa, pb := find(a), find(b)
p[pa] = pb
s[pb] += s[pa]
}
mx := 0
ans := make([]int64, n)
for j := n - 1; j > 0; j-- {
i := removeQueries[j]
s[i] = nums[i]
if i > 0 && s[find(i-1)] > 0 {
merge(i, i-1)
}
if i < n-1 && s[find(i+1)] > 0 {
merge(i, i+1)
}
mx = max(mx, s[find(i)])
ans[j-1] = int64(mx)
}
return ans
}
|
class Solution {
private int[] p;
private long[] s;
public long[] maximumSegmentSum(int[] nums, int[] removeQueries) {
int n = nums.length;
p = new int[n];
s = new long[n];
for (int i = 0; i < n; ++i) {
p[i] = i;
}
long[] ans = new long[n];
long mx = 0;
for (int j = n - 1; j > 0; --j) {
int i = removeQueries[j];
s[i] = nums[i];
if (i > 0 && s[find(i - 1)] > 0) {
merge(i, i - 1);
}
if (i < n - 1 && s[find(i + 1)] > 0) {
merge(i, i + 1);
}
mx = Math.max(mx, s[find(i)]);
ans[j - 1] = mx;
}
return ans;
}
private int find(int x) {
if (p[x] != x) {
p[x] = find(p[x]);
}
return p[x];
}
private void merge(int a, int b) {
int pa = find(a), pb = find(b);
p[pa] = pb;
s[pb] += s[pa];
}
}
| null | null | null | null | null | null |
class Solution:
def maximumSegmentSum(self, nums: List[int], removeQueries: List[int]) -> List[int]:
def find(x):
if p[x] != x:
p[x] = find(p[x])
return p[x]
def merge(a, b):
pa, pb = find(a), find(b)
p[pa] = pb
s[pb] += s[pa]
n = len(nums)
p = list(range(n))
s = [0] * n
ans = [0] * n
mx = 0
for j in range(n - 1, 0, -1):
i = removeQueries[j]
s[i] = nums[i]
if i and s[find(i - 1)]:
merge(i, i - 1)
if i < n - 1 and s[find(i + 1)]:
merge(i, i + 1)
mx = max(mx, s[find(i)])
ans[j - 1] = mx
return ans
| null | null | null | null | null | null |
Encode N-ary Tree to Binary Tree 🔒
|
Design an algorithm to encode an N-ary tree into a binary tree and decode the binary tree to get the original N-ary tree. An N-ary tree is a rooted tree in which each node has no more than N children. Similarly, a binary tree is a rooted tree in which each node has no more than 2 children. There is no restriction on how your encode/decode algorithm should work. You just need to ensure that an N-ary tree can be encoded to a binary tree and this binary tree can be decoded to the original N-nary tree structure.
Nary-Tree input serialization is represented in their level order traversal, each group of children is separated by the null value (See following example).
For example, you may encode the following
3-ary
tree to a binary tree in this way:
Input:
root = [1,null,3,2,4,null,5,6]
Note that the above is just an example which
might or might not
work. You do not necessarily need to follow this format, so please be creative and come up with different approaches yourself.
Example 1:
Input:
root = [1,null,3,2,4,null,5,6]
Output:
[1,null,3,2,4,null,5,6]
Example 2:
Input:
root = [1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null,null,14]
Output:
[1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null,null,14]
Example 3:
Input:
root = []
Output:
[]
Constraints:
The number of nodes in the tree is in the range
[0, 10
4
]
.
0 <= Node.val <= 10
4
The height of the n-ary tree is less than or equal to
1000
Do not use class member/global/static variables to store states. Your encode and decode algorithms should be stateless.
| null | null |
/*
// Definition for a Node.
class Node {
public:
int val;
vector<Node*> children;
Node() {}
Node(int _val) {
val = _val;
}
Node(int _val, vector<Node*> _children) {
val = _val;
children = _children;
}
};
*/
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Codec {
public:
// Encodes an n-ary tree to a binary tree.
TreeNode* encode(Node* root) {
if (root == nullptr) {
return nullptr;
}
TreeNode* node = new TreeNode(root->val);
if (root->children.empty()) {
return node;
}
TreeNode* left = encode(root->children[0]);
node->left = left;
for (int i = 1; i < root->children.size(); i++) {
left->right = encode(root->children[i]);
left = left->right;
}
return node;
}
// Decodes your binary tree to an n-ary tree.
Node* decode(TreeNode* data) {
if (data == nullptr) {
return nullptr;
}
Node* node = new Node(data->val, vector<Node*>());
if (data->left == nullptr) {
return node;
}
TreeNode* left = data->left;
while (left != nullptr) {
node->children.push_back(decode(left));
left = left->right;
}
return node;
}
};
// Your Codec object will be instantiated and called as such:
// Codec codec;
// codec.decode(codec.encode(root));
| null | null |
/**
* Definition for a Node.
* type Node struct {
* Val int
* Children []*Node
* }
*/
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
type Codec struct {
}
func Constructor() *Codec {
return &Codec{}
}
// Encodes an n-ary tree to a binary tree.
func (this *Codec) encode(root *Node) *TreeNode {
if root == nil {
return nil
}
node := &TreeNode{Val: root.Val}
if len(root.Children) == 0 {
return node
}
left := this.encode(root.Children[0])
node.Left = left
for i := 1; i < len(root.Children); i++ {
left.Right = this.encode(root.Children[i])
left = left.Right
}
return node
}
// Decodes your binary tree to an n-ary tree.
func (this *Codec) decode(data *TreeNode) *Node {
if data == nil {
return nil
}
node := &Node{Val: data.Val, Children: []*Node{}}
if data.Left == nil {
return node
}
left := data.Left
for left != nil {
node.Children = append(node.Children, this.decode(left))
left = left.Right
}
return node
}
/**
* Your Codec object will be instantiated and called as such:
* obj := Constructor();
* bst := obj.encode(root);
* ans := obj.decode(bst);
*/
|
/*
// Definition for a Node.
class Node {
public int val;
public List<Node> children;
public Node() {}
public Node(int _val) {
val = _val;
}
public Node(int _val, List<Node> _children) {
val = _val;
children = _children;
}
};
*/
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Codec {
// Encodes an n-ary tree to a binary tree.
public TreeNode encode(Node root) {
if (root == null) {
return null;
}
TreeNode node = new TreeNode(root.val);
if (root.children == null || root.children.isEmpty()) {
return node;
}
TreeNode left = encode(root.children.get(0));
node.left = left;
for (int i = 1; i < root.children.size(); i++) {
left.right = encode(root.children.get(i));
left = left.right;
}
return node;
}
// Decodes your binary tree to an n-ary tree.
public Node decode(TreeNode data) {
if (data == null) {
return null;
}
Node node = new Node(data.val, new ArrayList<>());
if (data.left == null) {
return node;
}
TreeNode left = data.left;
while (left != null) {
node.children.add(decode(left));
left = left.right;
}
return node;
}
}
// Your Codec object will be instantiated and called as such:
// Codec codec = new Codec();
// codec.decode(codec.encode(root));
| null | null | null | null | null | null |
"""
# Definition for a Node.
class Node:
def __init__(self, val: Optional[int] = None, children: Optional[List['Node']] = None):
self.val = val
self.children = children
"""
"""
# Definition for a binary tree node.
class TreeNode:
def __init__(self, x):
self.val = x
self.left = None
self.right = None
"""
class Codec:
# Encodes an n-ary tree to a binary tree.
def encode(self, root: "Optional[Node]") -> Optional[TreeNode]:
if root is None:
return None
node = TreeNode(root.val)
if not root.children:
return node
left = self.encode(root.children[0])
node.left = left
for child in root.children[1:]:
left.right = self.encode(child)
left = left.right
return node
# Decodes your binary tree to an n-ary tree.
def decode(self, data: Optional[TreeNode]) -> "Optional[Node]":
if data is None:
return None
node = Node(data.val, [])
if data.left is None:
return node
left = data.left
while left:
node.children.append(self.decode(left))
left = left.right
return node
# Your Codec object will be instantiated and called as such:
# codec = Codec()
# codec.decode(codec.encode(root))
| null | null | null | null | null |
/**
* Definition for _Node.
* class _Node {
* val: number
* children: _Node[]
*
* constructor(v: number) {
* this.val = v;
* this.children = [];
* }
* }
*/
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
class Codec {
constructor() {}
// Encodes an n-ary tree to a binary tree.
serialize(root: _Node | null): TreeNode | null {
if (root === null) {
return null;
}
const node = new TreeNode(root.val);
if (root.children.length === 0) {
return node;
}
let left: TreeNode | null = this.serialize(root.children[0]);
node.left = left;
for (let i = 1; i < root.children.length; i++) {
if (left) {
left.right = this.serialize(root.children[i]);
left = left.right;
}
}
return node;
}
// Decodes your binary tree back to an n-ary tree.
deserialize(root: TreeNode | null): _Node | null {
if (root === null) {
return null;
}
const node = new _Node(root.val);
if (root.left === null) {
return node;
}
let left: TreeNode | null = root.left;
while (left !== null) {
node.children.push(this.deserialize(left));
left = left.right;
}
return node;
}
}
// Your Codec object will be instantiated and called as such:
// Codec codec = new Codec();
// codec.deserialize(codec.serialize(root));
|
Paint Fence 🔒
|
You are painting a fence of
n
posts with
k
different colors. You must paint the posts following these rules:
Every post must be painted
exactly one
color.
There
cannot
be three or more
consecutive
posts with the same color.
Given the two integers
n
and
k
, return
the
number of ways
you can paint the fence
.
Example 1:
Input:
n = 3, k = 2
Output:
6
Explanation:
All the possibilities are shown.
Note that painting all the posts red or all the posts green is invalid because there cannot be three posts in a row with the same color.
Example 2:
Input:
n = 1, k = 1
Output:
1
Example 3:
Input:
n = 7, k = 2
Output:
42
Constraints:
1 <= n <= 50
1 <= k <= 10
5
The testcases are generated such that the answer is in the range
[0, 2
31
- 1]
for the given
n
and
k
.
| null | null |
class Solution {
public:
int numWays(int n, int k) {
int f = k, g = 0;
for (int i = 1; i < n; ++i) {
int ff = (f + g) * (k - 1);
g = f;
f = ff;
}
return f + g;
}
};
| null | null |
func numWays(n int, k int) int {
f, g := k, 0
for i := 1; i < n; i++ {
f, g = (f+g)*(k-1), f
}
return f + g
}
|
class Solution {
public int numWays(int n, int k) {
int f = k, g = 0;
for (int i = 1; i < n; ++i) {
int ff = (f + g) * (k - 1);
g = f;
f = ff;
}
return f + g;
}
}
| null | null | null | null | null | null |
class Solution:
def numWays(self, n: int, k: int) -> int:
f, g = k, 0
for _ in range(n - 1):
ff = (f + g) * (k - 1)
g = f
f = ff
return f + g
| null | null | null | null | null |
function numWays(n: number, k: number): number {
let [f, g] = [k, 0];
for (let i = 1; i < n; ++i) {
const ff = (f + g) * (k - 1);
g = f;
f = ff;
}
return f + g;
}
|
Smallest Good Base
|
Given an integer
n
represented as a string, return
the smallest
good base
of
n
.
We call
k >= 2
a
good base
of
n
, if all digits of
n
base
k
are
1
's.
Example 1:
Input:
n = "13"
Output:
"3"
Explanation:
13 base 3 is 111.
Example 2:
Input:
n = "4681"
Output:
"8"
Explanation:
4681 base 8 is 11111.
Example 3:
Input:
n = "1000000000000000000"
Output:
"999999999999999999"
Explanation:
1000000000000000000 base 999999999999999999 is 11.
Constraints:
n
is an integer in the range
[3, 10
18
]
.
n
does not contain any leading zeros.
| null | null |
class Solution {
public:
string smallestGoodBase(string n) {
long v = stol(n);
int mx = floor(log(v) / log(2));
for (int m = mx; m > 1; --m) {
int k = pow(v, 1.0 / m);
long mul = 1, s = 1;
for (int i = 0; i < m; ++i) {
mul *= k;
s += mul;
}
if (s == v) {
return to_string(k);
}
}
return to_string(v - 1);
}
};
| null | null | null |
class Solution {
public String smallestGoodBase(String n) {
long num = Long.parseLong(n);
for (int len = 63; len >= 2; --len) {
long radix = getRadix(len, num);
if (radix != -1) {
return String.valueOf(radix);
}
}
return String.valueOf(num - 1);
}
private long getRadix(int len, long num) {
long l = 2, r = num - 1;
while (l < r) {
long mid = l + r >>> 1;
if (calc(mid, len) >= num)
r = mid;
else
l = mid + 1;
}
return calc(r, len) == num ? r : -1;
}
private long calc(long radix, int len) {
long p = 1;
long sum = 0;
for (int i = 0; i < len; ++i) {
if (Long.MAX_VALUE - sum < p) {
return Long.MAX_VALUE;
}
sum += p;
if (Long.MAX_VALUE / p < radix) {
p = Long.MAX_VALUE;
} else {
p *= radix;
}
}
return sum;
}
}
| null | null | null | null | null | null |
class Solution:
def smallestGoodBase(self, n: str) -> str:
def cal(k, m):
p = s = 1
for i in range(m):
p *= k
s += p
return s
num = int(n)
for m in range(63, 1, -1):
l, r = 2, num - 1
while l < r:
mid = (l + r) >> 1
if cal(mid, m) >= num:
r = mid
else:
l = mid + 1
if cal(l, m) == num:
return str(l)
return str(num - 1)
| null | null | null | null | null | null |
Valid Triangle Number
|
Given an integer array
nums
, return
the number of triplets chosen from the array that can make triangles if we take them as side lengths of a triangle
.
Example 1:
Input:
nums = [2,2,3,4]
Output:
3
Explanation:
Valid combinations are:
2,3,4 (using the first 2)
2,3,4 (using the second 2)
2,2,3
Example 2:
Input:
nums = [4,2,3,4]
Output:
4
Constraints:
1 <= nums.length <= 1000
0 <= nums[i] <= 1000
| null | null |
class Solution {
public:
int triangleNumber(vector<int>& nums) {
sort(nums.begin(), nums.end());
int ans = 0, n = nums.size();
for (int i = 0; i < n - 2; ++i) {
for (int j = i + 1; j < n - 1; ++j) {
int k = lower_bound(nums.begin() + j + 1, nums.end(), nums[i] + nums[j]) - nums.begin() - 1;
ans += k - j;
}
}
return ans;
}
};
| null | null |
func triangleNumber(nums []int) int {
sort.Ints(nums)
ans := 0
for i, n := 0, len(nums); i < n-2; i++ {
for j := i + 1; j < n-1; j++ {
left, right := j+1, n
for left < right {
mid := (left + right) >> 1
if nums[mid] >= nums[i]+nums[j] {
right = mid
} else {
left = mid + 1
}
}
ans += left - j - 1
}
}
return ans
}
|
class Solution {
public int triangleNumber(int[] nums) {
Arrays.sort(nums);
int ans = 0;
for (int i = 0, n = nums.length; i < n - 2; ++i) {
for (int j = i + 1; j < n - 1; ++j) {
int left = j + 1, right = n;
while (left < right) {
int mid = (left + right) >> 1;
if (nums[mid] >= nums[i] + nums[j]) {
right = mid;
} else {
left = mid + 1;
}
}
ans += left - j - 1;
}
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def triangleNumber(self, nums: List[int]) -> int:
nums.sort()
ans, n = 0, len(nums)
for i in range(n - 2):
for j in range(i + 1, n - 1):
k = bisect_left(nums, nums[i] + nums[j], lo=j + 1) - 1
ans += k - j
return ans
| null |
impl Solution {
pub fn triangle_number(mut nums: Vec<i32>) -> i32 {
nums.sort();
let n = nums.len();
let mut res = 0;
for i in (2..n).rev() {
let mut left = 0;
let mut right = i - 1;
while left < right {
if nums[left] + nums[right] > nums[i] {
res += right - left;
right -= 1;
} else {
left += 1;
}
}
}
res as i32
}
}
| null | null | null |
function triangleNumber(nums: number[]): number {
nums.sort((a, b) => a - b);
let n = nums.length;
let ans = 0;
for (let i = n - 1; i >= 2; i--) {
let left = 0,
right = i - 1;
while (left < right) {
if (nums[left] + nums[right] > nums[i]) {
ans += right - left;
right--;
} else {
left++;
}
}
}
return ans;
}
|
Remove Colored Pieces if Both Neighbors are the Same Color
|
There are
n
pieces arranged in a line, and each piece is colored either by
'A'
or by
'B'
. You are given a string
colors
of length
n
where
colors[i]
is the color of the
i
th
piece.
Alice and Bob are playing a game where they take
alternating turns
removing pieces from the line. In this game, Alice moves
first
.
Alice is only allowed to remove a piece colored
'A'
if
both its neighbors
are also colored
'A'
. She is
not allowed
to remove pieces that are colored
'B'
.
Bob is only allowed to remove a piece colored
'B'
if
both its neighbors
are also colored
'B'
. He is
not allowed
to remove pieces that are colored
'A'
.
Alice and Bob
cannot
remove pieces from the edge of the line.
If a player cannot make a move on their turn, that player
loses
and the other player
wins
.
Assuming Alice and Bob play optimally, return
true
if Alice wins, or return
false
if Bob wins
.
Example 1:
Input:
colors = "AAABABB"
Output:
true
Explanation:
A
A
ABABB -> AABABB
Alice moves first.
She removes the second 'A' from the left since that is the only 'A' whose neighbors are both 'A'.
Now it's Bob's turn.
Bob cannot make a move on his turn since there are no 'B's whose neighbors are both 'B'.
Thus, Alice wins, so return true.
Example 2:
Input:
colors = "AA"
Output:
false
Explanation:
Alice has her turn first.
There are only two 'A's and both are on the edge of the line, so she cannot move on her turn.
Thus, Bob wins, so return false.
Example 3:
Input:
colors = "ABBBBBBBAAA"
Output:
false
Explanation:
ABBBBBBBA
A
A -> ABBBBBBBAA
Alice moves first.
Her only option is to remove the second to last 'A' from the right.
ABBBB
B
BBAA -> ABBBBBBAA
Next is Bob's turn.
He has many options for which 'B' piece to remove. He can pick any.
On Alice's second turn, she has no more pieces that she can remove.
Thus, Bob wins, so return false.
Constraints:
1 <= colors.length <= 10
5
colors
consists of only the letters
'A'
and
'B'
| null | null |
class Solution {
public:
bool winnerOfGame(string colors) {
int n = colors.size();
int a = 0, b = 0;
for (int i = 0, j = 0; i < n; i = j) {
while (j < n && colors[j] == colors[i]) {
++j;
}
int m = j - i - 2;
if (m > 0) {
if (colors[i] == 'A') {
a += m;
} else {
b += m;
}
}
}
return a > b;
}
};
| null | null |
func winnerOfGame(colors string) bool {
n := len(colors)
a, b := 0, 0
for i, j := 0, 0; i < n; i = j {
for j < n && colors[j] == colors[i] {
j++
}
m := j - i - 2
if m > 0 {
if colors[i] == 'A' {
a += m
} else {
b += m
}
}
}
return a > b
}
|
class Solution {
public boolean winnerOfGame(String colors) {
int n = colors.length();
int a = 0, b = 0;
for (int i = 0, j = 0; i < n; i = j) {
while (j < n && colors.charAt(j) == colors.charAt(i)) {
++j;
}
int m = j - i - 2;
if (m > 0) {
if (colors.charAt(i) == 'A') {
a += m;
} else {
b += m;
}
}
}
return a > b;
}
}
| null | null | null | null | null | null |
class Solution:
def winnerOfGame(self, colors: str) -> bool:
a = b = 0
for c, v in groupby(colors):
m = len(list(v)) - 2
if m > 0 and c == 'A':
a += m
elif m > 0 and c == 'B':
b += m
return a > b
| null | null | null | null | null |
function winnerOfGame(colors: string): boolean {
const n = colors.length;
let [a, b] = [0, 0];
for (let i = 0, j = 0; i < n; i = j) {
while (j < n && colors[j] === colors[i]) {
++j;
}
const m = j - i - 2;
if (m > 0) {
if (colors[i] === 'A') {
a += m;
} else {
b += m;
}
}
}
return a > b;
}
|
Unique Paths
|
There is a robot on an
m x n
grid. The robot is initially located at the
top-left corner
(i.e.,
grid[0][0]
). The robot tries to move to the
bottom-right corner
(i.e.,
grid[m - 1][n - 1]
). The robot can only move either down or right at any point in time.
Given the two integers
m
and
n
, return
the number of possible unique paths that the robot can take to reach the bottom-right corner
.
The test cases are generated so that the answer will be less than or equal to
2 * 10
9
.
Example 1:
Input:
m = 3, n = 7
Output:
28
Example 2:
Input:
m = 3, n = 2
Output:
3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Down -> Down
2. Down -> Down -> Right
3. Down -> Right -> Down
Constraints:
1 <= m, n <= 100
| null | null |
class Solution {
public:
int uniquePaths(int m, int n) {
vector<int> f(n, 1);
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
f[j] += f[j - 1];
}
}
return f[n - 1];
}
};
| null | null |
func uniquePaths(m int, n int) int {
f := make([]int, n+1)
for i := range f {
f[i] = 1
}
for i := 1; i < m; i++ {
for j := 1; j < n; j++ {
f[j] += f[j-1]
}
}
return f[n-1]
}
|
class Solution {
public int uniquePaths(int m, int n) {
int[] f = new int[n];
Arrays.fill(f, 1);
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
f[j] += f[j - 1];
}
}
return f[n - 1];
}
}
|
/**
* @param {number} m
* @param {number} n
* @return {number}
*/
var uniquePaths = function (m, n) {
const f = Array(n).fill(1);
for (let i = 1; i < m; ++i) {
for (let j = 1; j < n; ++j) {
f[j] += f[j - 1];
}
}
return f[n - 1];
};
| null | null | null | null | null |
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
f = [1] * n
for _ in range(1, m):
for j in range(1, n):
f[j] += f[j - 1]
return f[-1]
| null |
impl Solution {
pub fn unique_paths(m: i32, n: i32) -> i32 {
let (m, n) = (m as usize, n as usize);
let mut f = vec![1; n];
for i in 1..m {
for j in 1..n {
f[j] += f[j - 1];
}
}
f[n - 1]
}
}
| null | null | null |
function uniquePaths(m: number, n: number): number {
const f: number[] = Array(n).fill(1);
for (let i = 1; i < m; ++i) {
for (let j = 1; j < n; ++j) {
f[j] += f[j - 1];
}
}
return f[n - 1];
}
|
Count Strictly Increasing Subarrays 🔒
|
You are given an array
nums
consisting of
positive
integers.
Return
the number of
subarrays
of
nums
that are in
strictly increasing
order.
A
subarray
is a
contiguous
part of an array.
Example 1:
Input:
nums = [1,3,5,4,4,6]
Output:
10
Explanation:
The strictly increasing subarrays are the following:
- Subarrays of length 1: [1], [3], [5], [4], [4], [6].
- Subarrays of length 2: [1,3], [3,5], [4,6].
- Subarrays of length 3: [1,3,5].
The total number of subarrays is 6 + 3 + 1 = 10.
Example 2:
Input:
nums = [1,2,3,4,5]
Output:
15
Explanation:
Every subarray is strictly increasing. There are 15 possible subarrays that we can take.
Constraints:
1 <= nums.length <= 10
5
1 <= nums[i] <= 10
6
| null | null |
class Solution {
public:
long long countSubarrays(vector<int>& nums) {
long long ans = 1, cnt = 1;
for (int i = 1; i < nums.size(); ++i) {
if (nums[i - 1] < nums[i]) {
++cnt;
} else {
cnt = 1;
}
ans += cnt;
}
return ans;
}
};
| null | null |
func countSubarrays(nums []int) int64 {
ans, cnt := 1, 1
for i, x := range nums[1:] {
if nums[i] < x {
cnt++
} else {
cnt = 1
}
ans += cnt
}
return int64(ans)
}
|
class Solution {
public long countSubarrays(int[] nums) {
long ans = 1, cnt = 1;
for (int i = 1; i < nums.length; ++i) {
if (nums[i - 1] < nums[i]) {
++cnt;
} else {
cnt = 1;
}
ans += cnt;
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def countSubarrays(self, nums: List[int]) -> int:
ans = cnt = 1
for x, y in pairwise(nums):
if x < y:
cnt += 1
else:
cnt = 1
ans += cnt
return ans
| null | null | null | null | null |
function countSubarrays(nums: number[]): number {
let [ans, cnt] = [1, 1];
for (let i = 1; i < nums.length; ++i) {
if (nums[i - 1] < nums[i]) {
++cnt;
} else {
cnt = 1;
}
ans += cnt;
}
return ans;
}
|
Find Mirror Score of a String
|
You are given a string
s
.
We define the
mirror
of a letter in the English alphabet as its corresponding letter when the alphabet is reversed. For example, the mirror of
'a'
is
'z'
, and the mirror of
'y'
is
'b'
.
Initially, all characters in the string
s
are
unmarked
.
You start with a score of 0, and you perform the following process on the string
s
:
Iterate through the string from left to right.
At each index
i
, find the closest
unmarked
index
j
such that
j < i
and
s[j]
is the mirror of
s[i]
. Then,
mark
both indices
i
and
j
, and add the value
i - j
to the total score.
If no such index
j
exists for the index
i
, move on to the next index without making any changes.
Return the total score at the end of the process.
Example 1:
Input:
s = "aczzx"
Output:
5
Explanation:
i = 0
. There is no index
j
that satisfies the conditions, so we skip.
i = 1
. There is no index
j
that satisfies the conditions, so we skip.
i = 2
. The closest index
j
that satisfies the conditions is
j = 0
, so we mark both indices 0 and 2, and then add
2 - 0 = 2
to the score.
i = 3
. There is no index
j
that satisfies the conditions, so we skip.
i = 4
. The closest index
j
that satisfies the conditions is
j = 1
, so we mark both indices 1 and 4, and then add
4 - 1 = 3
to the score.
Example 2:
Input:
s = "abcdef"
Output:
0
Explanation:
For each index
i
, there is no index
j
that satisfies the conditions.
Constraints:
1 <= s.length <= 10
5
s
consists only of lowercase English letters.
| null | null |
class Solution {
public:
long long calculateScore(string s) {
unordered_map<char, vector<int>> d;
int n = s.length();
long long ans = 0;
for (int i = 0; i < n; ++i) {
char x = s[i];
char y = 'a' + 'z' - x;
if (d.contains(y)) {
vector<int>& ls = d[y];
int j = ls.back();
ls.pop_back();
if (ls.empty()) {
d.erase(y);
}
ans += i - j;
} else {
d[x].push_back(i);
}
}
return ans;
}
};
| null | null |
func calculateScore(s string) (ans int64) {
d := make(map[rune][]int)
for i, x := range s {
y := 'a' + 'z' - x
if ls, ok := d[y]; ok {
j := ls[len(ls)-1]
d[y] = ls[:len(ls)-1]
if len(d[y]) == 0 {
delete(d, y)
}
ans += int64(i - j)
} else {
d[x] = append(d[x], i)
}
}
return
}
|
class Solution {
public long calculateScore(String s) {
Map<Character, List<Integer>> d = new HashMap<>(26);
int n = s.length();
long ans = 0;
for (int i = 0; i < n; ++i) {
char x = s.charAt(i);
char y = (char) ('a' + 'z' - x);
if (d.containsKey(y)) {
var ls = d.get(y);
int j = ls.remove(ls.size() - 1);
if (ls.isEmpty()) {
d.remove(y);
}
ans += i - j;
} else {
d.computeIfAbsent(x, k -> new ArrayList<>()).add(i);
}
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def calculateScore(self, s: str) -> int:
d = defaultdict(list)
ans = 0
for i, x in enumerate(s):
y = chr(ord("a") + ord("z") - ord(x))
if d[y]:
j = d[y].pop()
ans += i - j
else:
d[x].append(i)
return ans
| null | null | null | null | null |
function calculateScore(s: string): number {
const d: Map<string, number[]> = new Map();
const n = s.length;
let ans = 0;
for (let i = 0; i < n; i++) {
const x = s[i];
const y = String.fromCharCode('a'.charCodeAt(0) + 'z'.charCodeAt(0) - x.charCodeAt(0));
if (d.has(y)) {
const ls = d.get(y)!;
const j = ls.pop()!;
if (ls.length === 0) {
d.delete(y);
}
ans += i - j;
} else {
if (!d.has(x)) {
d.set(x, []);
}
d.get(x)!.push(i);
}
}
return ans;
}
|
Minimum Number of Work Sessions to Finish the Tasks
|
There are
n
tasks assigned to you. The task times are represented as an integer array
tasks
of length
n
, where the
i
th
task takes
tasks[i]
hours to finish. A
work session
is when you work for
at most
sessionTime
consecutive hours and then take a break.
You should finish the given tasks in a way that satisfies the following conditions:
If you start a task in a work session, you must complete it in the
same
work session.
You can start a new task
immediately
after finishing the previous one.
You may complete the tasks in
any order
.
Given
tasks
and
sessionTime
, return
the
minimum
number of
work sessions
needed to finish all the tasks following the conditions above.
The tests are generated such that
sessionTime
is
greater
than or
equal
to the
maximum
element in
tasks[i]
.
Example 1:
Input:
tasks = [1,2,3], sessionTime = 3
Output:
2
Explanation:
You can finish the tasks in two work sessions.
- First work session: finish the first and the second tasks in 1 + 2 = 3 hours.
- Second work session: finish the third task in 3 hours.
Example 2:
Input:
tasks = [3,1,3,1,1], sessionTime = 8
Output:
2
Explanation:
You can finish the tasks in two work sessions.
- First work session: finish all the tasks except the last one in 3 + 1 + 3 + 1 = 8 hours.
- Second work session: finish the last task in 1 hour.
Example 3:
Input:
tasks = [1,2,3,4,5], sessionTime = 15
Output:
1
Explanation:
You can finish all the tasks in one work session.
Constraints:
n == tasks.length
1 <= n <= 14
1 <= tasks[i] <= 10
max(tasks[i]) <= sessionTime <= 15
| null | null |
class Solution {
public:
int minSessions(vector<int>& tasks, int sessionTime) {
int n = tasks.size();
bool ok[1 << n];
memset(ok, false, sizeof(ok));
for (int i = 1; i < 1 << n; ++i) {
int t = 0;
for (int j = 0; j < n; ++j) {
if (i >> j & 1) {
t += tasks[j];
}
}
ok[i] = t <= sessionTime;
}
int f[1 << n];
memset(f, 0x3f, sizeof(f));
f[0] = 0;
for (int i = 1; i < 1 << n; ++i) {
for (int j = i; j; j = (j - 1) & i) {
if (ok[j]) {
f[i] = min(f[i], f[i ^ j] + 1);
}
}
}
return f[(1 << n) - 1];
}
};
| null | null |
func minSessions(tasks []int, sessionTime int) int {
n := len(tasks)
ok := make([]bool, 1<<n)
f := make([]int, 1<<n)
for i := 1; i < 1<<n; i++ {
t := 0
f[i] = 1 << 30
for j, x := range tasks {
if i>>j&1 == 1 {
t += x
}
}
ok[i] = t <= sessionTime
}
for i := 1; i < 1<<n; i++ {
for j := i; j > 0; j = (j - 1) & i {
if ok[j] {
f[i] = min(f[i], f[i^j]+1)
}
}
}
return f[1<<n-1]
}
|
class Solution {
public int minSessions(int[] tasks, int sessionTime) {
int n = tasks.length;
boolean[] ok = new boolean[1 << n];
for (int i = 1; i < 1 << n; ++i) {
int t = 0;
for (int j = 0; j < n; ++j) {
if ((i >> j & 1) == 1) {
t += tasks[j];
}
}
ok[i] = t <= sessionTime;
}
int[] f = new int[1 << n];
Arrays.fill(f, 1 << 30);
f[0] = 0;
for (int i = 1; i < 1 << n; ++i) {
for (int j = i; j > 0; j = (j - 1) & i) {
if (ok[j]) {
f[i] = Math.min(f[i], f[i ^ j] + 1);
}
}
}
return f[(1 << n) - 1];
}
}
| null | null | null | null | null | null |
class Solution:
def minSessions(self, tasks: List[int], sessionTime: int) -> int:
n = len(tasks)
ok = [False] * (1 << n)
for i in range(1, 1 << n):
t = sum(tasks[j] for j in range(n) if i >> j & 1)
ok[i] = t <= sessionTime
f = [inf] * (1 << n)
f[0] = 0
for i in range(1, 1 << n):
j = i
while j:
if ok[j]:
f[i] = min(f[i], f[i ^ j] + 1)
j = (j - 1) & i
return f[-1]
| null | null | null | null | null |
function minSessions(tasks: number[], sessionTime: number): number {
const n = tasks.length;
const ok: boolean[] = new Array(1 << n).fill(false);
for (let i = 1; i < 1 << n; ++i) {
let t = 0;
for (let j = 0; j < n; ++j) {
if (((i >> j) & 1) === 1) {
t += tasks[j];
}
}
ok[i] = t <= sessionTime;
}
const f: number[] = new Array(1 << n).fill(1 << 30);
f[0] = 0;
for (let i = 1; i < 1 << n; ++i) {
for (let j = i; j > 0; j = (j - 1) & i) {
if (ok[j]) {
f[i] = Math.min(f[i], f[i ^ j] + 1);
}
}
}
return f[(1 << n) - 1];
}
|
Repeated DNA Sequences
|
The
DNA sequence
is composed of a series of nucleotides abbreviated as
'A'
,
'C'
,
'G'
, and
'T'
.
For example,
"ACGAATTCCG"
is a
DNA sequence
.
When studying
DNA
, it is useful to identify repeated sequences within the DNA.
Given a string
s
that represents a
DNA sequence
, return all the
10
-letter-long
sequences (substrings) that occur more than once in a DNA molecule. You may return the answer in
any order
.
Example 1:
Input:
s = "AAAAACCCCCAAAAACCCCCCAAAAAGGGTTT"
Output:
["AAAAACCCCC","CCCCCAAAAA"]
Example 2:
Input:
s = "AAAAAAAAAAAAA"
Output:
["AAAAAAAAAA"]
Constraints:
1 <= s.length <= 10
5
s[i]
is either
'A'
,
'C'
,
'G'
, or
'T'
.
| null |
public class Solution {
public IList<string> FindRepeatedDnaSequences(string s) {
var cnt = new Dictionary<string, int>();
var ans = new List<string>();
for (int i = 0; i < s.Length - 10 + 1; ++i) {
var t = s.Substring(i, 10);
if (!cnt.ContainsKey(t)) {
cnt[t] = 0;
}
if (++cnt[t] == 2) {
ans.Add(t);
}
}
return ans;
}
}
|
class Solution {
public:
vector<string> findRepeatedDnaSequences(string s) {
unordered_map<string, int> cnt;
vector<string> ans;
for (int i = 0, n = s.size() - 10 + 1; i < n; ++i) {
auto t = s.substr(i, 10);
if (++cnt[t] == 2) {
ans.emplace_back(t);
}
}
return ans;
}
};
| null | null |
func findRepeatedDnaSequences(s string) []string {
hashCode := map[byte]int{'A': 0, 'C': 1, 'G': 2, 'T': 3}
ans, cnt, left, right := []string{}, map[int]int{}, 0, 0
sha, multi := 0, int(math.Pow(4, 9))
for ; right < len(s); right++ {
sha = sha*4 + hashCode[s[right]]
if right-left+1 < 10 {
continue
}
cnt[sha]++
if cnt[sha] == 2 {
ans = append(ans, s[left:right+1])
}
sha, left = sha-multi*hashCode[s[left]], left+1
}
return ans
}
|
class Solution {
public List<String> findRepeatedDnaSequences(String s) {
Map<String, Integer> cnt = new HashMap<>();
List<String> ans = new ArrayList<>();
for (int i = 0; i < s.length() - 10 + 1; ++i) {
String t = s.substring(i, i + 10);
if (cnt.merge(t, 1, Integer::sum) == 2) {
ans.add(t);
}
}
return ans;
}
}
|
/**
* @param {string} s
* @return {string[]}
*/
var findRepeatedDnaSequences = function (s) {
const cnt = new Map();
const ans = [];
for (let i = 0; i < s.length - 10 + 1; ++i) {
const t = s.slice(i, i + 10);
cnt.set(t, (cnt.get(t) || 0) + 1);
if (cnt.get(t) === 2) {
ans.push(t);
}
}
return ans;
};
| null | null | null | null | null |
class Solution:
def findRepeatedDnaSequences(self, s: str) -> List[str]:
cnt = Counter()
ans = []
for i in range(len(s) - 10 + 1):
t = s[i : i + 10]
cnt[t] += 1
if cnt[t] == 2:
ans.append(t)
return ans
| null |
use std::collections::HashMap;
impl Solution {
pub fn find_repeated_dna_sequences(s: String) -> Vec<String> {
if s.len() < 10 {
return vec![];
}
let mut cnt = HashMap::new();
let mut ans = Vec::new();
for i in 0..s.len() - 9 {
let t = &s[i..i + 10];
let count = cnt.entry(t).or_insert(0);
*count += 1;
if *count == 2 {
ans.push(t.to_string());
}
}
ans
}
}
| null | null | null |
function findRepeatedDnaSequences(s: string): string[] {
const n = s.length;
const cnt: Map<string, number> = new Map();
const ans: string[] = [];
for (let i = 0; i <= n - 10; ++i) {
const t = s.slice(i, i + 10);
cnt.set(t, (cnt.get(t) ?? 0) + 1);
if (cnt.get(t) === 2) {
ans.push(t);
}
}
return ans;
}
|
Existence of a Substring in a String and Its Reverse
|
Given a
string
s
, find any
substring
of length
2
which is also present in the reverse of
s
.
Return
true
if such a substring exists, and
false
otherwise.
Example 1:
Input:
s = "leetcode"
Output:
true
Explanation:
Substring
"ee"
is of length
2
which is also present in
reverse(s) == "edocteel"
.
Example 2:
Input:
s = "abcba"
Output:
true
Explanation:
All of the substrings of length
2
"ab"
,
"bc"
,
"cb"
,
"ba"
are also present in
reverse(s) == "abcba"
.
Example 3:
Input:
s = "abcd"
Output:
false
Explanation:
There is no substring of length
2
in
s
, which is also present in the reverse of
s
.
Constraints:
1 <= s.length <= 100
s
consists only of lowercase English letters.
| null | null |
class Solution {
public:
bool isSubstringPresent(string s) {
bool st[26][26]{};
int n = s.size();
for (int i = 0; i < n - 1; ++i) {
st[s[i + 1] - 'a'][s[i] - 'a'] = true;
}
for (int i = 0; i < n - 1; ++i) {
if (st[s[i] - 'a'][s[i + 1] - 'a']) {
return true;
}
}
return false;
}
};
| null | null |
func isSubstringPresent(s string) bool {
st := [26][26]bool{}
for i := 0; i < len(s)-1; i++ {
st[s[i+1]-'a'][s[i]-'a'] = true
}
for i := 0; i < len(s)-1; i++ {
if st[s[i]-'a'][s[i+1]-'a'] {
return true
}
}
return false
}
|
class Solution {
public boolean isSubstringPresent(String s) {
boolean[][] st = new boolean[26][26];
int n = s.length();
for (int i = 0; i < n - 1; ++i) {
st[s.charAt(i + 1) - 'a'][s.charAt(i) - 'a'] = true;
}
for (int i = 0; i < n - 1; ++i) {
if (st[s.charAt(i) - 'a'][s.charAt(i + 1) - 'a']) {
return true;
}
}
return false;
}
}
| null | null | null | null | null | null |
class Solution:
def isSubstringPresent(self, s: str) -> bool:
st = {(a, b) for a, b in pairwise(s[::-1])}
return any((a, b) in st for a, b in pairwise(s))
| null | null | null | null | null |
function isSubstringPresent(s: string): boolean {
const st: boolean[][] = Array.from({ length: 26 }, () => Array(26).fill(false));
for (let i = 0; i < s.length - 1; ++i) {
st[s.charCodeAt(i + 1) - 97][s.charCodeAt(i) - 97] = true;
}
for (let i = 0; i < s.length - 1; ++i) {
if (st[s.charCodeAt(i) - 97][s.charCodeAt(i + 1) - 97]) {
return true;
}
}
return false;
}
|
Maximum Profit From Trading Stocks 🔒
|
You are given two
0-indexed
integer arrays of the same length
present
and
future
where
present[i]
is the current price of the
i
th
stock and
future[i]
is the price of the
i
th
stock a year in the future. You may buy each stock at most
once
. You are also given an integer
budget
representing the amount of money you currently have.
Return
the maximum amount of profit you can make.
Example 1:
Input:
present = [5,4,6,2,3], future = [8,5,4,3,5], budget = 10
Output:
6
Explanation:
One possible way to maximize your profit is to:
Buy the 0
th
, 3
rd
, and 4
th
stocks for a total of 5 + 2 + 3 = 10.
Next year, sell all three stocks for a total of 8 + 3 + 5 = 16.
The profit you made is 16 - 10 = 6.
It can be shown that the maximum profit you can make is 6.
Example 2:
Input:
present = [2,2,5], future = [3,4,10], budget = 6
Output:
5
Explanation:
The only possible way to maximize your profit is to:
Buy the 2
nd
stock, and make a profit of 10 - 5 = 5.
It can be shown that the maximum profit you can make is 5.
Example 3:
Input:
present = [3,3,12], future = [0,3,15], budget = 10
Output:
0
Explanation:
One possible way to maximize your profit is to:
Buy the 1
st
stock, and make a profit of 3 - 3 = 0.
It can be shown that the maximum profit you can make is 0.
Constraints:
n == present.length == future.length
1 <= n <= 1000
0 <= present[i], future[i] <= 100
0 <= budget <= 1000
| null | null |
class Solution {
public:
int maximumProfit(vector<int>& present, vector<int>& future, int budget) {
int n = present.size();
int f[budget + 1];
memset(f, 0, sizeof f);
for (int i = 0; i < n; ++i) {
int a = present[i], b = future[i];
for (int j = budget; j >= a; --j) {
f[j] = max(f[j], f[j - a] + b - a);
}
}
return f[budget];
}
};
| null | null |
func maximumProfit(present []int, future []int, budget int) int {
f := make([]int, budget+1)
for i, a := range present {
for j := budget; j >= a; j-- {
f[j] = max(f[j], f[j-a]+future[i]-a)
}
}
return f[budget]
}
|
class Solution {
public int maximumProfit(int[] present, int[] future, int budget) {
int n = present.length;
int[] f = new int[budget + 1];
for (int i = 0; i < n; ++i) {
int a = present[i], b = future[i];
for (int j = budget; j >= a; --j) {
f[j] = Math.max(f[j], f[j - a] + b - a);
}
}
return f[budget];
}
}
| null | null | null | null | null | null |
class Solution:
def maximumProfit(self, present: List[int], future: List[int], budget: int) -> int:
f = [0] * (budget + 1)
for a, b in zip(present, future):
for j in range(budget, a - 1, -1):
f[j] = max(f[j], f[j - a] + b - a)
return f[-1]
| null | null | null | null | null |
function maximumProfit(present: number[], future: number[], budget: number): number {
const f = new Array(budget + 1).fill(0);
for (let i = 0; i < present.length; ++i) {
const [a, b] = [present[i], future[i]];
for (let j = budget; j >= a; --j) {
f[j] = Math.max(f[j], f[j - a] + b - a);
}
}
return f[budget];
}
|
Number of Ways to Arrive at Destination
|
You are in a city that consists of
n
intersections numbered from
0
to
n - 1
with
bi-directional
roads between some intersections. The inputs are generated such that you can reach any intersection from any other intersection and that there is at most one road between any two intersections.
You are given an integer
n
and a 2D integer array
roads
where
roads[i] = [u
i
, v
i
, time
i
]
means that there is a road between intersections
u
i
and
v
i
that takes
time
i
minutes to travel. You want to know in how many ways you can travel from intersection
0
to intersection
n - 1
in the
shortest amount of time
.
Return
the
number of ways
you can arrive at your destination in the
shortest amount of time
. Since the answer may be large, return it
modulo
10
9
+ 7
.
Example 1:
Input:
n = 7, roads = [[0,6,7],[0,1,2],[1,2,3],[1,3,3],[6,3,3],[3,5,1],[6,5,1],[2,5,1],[0,4,5],[4,6,2]]
Output:
4
Explanation:
The shortest amount of time it takes to go from intersection 0 to intersection 6 is 7 minutes.
The four ways to get there in 7 minutes are:
- 0 ➝ 6
- 0 ➝ 4 ➝ 6
- 0 ➝ 1 ➝ 2 ➝ 5 ➝ 6
- 0 ➝ 1 ➝ 3 ➝ 5 ➝ 6
Example 2:
Input:
n = 2, roads = [[1,0,10]]
Output:
1
Explanation:
There is only one way to go from intersection 0 to intersection 1, and it takes 10 minutes.
Constraints:
1 <= n <= 200
n - 1 <= roads.length <= n * (n - 1) / 2
roads[i].length == 3
0 <= u
i
, v
i
<= n - 1
1 <= time
i
<= 10
9
u
i
!= v
i
There is at most one road connecting any two intersections.
You can reach any intersection from any other intersection.
| null | null |
class Solution {
public:
int countPaths(int n, vector<vector<int>>& roads) {
const long long inf = LLONG_MAX / 2;
const int mod = 1e9 + 7;
vector<vector<long long>> g(n, vector<long long>(n, inf));
for (auto& e : g) {
fill(e.begin(), e.end(), inf);
}
for (auto& r : roads) {
int u = r[0], v = r[1], t = r[2];
g[u][v] = t;
g[v][u] = t;
}
g[0][0] = 0;
vector<long long> dist(n, inf);
fill(dist.begin(), dist.end(), inf);
dist[0] = 0;
vector<long long> f(n);
f[0] = 1;
vector<bool> vis(n);
for (int i = 0; i < n; ++i) {
int t = -1;
for (int j = 0; j < n; ++j) {
if (!vis[j] && (t == -1 || dist[j] < dist[t])) {
t = j;
}
}
vis[t] = true;
for (int j = 0; j < n; ++j) {
if (j == t) {
continue;
}
long long ne = dist[t] + g[t][j];
if (dist[j] > ne) {
dist[j] = ne;
f[j] = f[t];
} else if (dist[j] == ne) {
f[j] = (f[j] + f[t]) % mod;
}
}
}
return (int) f[n - 1];
}
};
| null | null |
func countPaths(n int, roads [][]int) int {
const inf = math.MaxInt64 / 2
const mod = int(1e9 + 7)
g := make([][]int, n)
dist := make([]int, n)
for i := range g {
g[i] = make([]int, n)
for j := range g[i] {
g[i][j] = inf
dist[i] = inf
}
}
for _, r := range roads {
u, v, t := r[0], r[1], r[2]
g[u][v] = t
g[v][u] = t
}
f := make([]int, n)
vis := make([]bool, n)
f[0] = 1
g[0][0] = 0
dist[0] = 0
for i := 0; i < n; i++ {
t := -1
for j := 0; j < n; j++ {
if !vis[j] && (t == -1 || dist[j] < dist[t]) {
t = j
}
}
vis[t] = true
for j := 0; j < n; j++ {
if j == t {
continue
}
ne := dist[t] + g[t][j]
if dist[j] > ne {
dist[j] = ne
f[j] = f[t]
} else if dist[j] == ne {
f[j] = (f[j] + f[t]) % mod
}
}
}
return f[n-1]
}
|
class Solution {
public int countPaths(int n, int[][] roads) {
final long inf = Long.MAX_VALUE / 2;
final int mod = (int) 1e9 + 7;
long[][] g = new long[n][n];
for (var e : g) {
Arrays.fill(e, inf);
}
for (var r : roads) {
int u = r[0], v = r[1], t = r[2];
g[u][v] = t;
g[v][u] = t;
}
g[0][0] = 0;
long[] dist = new long[n];
Arrays.fill(dist, inf);
dist[0] = 0;
long[] f = new long[n];
f[0] = 1;
boolean[] vis = new boolean[n];
for (int i = 0; i < n; ++i) {
int t = -1;
for (int j = 0; j < n; ++j) {
if (!vis[j] && (t == -1 || dist[j] < dist[t])) {
t = j;
}
}
vis[t] = true;
for (int j = 0; j < n; ++j) {
if (j == t) {
continue;
}
long ne = dist[t] + g[t][j];
if (dist[j] > ne) {
dist[j] = ne;
f[j] = f[t];
} else if (dist[j] == ne) {
f[j] = (f[j] + f[t]) % mod;
}
}
}
return (int) f[n - 1];
}
}
| null | null | null | null | null | null |
class Solution:
def countPaths(self, n: int, roads: List[List[int]]) -> int:
g = [[inf] * n for _ in range(n)]
for u, v, t in roads:
g[u][v] = g[v][u] = t
g[0][0] = 0
dist = [inf] * n
dist[0] = 0
f = [0] * n
f[0] = 1
vis = [False] * n
for _ in range(n):
t = -1
for j in range(n):
if not vis[j] and (t == -1 or dist[j] < dist[t]):
t = j
vis[t] = True
for j in range(n):
if j == t:
continue
ne = dist[t] + g[t][j]
if dist[j] > ne:
dist[j] = ne
f[j] = f[t]
elif dist[j] == ne:
f[j] += f[t]
mod = 10**9 + 7
return f[-1] % mod
| null | null | null | null | null |
function countPaths(n: number, roads: number[][]): number {
const mod: number = 1e9 + 7;
const g: number[][] = Array.from({ length: n }, () => Array(n).fill(Infinity));
for (const [u, v, t] of roads) {
g[u][v] = t;
g[v][u] = t;
}
g[0][0] = 0;
const dist: number[] = Array(n).fill(Infinity);
dist[0] = 0;
const f: number[] = Array(n).fill(0);
f[0] = 1;
const vis: boolean[] = Array(n).fill(false);
for (let i = 0; i < n; ++i) {
let t: number = -1;
for (let j = 0; j < n; ++j) {
if (!vis[j] && (t === -1 || dist[j] < dist[t])) {
t = j;
}
}
vis[t] = true;
for (let j = 0; j < n; ++j) {
if (j === t) {
continue;
}
const ne: number = dist[t] + g[t][j];
if (dist[j] > ne) {
dist[j] = ne;
f[j] = f[t];
} else if (dist[j] === ne) {
f[j] = (f[j] + f[t]) % mod;
}
}
}
return f[n - 1];
}
|
Number of Subarrays With LCM Equal to K
|
Given an integer array
nums
and an integer
k
, return
the number of
subarrays
of
nums
where the least common multiple of the subarray's elements is
k
.
A
subarray
is a contiguous non-empty sequence of elements within an array.
The
least common multiple of an array
is the smallest positive integer that is divisible by all the array elements.
Example 1:
Input:
nums = [3,6,2,7,1], k = 6
Output:
4
Explanation:
The subarrays of nums where 6 is the least common multiple of all the subarray's elements are:
- [
3
,
6
,2,7,1]
- [
3
,
6
,
2
,7,1]
- [3,
6
,2,7,1]
- [3,
6
,
2
,7,1]
Example 2:
Input:
nums = [3], k = 2
Output:
0
Explanation:
There are no subarrays of nums where 2 is the least common multiple of all the subarray's elements.
Constraints:
1 <= nums.length <= 1000
1 <= nums[i], k <= 1000
| null | null |
class Solution {
public:
int subarrayLCM(vector<int>& nums, int k) {
int n = nums.size();
int ans = 0;
for (int i = 0; i < n; ++i) {
int a = nums[i];
for (int j = i; j < n; ++j) {
int b = nums[j];
int x = lcm(a, b);
ans += x == k;
a = x;
}
}
return ans;
}
};
| null | null |
func subarrayLCM(nums []int, k int) (ans int) {
for i, a := range nums {
for _, b := range nums[i:] {
x := lcm(a, b)
if x == k {
ans++
}
a = x
}
}
return
}
func gcd(a, b int) int {
if b == 0 {
return a
}
return gcd(b, a%b)
}
func lcm(a, b int) int {
return a * b / gcd(a, b)
}
|
class Solution {
public int subarrayLCM(int[] nums, int k) {
int n = nums.length;
int ans = 0;
for (int i = 0; i < n; ++i) {
int a = nums[i];
for (int j = i; j < n; ++j) {
int b = nums[j];
int x = lcm(a, b);
if (x == k) {
++ans;
}
a = x;
}
}
return ans;
}
private int lcm(int a, int b) {
return a * b / gcd(a, b);
}
private int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
}
| null | null | null | null | null | null |
class Solution:
def subarrayLCM(self, nums: List[int], k: int) -> int:
n = len(nums)
ans = 0
for i in range(n):
a = nums[i]
for b in nums[i:]:
x = lcm(a, b)
ans += x == k
a = x
return ans
| null | null | null | null | null | null |
Sort the Olympic Table 🔒
|
Table:
Olympic
+---------------+---------+
| Column Name | Type |
+---------------+---------+
| country | varchar |
| gold_medals | int |
| silver_medals | int |
| bronze_medals | int |
+---------------+---------+
In SQL, country is the primary key for this table.
Each row in this table shows a country name and the number of gold, silver, and bronze medals it won in the Olympic games.
The Olympic table is sorted according to the following rules:
The country with more gold medals comes first.
If there is a tie in the gold medals, the country with more silver medals comes first.
If there is a tie in the silver medals, the country with more bronze medals comes first.
If there is a tie in the bronze medals, the countries with the tie are sorted in ascending order lexicographically.
Write a solution to sort the Olympic table.
The result format is shown in the following example.
Example 1:
Input:
Olympic table:
+-------------+-------------+---------------+---------------+
| country | gold_medals | silver_medals | bronze_medals |
+-------------+-------------+---------------+---------------+
| China | 10 | 10 | 20 |
| South Sudan | 0 | 0 | 1 |
| USA | 10 | 10 | 20 |
| Israel | 2 | 2 | 3 |
| Egypt | 2 | 2 | 2 |
+-------------+-------------+---------------+---------------+
Output:
+-------------+-------------+---------------+---------------+
| country | gold_medals | silver_medals | bronze_medals |
+-------------+-------------+---------------+---------------+
| China | 10 | 10 | 20 |
| USA | 10 | 10 | 20 |
| Israel | 2 | 2 | 3 |
| Egypt | 2 | 2 | 2 |
| South Sudan | 0 | 0 | 1 |
+-------------+-------------+---------------+---------------+
Explanation:
The tie between China and USA is broken by their lexicographical names. Since "China" is lexicographically smaller than "USA", it comes first.
Israel comes before Egypt because it has more bronze medals.
| null | null | null | null | null | null | null | null | null |
# Write your MySQL query statement below
SELECT *
FROM Olympic
ORDER BY 2 DESC, 3 DESC, 4 DESC, 1;
| null | null | null | null | null | null | null | null | null | null |
Find Minimum Time to Finish All Jobs II 🔒
|
You are given two
0-indexed
integer arrays
jobs
and
workers
of
equal
length, where
jobs[i]
is the amount of time needed to complete the
i
th
job, and
workers[j]
is the amount of time the
j
th
worker can work each day.
Each job should be assigned to
exactly
one worker, such that each worker completes
exactly
one job.
Return
the
minimum
number of days needed to complete all the jobs after assignment.
Example 1:
Input:
jobs = [5,2,4], workers = [1,7,5]
Output:
2
Explanation:
- Assign the 2
nd
worker to the 0
th
job. It takes them 1 day to finish the job.
- Assign the 0
th
worker to the 1
st
job. It takes them 2 days to finish the job.
- Assign the 1
st
worker to the 2
nd
job. It takes them 1 day to finish the job.
It takes 2 days for all the jobs to be completed, so return 2.
It can be proven that 2 days is the minimum number of days needed.
Example 2:
Input:
jobs = [3,18,15,9], workers = [6,5,1,3]
Output:
3
Explanation:
- Assign the 2
nd
worker to the 0
th
job. It takes them 3 days to finish the job.
- Assign the 0
th
worker to the 1
st
job. It takes them 3 days to finish the job.
- Assign the 1
st
worker to the 2
nd
job. It takes them 3 days to finish the job.
- Assign the 3
rd
worker to the 3
rd
job. It takes them 3 days to finish the job.
It takes 3 days for all the jobs to be completed, so return 3.
It can be proven that 3 days is the minimum number of days needed.
Constraints:
n == jobs.length == workers.length
1 <= n <= 10
5
1 <= jobs[i], workers[i] <= 10
5
| null | null |
class Solution {
public:
int minimumTime(vector<int>& jobs, vector<int>& workers) {
ranges::sort(jobs);
ranges::sort(workers);
int ans = 0;
int n = jobs.size();
for (int i = 0; i < n; ++i) {
ans = max(ans, (jobs[i] + workers[i] - 1) / workers[i]);
}
return ans;
}
};
| null | null |
func minimumTime(jobs []int, workers []int) (ans int) {
sort.Ints(jobs)
sort.Ints(workers)
for i, a := range jobs {
b := workers[i]
ans = max(ans, (a+b-1)/b)
}
return
}
|
class Solution {
public int minimumTime(int[] jobs, int[] workers) {
Arrays.sort(jobs);
Arrays.sort(workers);
int ans = 0;
for (int i = 0; i < jobs.length; ++i) {
ans = Math.max(ans, (jobs[i] + workers[i] - 1) / workers[i]);
}
return ans;
}
}
|
/**
* @param {number[]} jobs
* @param {number[]} workers
* @return {number}
*/
var minimumTime = function (jobs, workers) {
jobs.sort((a, b) => a - b);
workers.sort((a, b) => a - b);
let ans = 0;
const n = jobs.length;
for (let i = 0; i < n; ++i) {
ans = Math.max(ans, Math.ceil(jobs[i] / workers[i]));
}
return ans;
};
| null | null | null | null | null |
class Solution:
def minimumTime(self, jobs: List[int], workers: List[int]) -> int:
jobs.sort()
workers.sort()
return max((a + b - 1) // b for a, b in zip(jobs, workers))
| null |
impl Solution {
pub fn minimum_time(mut jobs: Vec<i32>, mut workers: Vec<i32>) -> i32 {
jobs.sort();
workers.sort();
jobs.iter()
.zip(workers.iter())
.map(|(a, b)| (a + b - 1) / b)
.max()
.unwrap()
}
}
| null | null | null |
function minimumTime(jobs: number[], workers: number[]): number {
jobs.sort((a, b) => a - b);
workers.sort((a, b) => a - b);
let ans = 0;
const n = jobs.length;
for (let i = 0; i < n; ++i) {
ans = Math.max(ans, Math.ceil(jobs[i] / workers[i]));
}
return ans;
}
|
Frog Position After T Seconds
|
Given an undirected tree consisting of
n
vertices numbered from
1
to
n
. A frog starts jumping from
vertex 1
. In one second, the frog jumps from its current vertex to another
unvisited
vertex if they are directly connected. The frog can not jump back to a visited vertex. In case the frog can jump to several vertices, it jumps randomly to one of them with the same probability. Otherwise, when the frog can not jump to any unvisited vertex, it jumps forever on the same vertex.
The edges of the undirected tree are given in the array
edges
, where
edges[i] = [a
i
, b
i
]
means that exists an edge connecting the vertices
a
i
and
b
i
.
Return the probability that after
t
seconds the frog is on the vertex
target
.
Answers within
10
-5
of the actual answer will be accepted.
Example 1:
Input:
n = 7, edges = [[1,2],[1,3],[1,7],[2,4],[2,6],[3,5]], t = 2, target = 4
Output:
0.16666666666666666
Explanation:
The figure above shows the given graph. The frog starts at vertex 1, jumping with 1/3 probability to the vertex 2 after
second 1
and then jumping with 1/2 probability to vertex 4 after
second 2
. Thus the probability for the frog is on the vertex 4 after 2 seconds is 1/3 * 1/2 = 1/6 = 0.16666666666666666.
Example 2:
Input:
n = 7, edges = [[1,2],[1,3],[1,7],[2,4],[2,6],[3,5]], t = 1, target = 7
Output:
0.3333333333333333
Explanation:
The figure above shows the given graph. The frog starts at vertex 1, jumping with 1/3 = 0.3333333333333333 probability to the vertex 7 after
second 1
.
Constraints:
1 <= n <= 100
edges.length == n - 1
edges[i].length == 2
1 <= a
i
, b
i
<= n
1 <= t <= 50
1 <= target <= n
| null |
public class Solution {
public double FrogPosition(int n, int[][] edges, int t, int target) {
List<int>[] g = new List<int>[n + 1];
for (int i = 0; i < n + 1; i++) {
g[i] = new List<int>();
}
foreach (int[] e in edges) {
int u = e[0], v = e[1];
g[u].Add(v);
g[v].Add(u);
}
Queue<Tuple<int, double>> q = new Queue<Tuple<int, double>>();
q.Enqueue(new Tuple<int, double>(1, 1.0));
bool[] vis = new bool[n + 1];
vis[1] = true;
for (; q.Count > 0 && t >= 0; --t) {
for (int k = q.Count; k > 0; --k) {
(var u, var p) = q.Dequeue();
int cnt = g[u].Count - (u == 1 ? 0 : 1);
if (u == target) {
return cnt * t == 0 ? p : 0;
}
foreach (int v in g[u]) {
if (!vis[v]) {
vis[v] = true;
q.Enqueue(new Tuple<int, double>(v, p / cnt));
}
}
}
}
return 0;
}
}
|
class Solution {
public:
double frogPosition(int n, vector<vector<int>>& edges, int t, int target) {
vector<vector<int>> g(n + 1);
for (auto& e : edges) {
int u = e[0], v = e[1];
g[u].push_back(v);
g[v].push_back(u);
}
queue<pair<int, double>> q{{{1, 1.0}}};
bool vis[n + 1];
memset(vis, false, sizeof(vis));
vis[1] = true;
for (; q.size() && t >= 0; --t) {
for (int k = q.size(); k; --k) {
auto [u, p] = q.front();
q.pop();
int cnt = g[u].size() - (u != 1);
if (u == target) {
return cnt * t == 0 ? p : 0;
}
for (int v : g[u]) {
if (!vis[v]) {
vis[v] = true;
q.push({v, p / cnt});
}
}
}
}
return 0;
}
};
| null | null |
func frogPosition(n int, edges [][]int, t int, target int) float64 {
g := make([][]int, n+1)
for _, e := range edges {
u, v := e[0], e[1]
g[u] = append(g[u], v)
g[v] = append(g[v], u)
}
type pair struct {
u int
p float64
}
q := []pair{{1, 1}}
vis := make([]bool, n+1)
vis[1] = true
for ; len(q) > 0 && t >= 0; t-- {
for k := len(q); k > 0; k-- {
u, p := q[0].u, q[0].p
q = q[1:]
cnt := len(g[u])
if u != 1 {
cnt--
}
if u == target {
if cnt*t == 0 {
return p
}
return 0
}
for _, v := range g[u] {
if !vis[v] {
vis[v] = true
q = append(q, pair{v, p / float64(cnt)})
}
}
}
}
return 0
}
|
class Solution {
public double frogPosition(int n, int[][] edges, int t, int target) {
List<Integer>[] g = new List[n + 1];
Arrays.setAll(g, k -> new ArrayList<>());
for (var e : edges) {
int u = e[0], v = e[1];
g[u].add(v);
g[v].add(u);
}
Deque<Pair<Integer, Double>> q = new ArrayDeque<>();
q.offer(new Pair<>(1, 1.0));
boolean[] vis = new boolean[n + 1];
vis[1] = true;
for (; !q.isEmpty() && t >= 0; --t) {
for (int k = q.size(); k > 0; --k) {
var x = q.poll();
int u = x.getKey();
double p = x.getValue();
int cnt = g[u].size() - (u == 1 ? 0 : 1);
if (u == target) {
return cnt * t == 0 ? p : 0;
}
for (int v : g[u]) {
if (!vis[v]) {
vis[v] = true;
q.offer(new Pair<>(v, p / cnt));
}
}
}
}
return 0;
}
}
| null | null | null | null | null | null |
class Solution:
def frogPosition(
self, n: int, edges: List[List[int]], t: int, target: int
) -> float:
g = defaultdict(list)
for u, v in edges:
g[u].append(v)
g[v].append(u)
q = deque([(1, 1.0)])
vis = [False] * (n + 1)
vis[1] = True
while q and t >= 0:
for _ in range(len(q)):
u, p = q.popleft()
cnt = len(g[u]) - int(u != 1)
if u == target:
return p if cnt * t == 0 else 0
for v in g[u]:
if not vis[v]:
vis[v] = True
q.append((v, p / cnt))
t -= 1
return 0
| null | null | null | null | null |
function frogPosition(n: number, edges: number[][], t: number, target: number): number {
const g: number[][] = Array.from({ length: n + 1 }, () => []);
for (const [u, v] of edges) {
g[u].push(v);
g[v].push(u);
}
const q: number[][] = [[1, 1]];
const vis: boolean[] = Array.from({ length: n + 1 }, () => false);
vis[1] = true;
for (; q.length > 0 && t >= 0; --t) {
for (let k = q.length; k > 0; --k) {
const [u, p] = q.shift()!;
const cnt = g[u].length - (u === 1 ? 0 : 1);
if (u === target) {
return cnt * t === 0 ? p : 0;
}
for (const v of g[u]) {
if (!vis[v]) {
vis[v] = true;
q.push([v, p / cnt]);
}
}
}
}
return 0;
}
|
Transformed Array
|
You are given an integer array
nums
that represents a circular array. Your task is to create a new array
result
of the
same
size, following these rules:
For each index
i
(where
0 <= i < nums.length
), perform the following
independent
actions:
If
nums[i] > 0
: Start at index
i
and move
nums[i]
steps to the
right
in the circular array. Set
result[i]
to the value of the index where you land.
If
nums[i] < 0
: Start at index
i
and move
abs(nums[i])
steps to the
left
in the circular array. Set
result[i]
to the value of the index where you land.
If
nums[i] == 0
: Set
result[i]
to
nums[i]
.
Return the new array
result
.
Note:
Since
nums
is circular, moving past the last element wraps around to the beginning, and moving before the first element wraps back to the end.
Example 1:
Input:
nums = [3,-2,1,1]
Output:
[1,1,1,3]
Explanation:
For
nums[0]
that is equal to 3, If we move 3 steps to right, we reach
nums[3]
. So
result[0]
should be 1.
For
nums[1]
that is equal to -2, If we move 2 steps to left, we reach
nums[3]
. So
result[1]
should be 1.
For
nums[2]
that is equal to 1, If we move 1 step to right, we reach
nums[3]
. So
result[2]
should be 1.
For
nums[3]
that is equal to 1, If we move 1 step to right, we reach
nums[0]
. So
result[3]
should be 3.
Example 2:
Input:
nums = [-1,4,-1]
Output:
[-1,-1,4]
Explanation:
For
nums[0]
that is equal to -1, If we move 1 step to left, we reach
nums[2]
. So
result[0]
should be -1.
For
nums[1]
that is equal to 4, If we move 4 steps to right, we reach
nums[2]
. So
result[1]
should be -1.
For
nums[2]
that is equal to -1, If we move 1 step to left, we reach
nums[1]
. So
result[2]
should be 4.
Constraints:
1 <= nums.length <= 100
-100 <= nums[i] <= 100
| null | null |
class Solution {
public:
vector<int> constructTransformedArray(vector<int>& nums) {
int n = nums.size();
vector<int> ans(n);
for (int i = 0; i < n; ++i) {
ans[i] = nums[i] ? nums[(i + nums[i] % n + n) % n] : 0;
}
return ans;
}
};
| null | null |
func constructTransformedArray(nums []int) []int {
n := len(nums)
ans := make([]int, n)
for i, x := range nums {
if x != 0 {
ans[i] = nums[(i+x%n+n)%n]
}
}
return ans
}
|
class Solution {
public int[] constructTransformedArray(int[] nums) {
int n = nums.length;
int[] ans = new int[n];
for (int i = 0; i < n; ++i) {
ans[i] = nums[i] != 0 ? nums[(i + nums[i] % n + n) % n] : 0;
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def constructTransformedArray(self, nums: List[int]) -> List[int]:
ans = []
n = len(nums)
for i, x in enumerate(nums):
ans.append(nums[(i + x + n) % n] if x else 0)
return ans
| null | null | null | null | null |
function constructTransformedArray(nums: number[]): number[] {
const n = nums.length;
const ans: number[] = [];
for (let i = 0; i < n; ++i) {
ans.push(nums[i] ? nums[(i + (nums[i] % n) + n) % n] : 0);
}
return ans;
}
|
Count Substrings That Differ by One Character
|
Given two strings
s
and
t
, find the number of ways you can choose a non-empty substring of
s
and replace a
single character
by a different character such that the resulting substring is a substring of
t
. In other words, find the number of substrings in
s
that differ from some substring in
t
by
exactly
one character.
For example, the underlined substrings in
"
compute
r"
and
"
computa
tion"
only differ by the
'e'
/
'a'
, so this is a valid way.
Return
the number of substrings that satisfy the condition above.
A
substring
is a contiguous sequence of characters within a string.
Example 1:
Input:
s = "aba", t = "baba"
Output:
6
Explanation:
The following are the pairs of substrings from s and t that differ by exactly 1 character:
("
a
ba", "
b
aba")
("
a
ba", "ba
b
a")
("ab
a
", "
b
aba")
("ab
a
", "ba
b
a")
("a
b
a", "b
a
ba")
("a
b
a", "bab
a
")
The underlined portions are the substrings that are chosen from s and t.
Example 2:
Input:
s = "ab", t = "bb"
Output:
3
Explanation:
The following are the pairs of substrings from s and t that differ by 1 character:
("
a
b", "
b
b")
("
a
b", "b
b
")
("
ab
", "
bb
")
The underlined portions are the substrings that are chosen from s and t.
Constraints:
1 <= s.length, t.length <= 100
s
and
t
consist of lowercase English letters only.
| null | null |
class Solution {
public:
int countSubstrings(string s, string t) {
int ans = 0;
int m = s.length(), n = t.length();
int f[m + 1][n + 1];
int g[m + 1][n + 1];
memset(f, 0, sizeof(f));
memset(g, 0, sizeof(g));
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (s[i] == t[j]) {
f[i + 1][j + 1] = f[i][j] + 1;
}
}
}
for (int i = m - 1; i >= 0; --i) {
for (int j = n - 1; j >= 0; --j) {
if (s[i] == t[j]) {
g[i][j] = g[i + 1][j + 1] + 1;
} else {
ans += (f[i][j] + 1) * (g[i + 1][j + 1] + 1);
}
}
}
return ans;
}
};
| null | null |
func countSubstrings(s string, t string) (ans int) {
m, n := len(s), len(t)
f := make([][]int, m+1)
g := make([][]int, m+1)
for i := range f {
f[i] = make([]int, n+1)
g[i] = make([]int, n+1)
}
for i, a := range s {
for j, b := range t {
if a == b {
f[i+1][j+1] = f[i][j] + 1
}
}
}
for i := m - 1; i >= 0; i-- {
for j := n - 1; j >= 0; j-- {
if s[i] == t[j] {
g[i][j] = g[i+1][j+1] + 1
} else {
ans += (f[i][j] + 1) * (g[i+1][j+1] + 1)
}
}
}
return
}
|
class Solution {
public int countSubstrings(String s, String t) {
int ans = 0;
int m = s.length(), n = t.length();
int[][] f = new int[m + 1][n + 1];
int[][] g = new int[m + 1][n + 1];
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (s.charAt(i) == t.charAt(j)) {
f[i + 1][j + 1] = f[i][j] + 1;
}
}
}
for (int i = m - 1; i >= 0; --i) {
for (int j = n - 1; j >= 0; --j) {
if (s.charAt(i) == t.charAt(j)) {
g[i][j] = g[i + 1][j + 1] + 1;
} else {
ans += (f[i][j] + 1) * (g[i + 1][j + 1] + 1);
}
}
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def countSubstrings(self, s: str, t: str) -> int:
ans = 0
m, n = len(s), len(t)
f = [[0] * (n + 1) for _ in range(m + 1)]
g = [[0] * (n + 1) for _ in range(m + 1)]
for i, a in enumerate(s, 1):
for j, b in enumerate(t, 1):
if a == b:
f[i][j] = f[i - 1][j - 1] + 1
for i in range(m - 1, -1, -1):
for j in range(n - 1, -1, -1):
if s[i] == t[j]:
g[i][j] = g[i + 1][j + 1] + 1
else:
ans += (f[i][j] + 1) * (g[i + 1][j + 1] + 1)
return ans
| null | null | null | null | null | null |
Maximum Enemy Forts That Can Be Captured
|
You are given a
0-indexed
integer array
forts
of length
n
representing the positions of several forts.
forts[i]
can be
-1
,
0
, or
1
where:
-1
represents there is
no fort
at the
i
th
position.
0
indicates there is an
enemy
fort at the
i
th
position.
1
indicates the fort at the
i
th
the position is under your command.
Now you have decided to move your army from one of your forts at position
i
to an empty position
j
such that:
0 <= i, j <= n - 1
The army travels over enemy forts
only
. Formally, for all
k
where
min(i,j) < k < max(i,j)
,
forts[k] == 0.
While moving the army, all the enemy forts that come in the way are
captured
.
Return
the
maximum
number of enemy forts that can be captured
. In case it is
impossible
to move your army, or you do not have any fort under your command, return
0
.
Example 1:
Input:
forts = [1,0,0,-1,0,0,0,0,1]
Output:
4
Explanation:
- Moving the army from position 0 to position 3 captures 2 enemy forts, at 1 and 2.
- Moving the army from position 8 to position 3 captures 4 enemy forts.
Since 4 is the maximum number of enemy forts that can be captured, we return 4.
Example 2:
Input:
forts = [0,0,1,-1]
Output:
0
Explanation:
Since no enemy fort can be captured, 0 is returned.
Constraints:
1 <= forts.length <= 1000
-1 <= forts[i] <= 1
| null | null |
class Solution {
public:
int captureForts(vector<int>& forts) {
int n = forts.size();
int ans = 0, i = 0;
while (i < n) {
int j = i + 1;
if (forts[i] != 0) {
while (j < n && forts[j] == 0) {
++j;
}
if (j < n && forts[i] + forts[j] == 0) {
ans = max(ans, j - i - 1);
}
}
i = j;
}
return ans;
}
};
| null | null |
func captureForts(forts []int) (ans int) {
n := len(forts)
i := 0
for i < n {
j := i + 1
if forts[i] != 0 {
for j < n && forts[j] == 0 {
j++
}
if j < n && forts[i]+forts[j] == 0 {
ans = max(ans, j-i-1)
}
}
i = j
}
return
}
|
class Solution {
public int captureForts(int[] forts) {
int n = forts.length;
int ans = 0, i = 0;
while (i < n) {
int j = i + 1;
if (forts[i] != 0) {
while (j < n && forts[j] == 0) {
++j;
}
if (j < n && forts[i] + forts[j] == 0) {
ans = Math.max(ans, j - i - 1);
}
}
i = j;
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def captureForts(self, forts: List[int]) -> int:
n = len(forts)
i = ans = 0
while i < n:
j = i + 1
if forts[i]:
while j < n and forts[j] == 0:
j += 1
if j < n and forts[i] + forts[j] == 0:
ans = max(ans, j - i - 1)
i = j
return ans
| null |
impl Solution {
pub fn capture_forts(forts: Vec<i32>) -> i32 {
let n = forts.len();
let mut ans = 0;
let mut i = 0;
while i < n {
let mut j = i + 1;
if forts[i] != 0 {
while j < n && forts[j] == 0 {
j += 1;
}
if j < n && forts[i] + forts[j] == 0 {
ans = ans.max(j - i - 1);
}
}
i = j;
}
ans as i32
}
}
| null | null | null |
function captureForts(forts: number[]): number {
const n = forts.length;
let ans = 0;
let i = 0;
while (i < n) {
let j = i + 1;
if (forts[i] !== 0) {
while (j < n && forts[j] === 0) {
j++;
}
if (j < n && forts[i] + forts[j] === 0) {
ans = Math.max(ans, j - i - 1);
}
}
i = j;
}
return ans;
}
|
Last Moment Before All Ants Fall Out of a Plank
|
We have a wooden plank of the length
n
units
. Some ants are walking on the plank, each ant moves with a speed of
1 unit per second
. Some of the ants move to the
left
, the other move to the
right
.
When two ants moving in two
different
directions meet at some point, they change their directions and continue moving again. Assume changing directions does not take any additional time.
When an ant reaches
one end
of the plank at a time
t
, it falls out of the plank immediately.
Given an integer
n
and two integer arrays
left
and
right
, the positions of the ants moving to the left and the right, return
the moment when the last ant(s) fall out of the plank
.
Example 1:
Input:
n = 4, left = [4,3], right = [0,1]
Output:
4
Explanation:
In the image above:
-The ant at index 0 is named A and going to the right.
-The ant at index 1 is named B and going to the right.
-The ant at index 3 is named C and going to the left.
-The ant at index 4 is named D and going to the left.
The last moment when an ant was on the plank is t = 4 seconds. After that, it falls immediately out of the plank. (i.e., We can say that at t = 4.0000000001, there are no ants on the plank).
Example 2:
Input:
n = 7, left = [], right = [0,1,2,3,4,5,6,7]
Output:
7
Explanation:
All ants are going to the right, the ant at index 0 needs 7 seconds to fall.
Example 3:
Input:
n = 7, left = [0,1,2,3,4,5,6,7], right = []
Output:
7
Explanation:
All ants are going to the left, the ant at index 7 needs 7 seconds to fall.
Constraints:
1 <= n <= 10
4
0 <= left.length <= n + 1
0 <= left[i] <= n
0 <= right.length <= n + 1
0 <= right[i] <= n
1 <= left.length + right.length <= n + 1
All values of
left
and
right
are unique, and each value can appear
only in one
of the two arrays.
| null | null |
class Solution {
public:
int getLastMoment(int n, vector<int>& left, vector<int>& right) {
int ans = 0;
for (int& x : left) {
ans = max(ans, x);
}
for (int& x : right) {
ans = max(ans, n - x);
}
return ans;
}
};
| null | null |
func getLastMoment(n int, left []int, right []int) (ans int) {
for _, x := range left {
ans = max(ans, x)
}
for _, x := range right {
ans = max(ans, n-x)
}
return
}
|
class Solution {
public int getLastMoment(int n, int[] left, int[] right) {
int ans = 0;
for (int x : left) {
ans = Math.max(ans, x);
}
for (int x : right) {
ans = Math.max(ans, n - x);
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def getLastMoment(self, n: int, left: List[int], right: List[int]) -> int:
ans = 0
for x in left:
ans = max(ans, x)
for x in right:
ans = max(ans, n - x)
return ans
| null | null | null | null | null |
function getLastMoment(n: number, left: number[], right: number[]): number {
let ans = 0;
for (const x of left) {
ans = Math.max(ans, x);
}
for (const x of right) {
ans = Math.max(ans, n - x);
}
return ans;
}
|
Minimum Distance Between BST Nodes
|
Given the
root
of a Binary Search Tree (BST), return
the minimum difference between the values of any two different nodes in the tree
.
Example 1:
Input:
root = [4,2,6,1,3]
Output:
1
Example 2:
Input:
root = [1,0,48,null,null,12,49]
Output:
1
Constraints:
The number of nodes in the tree is in the range
[2, 100]
.
0 <= Node.val <= 10
5
Note:
This question is the same as 530:
https://leetcode.com/problems/minimum-absolute-difference-in-bst/
| null | null |
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int minDiffInBST(TreeNode* root) {
const int inf = 1 << 30;
int ans = inf, pre = -inf;
auto dfs = [&](this auto&& dfs, TreeNode* root) -> void {
if (!root) {
return;
}
dfs(root->left);
ans = min(ans, root->val - pre);
pre = root->val;
dfs(root->right);
};
dfs(root);
return ans;
}
};
| null | null |
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func minDiffInBST(root *TreeNode) int {
const inf int = 1 << 30
ans, pre := inf, -inf
var dfs func(*TreeNode)
dfs = func(root *TreeNode) {
if root == nil {
return
}
dfs(root.Left)
ans = min(ans, root.Val-pre)
pre = root.Val
dfs(root.Right)
}
dfs(root)
return ans
}
|
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private final int inf = 1 << 30;
private int ans = inf;
private int pre = -inf;
public int minDiffInBST(TreeNode root) {
dfs(root);
return ans;
}
private void dfs(TreeNode root) {
if (root == null) {
return;
}
dfs(root.left);
ans = Math.min(ans, root.val - pre);
pre = root.val;
dfs(root.right);
}
}
|
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number}
*/
var minDiffInBST = function (root) {
let [ans, pre] = [Infinity, -Infinity];
const dfs = root => {
if (!root) {
return;
}
dfs(root.left);
ans = Math.min(ans, root.val - pre);
pre = root.val;
dfs(root.right);
};
dfs(root);
return ans;
};
| null | null | null | null | null |
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def minDiffInBST(self, root: Optional[TreeNode]) -> int:
def dfs(root: Optional[TreeNode]):
if root is None:
return
dfs(root.left)
nonlocal pre, ans
ans = min(ans, root.val - pre)
pre = root.val
dfs(root.right)
pre = -inf
ans = inf
dfs(root)
return ans
| null |
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
pub fn min_diff_in_bst(root: Option<Rc<RefCell<TreeNode>>>) -> i32 {
const inf: i32 = 1 << 30;
let mut ans = inf;
let mut pre = -inf;
fn dfs(node: Option<Rc<RefCell<TreeNode>>>, ans: &mut i32, pre: &mut i32) {
if let Some(n) = node {
let n = n.borrow();
dfs(n.left.clone(), ans, pre);
*ans = (*ans).min(n.val - *pre);
*pre = n.val;
dfs(n.right.clone(), ans, pre);
}
}
dfs(root, &mut ans, &mut pre);
ans
}
}
| null | null | null |
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function minDiffInBST(root: TreeNode | null): number {
let [ans, pre] = [Infinity, -Infinity];
const dfs = (root: TreeNode | null) => {
if (!root) {
return;
}
dfs(root.left);
ans = Math.min(ans, root.val - pre);
pre = root.val;
dfs(root.right);
};
dfs(root);
return ans;
}
|
Minimum Time to Reach Destination in Directed Graph
|
You are given an integer
n
and a
directed
graph with
n
nodes labeled from 0 to
n - 1
. This is represented by a 2D array
edges
, where
edges[i] = [u
i
, v
i
, start
i
, end
i
]
indicates an edge from node
u
i
to
v
i
that can
only
be used at any integer time
t
such that
start
i
<= t <= end
i
.
You start at node 0 at time 0.
In one unit of time, you can either:
Wait at your current node without moving, or
Travel along an outgoing edge from your current node if the current time
t
satisfies
start
i
<= t <= end
i
.
Return the
minimum
time required to reach node
n - 1
. If it is impossible, return
-1
.
Example 1:
Input:
n = 3, edges = [[0,1,0,1],[1,2,2,5]]
Output:
3
Explanation:
The optimal path is:
At time
t = 0
, take the edge
(0 → 1)
which is available from 0 to 1. You arrive at node 1 at time
t = 1
, then wait until
t = 2
.
At time
t =
2
, take the edge
(1 → 2)
which is available from 2 to 5. You arrive at node 2 at time 3.
Hence, the minimum time to reach node 2 is 3.
Example 2:
Input:
n = 4, edges = [[0,1,0,3],[1,3,7,8],[0,2,1,5],[2,3,4,7]]
Output:
5
Explanation:
The optimal path is:
Wait at node 0 until time
t = 1
, then take the edge
(0 → 2)
which is available from 1 to 5. You arrive at node 2 at
t = 2
.
Wait at node 2 until time
t = 4
, then take the edge
(2 → 3)
which is available from 4 to 7. You arrive at node 3 at
t = 5
.
Hence, the minimum time to reach node 3 is 5.
Example 3:
Input:
n = 3, edges = [[1,0,1,3],[1,2,3,5]]
Output:
-1
Explanation:
Since there is no outgoing edge from node 0, it is impossible to reach node 2. Hence, the output is -1.
Constraints:
1 <= n <= 10
5
0 <= edges.length <= 10
5
edges[i] == [u
i
, v
i
, start
i
, end
i
]
0 <= u
i
, v
i
<= n - 1
u
i
!= v
i
0 <= start
i
<= end
i
<= 10
9
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
Find the Length of the Longest Common Prefix
|
You are given two arrays with
positive
integers
arr1
and
arr2
.
A
prefix
of a positive integer is an integer formed by one or more of its digits, starting from its
leftmost
digit. For example,
123
is a prefix of the integer
12345
, while
234
is
not
.
A
common prefix
of two integers
a
and
b
is an integer
c
, such that
c
is a prefix of both
a
and
b
. For example,
5655359
and
56554
have common prefixes
565
and
5655
while
1223
and
43456
do not
have a common prefix.
You need to find the length of the
longest common prefix
between all pairs of integers
(x, y)
such that
x
belongs to
arr1
and
y
belongs to
arr2
.
Return
the length of the
longest
common prefix among all pairs
.
If no common prefix exists among them
,
return
0
.
Example 1:
Input:
arr1 = [1,10,100], arr2 = [1000]
Output:
3
Explanation:
There are 3 pairs (arr1[i], arr2[j]):
- The longest common prefix of (1, 1000) is 1.
- The longest common prefix of (10, 1000) is 10.
- The longest common prefix of (100, 1000) is 100.
The longest common prefix is 100 with a length of 3.
Example 2:
Input:
arr1 = [1,2,3], arr2 = [4,4,4]
Output:
0
Explanation:
There exists no common prefix for any pair (arr1[i], arr2[j]), hence we return 0.
Note that common prefixes between elements of the same array do not count.
Constraints:
1 <= arr1.length, arr2.length <= 5 * 10
4
1 <= arr1[i], arr2[i] <= 10
8
| null | null |
class Solution {
public:
int longestCommonPrefix(vector<int>& arr1, vector<int>& arr2) {
unordered_set<int> s;
for (int x : arr1) {
for (; x; x /= 10) {
s.insert(x);
}
}
int ans = 0;
for (int x : arr2) {
for (; x; x /= 10) {
if (s.count(x)) {
ans = max(ans, (int) log10(x) + 1);
break;
}
}
}
return ans;
}
};
| null | null |
func longestCommonPrefix(arr1 []int, arr2 []int) (ans int) {
s := map[int]bool{}
for _, x := range arr1 {
for ; x > 0; x /= 10 {
s[x] = true
}
}
for _, x := range arr2 {
for ; x > 0; x /= 10 {
if s[x] {
ans = max(ans, int(math.Log10(float64(x)))+1)
break
}
}
}
return
}
|
class Solution {
public int longestCommonPrefix(int[] arr1, int[] arr2) {
Set<Integer> s = new HashSet<>();
for (int x : arr1) {
for (; x > 0; x /= 10) {
s.add(x);
}
}
int ans = 0;
for (int x : arr2) {
for (; x > 0; x /= 10) {
if (s.contains(x)) {
ans = Math.max(ans, String.valueOf(x).length());
break;
}
}
}
return ans;
}
}
|
/**
* @param {number[]} arr1
* @param {number[]} arr2
* @return {number}
*/
var longestCommonPrefix = function (arr1, arr2) {
const s = new Set();
for (let x of arr1) {
for (; x; x = Math.floor(x / 10)) {
s.add(x);
}
}
let ans = 0;
for (let x of arr2) {
for (; x; x = Math.floor(x / 10)) {
if (s.has(x)) {
ans = Math.max(ans, Math.floor(Math.log10(x)) + 1);
}
}
}
return ans;
};
| null | null | null | null | null |
class Solution:
def longestCommonPrefix(self, arr1: List[int], arr2: List[int]) -> int:
s = set()
for x in arr1:
while x:
s.add(x)
x //= 10
ans = 0
for x in arr2:
while x:
if x in s:
ans = max(ans, len(str(x)))
break
x //= 10
return ans
| null | null | null | null | null |
function longestCommonPrefix(arr1: number[], arr2: number[]): number {
const s: Set<number> = new Set<number>();
for (let x of arr1) {
for (; x; x = Math.floor(x / 10)) {
s.add(x);
}
}
let ans: number = 0;
for (let x of arr2) {
for (; x; x = Math.floor(x / 10)) {
if (s.has(x)) {
ans = Math.max(ans, Math.floor(Math.log10(x)) + 1);
}
}
}
return ans;
}
|
Find Champion I
|
There are
n
teams numbered from
0
to
n - 1
in a tournament.
Given a
0-indexed
2D boolean matrix
grid
of size
n * n
. For all
i, j
that
0 <= i, j <= n - 1
and
i != j
team
i
is
stronger
than team
j
if
grid[i][j] == 1
, otherwise, team
j
is
stronger
than team
i
.
Team
a
will be the
champion
of the tournament if there is no team
b
that is stronger than team
a
.
Return
the team that will be the champion of the tournament.
Example 1:
Input:
grid = [[0,1],[0,0]]
Output:
0
Explanation:
There are two teams in this tournament.
grid[0][1] == 1 means that team 0 is stronger than team 1. So team 0 will be the champion.
Example 2:
Input:
grid = [[0,0,1],[1,0,1],[0,0,0]]
Output:
1
Explanation:
There are three teams in this tournament.
grid[1][0] == 1 means that team 1 is stronger than team 0.
grid[1][2] == 1 means that team 1 is stronger than team 2.
So team 1 will be the champion.
Constraints:
n == grid.length
n == grid[i].length
2 <= n <= 100
grid[i][j]
is either
0
or
1
.
For all
i grid[i][i]
is
0.
For all
i, j
that
i != j
,
grid[i][j] != grid[j][i]
.
The input is generated such that if team
a
is stronger than team
b
and team
b
is stronger than team
c
, then team
a
is stronger than team
c
.
| null | null |
class Solution {
public:
int findChampion(vector<vector<int>>& grid) {
int n = grid.size();
for (int i = 0;; ++i) {
int cnt = 0;
for (int j = 0; j < n; ++j) {
if (i != j && grid[i][j] == 1) {
++cnt;
}
}
if (cnt == n - 1) {
return i;
}
}
}
};
| null | null |
func findChampion(grid [][]int) int {
n := len(grid)
for i := 0; ; i++ {
cnt := 0
for j, x := range grid[i] {
if i != j && x == 1 {
cnt++
}
}
if cnt == n-1 {
return i
}
}
}
|
class Solution {
public int findChampion(int[][] grid) {
int n = grid.length;
for (int i = 0;; ++i) {
int cnt = 0;
for (int j = 0; j < n; ++j) {
if (i != j && grid[i][j] == 1) {
++cnt;
}
}
if (cnt == n - 1) {
return i;
}
}
}
}
| null | null | null | null | null | null |
class Solution:
def findChampion(self, grid: List[List[int]]) -> int:
for i, row in enumerate(grid):
if all(x == 1 for j, x in enumerate(row) if i != j):
return i
| null | null | null | null | null |
function findChampion(grid: number[][]): number {
for (let i = 0, n = grid.length; ; ++i) {
let cnt = 0;
for (let j = 0; j < n; ++j) {
if (i !== j && grid[i][j] === 1) {
++cnt;
}
}
if (cnt === n - 1) {
return i;
}
}
}
|
Running Total for Different Genders 🔒
|
Table:
Scores
+---------------+---------+
| Column Name | Type |
+---------------+---------+
| player_name | varchar |
| gender | varchar |
| day | date |
| score_points | int |
+---------------+---------+
(gender, day) is the primary key (combination of columns with unique values) for this table.
A competition is held between the female team and the male team.
Each row of this table indicates that a player_name and with gender has scored score_point in someday.
Gender is 'F' if the player is in the female team and 'M' if the player is in the male team.
Write a solution to find the total score for each gender on each day.
Return the result table ordered by
gender
and
day
in
ascending order
.
The result format is in the following example.
Example 1:
Input:
Scores table:
+-------------+--------+------------+--------------+
| player_name | gender | day | score_points |
+-------------+--------+------------+--------------+
| Aron | F | 2020-01-01 | 17 |
| Alice | F | 2020-01-07 | 23 |
| Bajrang | M | 2020-01-07 | 7 |
| Khali | M | 2019-12-25 | 11 |
| Slaman | M | 2019-12-30 | 13 |
| Joe | M | 2019-12-31 | 3 |
| Jose | M | 2019-12-18 | 2 |
| Priya | F | 2019-12-31 | 23 |
| Priyanka | F | 2019-12-30 | 17 |
+-------------+--------+------------+--------------+
Output:
+--------+------------+-------+
| gender | day | total |
+--------+------------+-------+
| F | 2019-12-30 | 17 |
| F | 2019-12-31 | 40 |
| F | 2020-01-01 | 57 |
| F | 2020-01-07 | 80 |
| M | 2019-12-18 | 2 |
| M | 2019-12-25 | 13 |
| M | 2019-12-30 | 26 |
| M | 2019-12-31 | 29 |
| M | 2020-01-07 | 36 |
+--------+------------+-------+
Explanation:
For the female team:
The first day is 2019-12-30, Priyanka scored 17 points and the total score for the team is 17.
The second day is 2019-12-31, Priya scored 23 points and the total score for the team is 40.
The third day is 2020-01-01, Aron scored 17 points and the total score for the team is 57.
The fourth day is 2020-01-07, Alice scored 23 points and the total score for the team is 80.
For the male team:
The first day is 2019-12-18, Jose scored 2 points and the total score for the team is 2.
The second day is 2019-12-25, Khali scored 11 points and the total score for the team is 13.
The third day is 2019-12-30, Slaman scored 13 points and the total score for the team is 26.
The fourth day is 2019-12-31, Joe scored 3 points and the total score for the team is 29.
The fifth day is 2020-01-07, Bajrang scored 7 points and the total score for the team is 36.
| null | null | null | null | null | null | null | null | null |
# Write your MySQL query statement below
SELECT
gender,
day,
SUM(score_points) OVER (
PARTITION BY gender
ORDER BY gender, day
) AS total
FROM Scores;
| null | null | null | null | null | null | null | null | null | null |
Check If a Number Is Majority Element in a Sorted Array 🔒
|
Given an integer array
nums
sorted in non-decreasing order and an integer
target
, return
true
if
target
is a
majority
element, or
false
otherwise
.
A
majority
element in an array
nums
is an element that appears more than
nums.length / 2
times in the array.
Example 1:
Input:
nums = [2,4,5,5,5,5,5,6,6], target = 5
Output:
true
Explanation:
The value 5 appears 5 times and the length of the array is 9.
Thus, 5 is a majority element because 5 > 9/2 is true.
Example 2:
Input:
nums = [10,100,101,101], target = 101
Output:
false
Explanation:
The value 101 appears 2 times and the length of the array is 4.
Thus, 101 is not a majority element because 2 > 4/2 is false.
Constraints:
1 <= nums.length <= 1000
1 <= nums[i], target <= 10
9
nums
is sorted in non-decreasing order.
| null | null |
class Solution {
public:
bool isMajorityElement(vector<int>& nums, int target) {
int n = nums.size();
int left = lower_bound(nums.begin(), nums.end(), target) - nums.begin();
int right = left + n / 2;
return right < n && nums[right] == target;
}
};
| null | null |
func isMajorityElement(nums []int, target int) bool {
n := len(nums)
left := sort.SearchInts(nums, target)
right := left + n/2
return right < n && nums[right] == target
}
|
class Solution {
public boolean isMajorityElement(int[] nums, int target) {
int n = nums.length;
int left = search(nums, target);
int right = left + n / 2;
return right < n && nums[right] == target;
}
private int search(int[] nums, int x) {
int left = 0, right = nums.length;
while (left < right) {
int mid = (left + right) >> 1;
if (nums[mid] >= x) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
}
| null | null | null | null | null | null |
class Solution:
def isMajorityElement(self, nums: List[int], target: int) -> bool:
left = bisect_left(nums, target)
right = left + len(nums) // 2
return right < len(nums) and nums[right] == target
| null | null | null | null | null |
function isMajorityElement(nums: number[], target: number): boolean {
const search = (x: number) => {
let left = 0;
let right = n;
while (left < right) {
const mid = (left + right) >> 1;
if (nums[mid] >= x) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
};
const n = nums.length;
const left = search(target);
const right = left + (n >> 1);
return right < n && nums[right] === target;
}
|
Generate a String With Characters That Have Odd Counts
|
Given an integer
n
,
return a string with
n
characters such that each character in such string occurs
an odd number of times
.
The returned string must contain only lowercase English letters. If there are multiples valid strings, return
any
of them.
Example 1:
Input:
n = 4
Output:
"pppz"
Explanation:
"pppz" is a valid string since the character 'p' occurs three times and the character 'z' occurs once. Note that there are many other valid strings such as "ohhh" and "love".
Example 2:
Input:
n = 2
Output:
"xy"
Explanation:
"xy" is a valid string since the characters 'x' and 'y' occur once. Note that there are many other valid strings such as "ag" and "ur".
Example 3:
Input:
n = 7
Output:
"holasss"
Constraints:
1 <= n <= 500
| null | null |
class Solution {
public:
string generateTheString(int n) {
string ans(n, 'a');
if (n % 2 == 0) {
ans[0] = 'b';
}
return ans;
}
};
| null | null |
func generateTheString(n int) string {
ans := strings.Repeat("a", n-1)
if n%2 == 0 {
ans += "b"
} else {
ans += "a"
}
return ans
}
|
class Solution {
public String generateTheString(int n) {
return (n % 2 == 1) ? "a".repeat(n) : "a".repeat(n - 1) + "b";
}
}
| null | null | null | null | null | null |
class Solution:
def generateTheString(self, n: int) -> str:
return 'a' * n if n & 1 else 'a' * (n - 1) + 'b'
| null | null | null | null | null |
function generateTheString(n: number): string {
const ans = Array(n).fill('a');
if (n % 2 === 0) {
ans[0] = 'b';
}
return ans.join('');
}
|
Unique Binary Search Trees
|
Given an integer
n
, return
the number of structurally unique
BST'
s (binary search trees) which has exactly
n
nodes of unique values from
1
to
n
.
Example 1:
Input:
n = 3
Output:
5
Example 2:
Input:
n = 1
Output:
1
Constraints:
1 <= n <= 19
| null |
public class Solution {
public int NumTrees(int n) {
int[] f = new int[n + 1];
f[0] = 1;
for (int i = 1; i <= n; ++i) {
for (int j = 0; j < i; ++j) {
f[i] += f[j] * f[i - j - 1];
}
}
return f[n];
}
}
|
class Solution {
public:
int numTrees(int n) {
vector<int> f(n + 1);
f[0] = 1;
for (int i = 1; i <= n; ++i) {
for (int j = 0; j < i; ++j) {
f[i] += f[j] * f[i - j - 1];
}
}
return f[n];
}
};
| null | null |
func numTrees(n int) int {
f := make([]int, n+1)
f[0] = 1
for i := 1; i <= n; i++ {
for j := 0; j < i; j++ {
f[i] += f[j] * f[i-j-1]
}
}
return f[n]
}
|
class Solution {
public int numTrees(int n) {
int[] f = new int[n + 1];
f[0] = 1;
for (int i = 1; i <= n; ++i) {
for (int j = 0; j < i; ++j) {
f[i] += f[j] * f[i - j - 1];
}
}
return f[n];
}
}
| null | null | null | null | null | null |
class Solution:
def numTrees(self, n: int) -> int:
f = [1] + [0] * n
for i in range(n + 1):
for j in range(i):
f[i] += f[j] * f[i - j - 1]
return f[n]
| null |
impl Solution {
pub fn num_trees(n: i32) -> i32 {
let n = n as usize;
let mut f = vec![0; n + 1];
f[0] = 1;
for i in 1..=n {
for j in 0..i {
f[i] += f[j] * f[i - j - 1];
}
}
f[n] as i32
}
}
| null | null | null |
function numTrees(n: number): number {
const f: number[] = Array(n + 1).fill(0);
f[0] = 1;
for (let i = 1; i <= n; ++i) {
for (let j = 0; j < i; ++j) {
f[i] += f[j] * f[i - j - 1];
}
}
return f[n];
}
|
Rearrange Array to Maximize Prefix Score
|
You are given a
0-indexed
integer array
nums
. You can rearrange the elements of
nums
to
any order
(including the given order).
Let
prefix
be the array containing the prefix sums of
nums
after rearranging it. In other words,
prefix[i]
is the sum of the elements from
0
to
i
in
nums
after rearranging it. The
score
of
nums
is the number of positive integers in the array
prefix
.
Return
the maximum score you can achieve
.
Example 1:
Input:
nums = [2,-1,0,1,-3,3,-3]
Output:
6
Explanation:
We can rearrange the array into nums = [2,3,1,-1,-3,0,-3].
prefix = [2,5,6,5,2,2,-1], so the score is 6.
It can be shown that 6 is the maximum score we can obtain.
Example 2:
Input:
nums = [-2,-3,0]
Output:
0
Explanation:
Any rearrangement of the array will result in a score of 0.
Constraints:
1 <= nums.length <= 10
5
-10
6
<= nums[i] <= 10
6
| null | null |
class Solution {
public:
int maxScore(vector<int>& nums) {
sort(nums.rbegin(), nums.rend());
long long s = 0;
int n = nums.size();
for (int i = 0; i < n; ++i) {
s += nums[i];
if (s <= 0) {
return i;
}
}
return n;
}
};
| null | null |
func maxScore(nums []int) int {
sort.Ints(nums)
n := len(nums)
s := 0
for i := range nums {
s += nums[n-i-1]
if s <= 0 {
return i
}
}
return n
}
|
class Solution {
public int maxScore(int[] nums) {
Arrays.sort(nums);
int n = nums.length;
long s = 0;
for (int i = 0; i < n; ++i) {
s += nums[n - i - 1];
if (s <= 0) {
return i;
}
}
return n;
}
}
| null | null | null | null | null | null |
class Solution:
def maxScore(self, nums: List[int]) -> int:
nums.sort(reverse=True)
s = 0
for i, x in enumerate(nums):
s += x
if s <= 0:
return i
return len(nums)
| null |
impl Solution {
pub fn max_score(mut nums: Vec<i32>) -> i32 {
nums.sort_by(|a, b| b.cmp(a));
let mut s: i64 = 0;
for (i, &x) in nums.iter().enumerate() {
s += x as i64;
if s <= 0 {
return i as i32;
}
}
nums.len() as i32
}
}
| null | null | null |
function maxScore(nums: number[]): number {
nums.sort((a, b) => a - b);
const n = nums.length;
let s = 0;
for (let i = 0; i < n; ++i) {
s += nums[n - i - 1];
if (s <= 0) {
return i;
}
}
return n;
}
|
Digit Count in Range 🔒
|
Given a single-digit integer
d
and two integers
low
and
high
, return
the number of times that
d
occurs as a digit in all integers in the inclusive range
[low, high]
.
Example 1:
Input:
d = 1, low = 1, high = 13
Output:
6
Explanation:
The digit d = 1 occurs 6 times in 1, 10, 11, 12, 13.
Note that the digit d = 1 occurs twice in the number 11.
Example 2:
Input:
d = 3, low = 100, high = 250
Output:
35
Explanation:
The digit d = 3 occurs 35 times in 103,113,123,130,131,...,238,239,243.
Constraints:
0 <= d <= 9
1 <= low <= high <= 2 * 10
8
| null | null |
class Solution {
public:
int d;
int a[11];
int dp[11][11];
int digitsCount(int d, int low, int high) {
this->d = d;
return f(high) - f(low - 1);
}
int f(int n) {
memset(dp, -1, sizeof dp);
int len = 0;
while (n) {
a[++len] = n % 10;
n /= 10;
}
return dfs(len, 0, true, true);
}
int dfs(int pos, int cnt, bool lead, bool limit) {
if (pos <= 0) {
return cnt;
}
if (!lead && !limit && dp[pos][cnt] != -1) {
return dp[pos][cnt];
}
int up = limit ? a[pos] : 9;
int ans = 0;
for (int i = 0; i <= up; ++i) {
if (i == 0 && lead) {
ans += dfs(pos - 1, cnt, lead, limit && i == up);
} else {
ans += dfs(pos - 1, cnt + (i == d), false, limit && i == up);
}
}
if (!lead && !limit) {
dp[pos][cnt] = ans;
}
return ans;
}
};
| null | null |
func digitsCount(d int, low int, high int) int {
f := func(n int) int {
a := make([]int, 11)
dp := make([][]int, 11)
for i := range dp {
dp[i] = make([]int, 11)
for j := range dp[i] {
dp[i][j] = -1
}
}
l := 0
for n > 0 {
l++
a[l] = n % 10
n /= 10
}
var dfs func(int, int, bool, bool) int
dfs = func(pos, cnt int, lead, limit bool) int {
if pos <= 0 {
return cnt
}
if !lead && !limit && dp[pos][cnt] != -1 {
return dp[pos][cnt]
}
up := 9
if limit {
up = a[pos]
}
ans := 0
for i := 0; i <= up; i++ {
if i == 0 && lead {
ans += dfs(pos-1, cnt, lead, limit && i == up)
} else {
t := cnt
if d == i {
t++
}
ans += dfs(pos-1, t, false, limit && i == up)
}
}
if !lead && !limit {
dp[pos][cnt] = ans
}
return ans
}
return dfs(l, 0, true, true)
}
return f(high) - f(low-1)
}
|
class Solution {
private int d;
private int[] a = new int[11];
private int[][] dp = new int[11][11];
public int digitsCount(int d, int low, int high) {
this.d = d;
return f(high) - f(low - 1);
}
private int f(int n) {
for (var e : dp) {
Arrays.fill(e, -1);
}
int len = 0;
while (n > 0) {
a[++len] = n % 10;
n /= 10;
}
return dfs(len, 0, true, true);
}
private int dfs(int pos, int cnt, boolean lead, boolean limit) {
if (pos <= 0) {
return cnt;
}
if (!lead && !limit && dp[pos][cnt] != -1) {
return dp[pos][cnt];
}
int up = limit ? a[pos] : 9;
int ans = 0;
for (int i = 0; i <= up; ++i) {
if (i == 0 && lead) {
ans += dfs(pos - 1, cnt, lead, limit && i == up);
} else {
ans += dfs(pos - 1, cnt + (i == d ? 1 : 0), false, limit && i == up);
}
}
if (!lead && !limit) {
dp[pos][cnt] = ans;
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def digitsCount(self, d: int, low: int, high: int) -> int:
return self.f(high, d) - self.f(low - 1, d)
def f(self, n, d):
@cache
def dfs(pos, cnt, lead, limit):
if pos <= 0:
return cnt
up = a[pos] if limit else 9
ans = 0
for i in range(up + 1):
if i == 0 and lead:
ans += dfs(pos - 1, cnt, lead, limit and i == up)
else:
ans += dfs(pos - 1, cnt + (i == d), False, limit and i == up)
return ans
a = [0] * 11
l = 0
while n:
l += 1
a[l] = n % 10
n //= 10
return dfs(l, 0, True, True)
| null | null | null | null | null | null |
Convert Object to JSON String 🔒
|
Given a value, return a valid JSON string of that value. The value can be a string, number, array, object, boolean, or null. The returned string should not include extra spaces. The order of keys should be the same as the order returned by
Object.keys()
.
Please solve it without using the built-in
JSON.stringify
method.
Example 1:
Input:
object = {"y":1,"x":2}
Output:
{"y":1,"x":2}
Explanation:
Return the JSON representation.
Note that the order of keys should be the same as the order returned by Object.keys().
Example 2:
Input:
object = {"a":"str","b":-12,"c":true,"d":null}
Output:
{"a":"str","b":-12,"c":true,"d":null}
Explanation:
The primitives of JSON are strings, numbers, booleans, and null.
Example 3:
Input:
object = {"key":{"a":1,"b":[{},null,"Hello"]}}
Output:
{"key":{"a":1,"b":[{},null,"Hello"]}}
Explanation:
Objects and arrays can include other objects and arrays.
Example 4:
Input:
object = true
Output:
true
Explanation:
Primitive types are valid inputs.
Constraints:
value
is a valid JSON value
1 <= JSON.stringify(object).length <= 10
5
maxNestingLevel <= 1000
all strings contain only alphanumeric characters
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
function jsonStringify(object: any): string {
if (object === null) {
return 'null';
}
if (typeof object === 'string') {
return `"${object}"`;
}
if (typeof object === 'number' || typeof object === 'boolean') {
return object.toString();
}
if (Array.isArray(object)) {
return `[${object.map(jsonStringify).join(',')}]`;
}
if (typeof object === 'object') {
return `{${Object.entries(object)
.map(([key, value]) => `${jsonStringify(key)}:${jsonStringify(value)}`)
.join(',')}}`;
}
return '';
}
|
Neighboring Bitwise XOR
|
A
0-indexed
array
derived
with length
n
is derived by computing the
bitwise XOR
(⊕) of adjacent values in a
binary array
original
of length
n
.
Specifically, for each index
i
in the range
[0, n - 1]
:
If
i = n - 1
, then
derived[i] = original[i] ⊕ original[0]
.
Otherwise,
derived[i] = original[i] ⊕ original[i + 1]
.
Given an array
derived
, your task is to determine whether there exists a
valid binary array
original
that could have formed
derived
.
Return
true
if such an array exists or
false
otherwise.
A binary array is an array containing only
0's
and
1's
Example 1:
Input:
derived = [1,1,0]
Output:
true
Explanation:
A valid original array that gives derived is [0,1,0].
derived[0] = original[0] ⊕ original[1] = 0 ⊕ 1 = 1
derived[1] = original[1] ⊕ original[2] = 1 ⊕ 0 = 1
derived[2] = original[2] ⊕ original[0] = 0 ⊕ 0 = 0
Example 2:
Input:
derived = [1,1]
Output:
true
Explanation:
A valid original array that gives derived is [0,1].
derived[0] = original[0] ⊕ original[1] = 1
derived[1] = original[1] ⊕ original[0] = 1
Example 3:
Input:
derived = [1,0]
Output:
false
Explanation:
There is no valid original array that gives derived.
Constraints:
n == derived.length
1 <= n <= 10
5
The values in
derived
are either
0's
or
1's
| null |
public class Solution {
public bool DoesValidArrayExist(int[] derived) {
return derived.Aggregate(0, (acc, x) => acc ^ x) == 0;
}
}
|
class Solution {
public:
bool doesValidArrayExist(vector<int>& derived) {
int s = 0;
for (int x : derived) {
s ^= x;
}
return s == 0;
}
};
| null | null |
func doesValidArrayExist(derived []int) bool {
s := 0
for _, x := range derived {
s ^= x
}
return s == 0
}
|
class Solution {
public boolean doesValidArrayExist(int[] derived) {
int s = 0;
for (int x : derived) {
s ^= x;
}
return s == 0;
}
}
|
/**
* @param {number[]} derived
* @return {boolean}
*/
var doesValidArrayExist = function (derived) {
return derived.reduce((acc, x) => acc ^ x) === 0;
};
| null | null | null | null | null |
class Solution:
def doesValidArrayExist(self, derived: List[int]) -> bool:
return reduce(xor, derived) == 0
| null |
impl Solution {
pub fn does_valid_array_exist(derived: Vec<i32>) -> bool {
derived.iter().fold(0, |acc, &x| acc ^ x) == 0
}
}
| null | null | null |
function doesValidArrayExist(derived: number[]): boolean {
return derived.reduce((acc, x) => acc ^ x) === 0;
}
|
Minimum Number of Keypresses 🔒
|
You have a keypad with
9
buttons, numbered from
1
to
9
, each mapped to lowercase English letters. You can choose which characters each button is matched to as long as:
All 26 lowercase English letters are mapped to.
Each character is mapped to by
exactly
1
button.
Each button maps to
at most
3
characters.
To type the first character matched to a button, you press the button once. To type the second character, you press the button twice, and so on.
Given a string
s
, return
the
minimum
number of keypresses needed to type
s
using your keypad.
Note
that the characters mapped to by each button, and the order they are mapped in cannot be changed.
Example 1:
Input:
s = "apple"
Output:
5
Explanation:
One optimal way to setup your keypad is shown above.
Type 'a' by pressing button 1 once.
Type 'p' by pressing button 6 once.
Type 'p' by pressing button 6 once.
Type 'l' by pressing button 5 once.
Type 'e' by pressing button 3 once.
A total of 5 button presses are needed, so return 5.
Example 2:
Input:
s = "abcdefghijkl"
Output:
15
Explanation:
One optimal way to setup your keypad is shown above.
The letters 'a' to 'i' can each be typed by pressing a button once.
Type 'j' by pressing button 1 twice.
Type 'k' by pressing button 2 twice.
Type 'l' by pressing button 3 twice.
A total of 15 button presses are needed, so return 15.
Constraints:
1 <= s.length <= 10
5
s
consists of lowercase English letters.
| null | null |
class Solution {
public:
int minimumKeypresses(string s) {
int cnt[26]{};
for (char& c : s) {
++cnt[c - 'a'];
}
sort(begin(cnt), end(cnt), greater<int>());
int ans = 0, k = 1;
for (int i = 1; i <= 26; ++i) {
ans += k * cnt[i - 1];
if (i % 9 == 0) {
++k;
}
}
return ans;
}
};
| null | null |
func minimumKeypresses(s string) (ans int) {
cnt := make([]int, 26)
for _, c := range s {
cnt[c-'a']++
}
sort.Ints(cnt)
k := 1
for i := 1; i <= 26; i++ {
ans += k * cnt[26-i]
if i%9 == 0 {
k++
}
}
return
}
|
class Solution {
public int minimumKeypresses(String s) {
int[] cnt = new int[26];
for (int i = 0; i < s.length(); ++i) {
++cnt[s.charAt(i) - 'a'];
}
Arrays.sort(cnt);
int ans = 0, k = 1;
for (int i = 1; i <= 26; ++i) {
ans += k * cnt[26 - i];
if (i % 9 == 0) {
++k;
}
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def minimumKeypresses(self, s: str) -> int:
cnt = Counter(s)
ans, k = 0, 1
for i, x in enumerate(sorted(cnt.values(), reverse=True), 1):
ans += k * x
if i % 9 == 0:
k += 1
return ans
| null | null | null | null | null |
function minimumKeypresses(s: string): number {
const cnt: number[] = Array(26).fill(0);
const a = 'a'.charCodeAt(0);
for (const c of s) {
++cnt[c.charCodeAt(0) - a];
}
cnt.sort((a, b) => b - a);
let [ans, k] = [0, 1];
for (let i = 1; i <= 26; ++i) {
ans += k * cnt[i - 1];
if (i % 9 === 0) {
++k;
}
}
return ans;
}
|
Find All Good Indices
|
You are given a
0-indexed
integer array
nums
of size
n
and a positive integer
k
.
We call an index
i
in the range
k <= i < n - k
good
if the following conditions are satisfied:
The
k
elements that are just
before
the index
i
are in
non-increasing
order.
The
k
elements that are just
after
the index
i
are in
non-decreasing
order.
Return
an array of all good indices sorted in
increasing
order
.
Example 1:
Input:
nums = [2,1,1,1,3,4,1], k = 2
Output:
[2,3]
Explanation:
There are two good indices in the array:
- Index 2. The subarray [2,1] is in non-increasing order, and the subarray [1,3] is in non-decreasing order.
- Index 3. The subarray [1,1] is in non-increasing order, and the subarray [3,4] is in non-decreasing order.
Note that the index 4 is not good because [4,1] is not non-decreasing.
Example 2:
Input:
nums = [2,1,1,2], k = 2
Output:
[]
Explanation:
There are no good indices in this array.
Constraints:
n == nums.length
3 <= n <= 10
5
1 <= nums[i] <= 10
6
1 <= k <= n / 2
| null | null |
class Solution {
public:
vector<int> goodIndices(vector<int>& nums, int k) {
int n = nums.size();
vector<int> decr(n, 1);
vector<int> incr(n, 1);
for (int i = 2; i < n; ++i) {
if (nums[i - 1] <= nums[i - 2]) {
decr[i] = decr[i - 1] + 1;
}
}
for (int i = n - 3; ~i; --i) {
if (nums[i + 1] <= nums[i + 2]) {
incr[i] = incr[i + 1] + 1;
}
}
vector<int> ans;
for (int i = k; i < n - k; ++i) {
if (decr[i] >= k && incr[i] >= k) {
ans.push_back(i);
}
}
return ans;
}
};
| null | null |
func goodIndices(nums []int, k int) []int {
n := len(nums)
decr := make([]int, n)
incr := make([]int, n)
for i := range decr {
decr[i] = 1
incr[i] = 1
}
for i := 2; i < n; i++ {
if nums[i-1] <= nums[i-2] {
decr[i] = decr[i-1] + 1
}
}
for i := n - 3; i >= 0; i-- {
if nums[i+1] <= nums[i+2] {
incr[i] = incr[i+1] + 1
}
}
ans := []int{}
for i := k; i < n-k; i++ {
if decr[i] >= k && incr[i] >= k {
ans = append(ans, i)
}
}
return ans
}
|
class Solution {
public List<Integer> goodIndices(int[] nums, int k) {
int n = nums.length;
int[] decr = new int[n];
int[] incr = new int[n];
Arrays.fill(decr, 1);
Arrays.fill(incr, 1);
for (int i = 2; i < n - 1; ++i) {
if (nums[i - 1] <= nums[i - 2]) {
decr[i] = decr[i - 1] + 1;
}
}
for (int i = n - 3; i >= 0; --i) {
if (nums[i + 1] <= nums[i + 2]) {
incr[i] = incr[i + 1] + 1;
}
}
List<Integer> ans = new ArrayList<>();
for (int i = k; i < n - k; ++i) {
if (decr[i] >= k && incr[i] >= k) {
ans.add(i);
}
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def goodIndices(self, nums: List[int], k: int) -> List[int]:
n = len(nums)
decr = [1] * (n + 1)
incr = [1] * (n + 1)
for i in range(2, n - 1):
if nums[i - 1] <= nums[i - 2]:
decr[i] = decr[i - 1] + 1
for i in range(n - 3, -1, -1):
if nums[i + 1] <= nums[i + 2]:
incr[i] = incr[i + 1] + 1
return [i for i in range(k, n - k) if decr[i] >= k and incr[i] >= k]
| null | null | null | null | null | null |
Maximum Number of Words Found in Sentences
|
A
sentence
is a list of
words
that are separated by a single space with no leading or trailing spaces.
You are given an array of strings
sentences
, where each
sentences[i]
represents a single
sentence
.
Return
the
maximum number of words
that appear in a single sentence
.
Example 1:
Input:
sentences = ["alice and bob love leetcode", "i think so too",
"this is great thanks very much"
]
Output:
6
Explanation:
- The first sentence, "alice and bob love leetcode", has 5 words in total.
- The second sentence, "i think so too", has 4 words in total.
- The third sentence, "this is great thanks very much", has 6 words in total.
Thus, the maximum number of words in a single sentence comes from the third sentence, which has 6 words.
Example 2:
Input:
sentences = ["please wait",
"continue to fight"
,
"continue to win"
]
Output:
3
Explanation:
It is possible that multiple sentences contain the same number of words.
In this example, the second and third sentences (underlined) have the same number of words.
Constraints:
1 <= sentences.length <= 100
1 <= sentences[i].length <= 100
sentences[i]
consists only of lowercase English letters and
' '
only.
sentences[i]
does not have leading or trailing spaces.
All the words in
sentences[i]
are separated by a single space.
|
#define max(a, b) (((a) > (b)) ? (a) : (b))
int mostWordsFound(char** sentences, int sentencesSize) {
int ans = 0;
for (int i = 0; i < sentencesSize; i++) {
char* s = sentences[i];
int count = 1;
for (int j = 0; s[j]; j++) {
if (s[j] == ' ') {
count++;
}
}
ans = max(ans, count);
}
return ans;
}
| null |
class Solution {
public:
int mostWordsFound(vector<string>& sentences) {
int ans = 0;
for (auto& s : sentences) {
int cnt = 1 + count(s.begin(), s.end(), ' ');
ans = max(ans, cnt);
}
return ans;
}
};
| null | null |
func mostWordsFound(sentences []string) (ans int) {
for _, s := range sentences {
cnt := 1 + strings.Count(s, " ")
if ans < cnt {
ans = cnt
}
}
return
}
|
class Solution {
public int mostWordsFound(String[] sentences) {
int ans = 0;
for (var s : sentences) {
int cnt = 1;
for (int i = 0; i < s.length(); ++i) {
if (s.charAt(i) == ' ') {
++cnt;
}
}
ans = Math.max(ans, cnt);
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def mostWordsFound(self, sentences: List[str]) -> int:
return 1 + max(s.count(' ') for s in sentences)
| null |
impl Solution {
pub fn most_words_found(sentences: Vec<String>) -> i32 {
let mut ans = 0;
for s in sentences.iter() {
let mut count = 1;
for c in s.as_bytes() {
if *c == b' ' {
count += 1;
}
}
ans = ans.max(count);
}
ans
}
}
| null | null | null |
function mostWordsFound(sentences: string[]): number {
return sentences.reduce(
(r, s) =>
Math.max(
r,
[...s].reduce((r, c) => r + (c === ' ' ? 1 : 0), 1),
),
0,
);
}
|
Merge In Between Linked Lists
|
You are given two linked lists:
list1
and
list2
of sizes
n
and
m
respectively.
Remove
list1
's nodes from the
a
th
node to the
b
th
node, and put
list2
in their place.
The blue edges and nodes in the following figure indicate the result:
Build the result list and return its head.
Example 1:
Input:
list1 = [10,1,13,6,9,5], a = 3, b = 4, list2 = [1000000,1000001,1000002]
Output:
[10,1,13,1000000,1000001,1000002,5]
Explanation:
We remove the nodes 3 and 4 and put the entire list2 in their place. The blue edges and nodes in the above figure indicate the result.
Example 2:
Input:
list1 = [0,1,2,3,4,5,6], a = 2, b = 5, list2 = [1000000,1000001,1000002,1000003,1000004]
Output:
[0,1,1000000,1000001,1000002,1000003,1000004,6]
Explanation:
The blue edges and nodes in the above figure indicate the result.
Constraints:
3 <= list1.length <= 10
4
1 <= a <= b < list1.length - 1
1 <= list2.length <= 10
4
| null |
/**
* Definition for singly-linked list.
* public class ListNode {
* public int val;
* public ListNode next;
* public ListNode(int val=0, ListNode next=null) {
* this.val = val;
* this.next = next;
* }
* }
*/
public class Solution {
public ListNode MergeInBetween(ListNode list1, int a, int b, ListNode list2) {
ListNode p = list1, q = list1;
while (--a > 0) {
p = p.next;
}
while (b-- > 0) {
q = q.next;
}
p.next = list2;
while (p.next != null) {
p = p.next;
}
p.next = q.next;
q.next = null;
return list1;
}
}
|
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode() : val(0), next(nullptr) {}
* ListNode(int x) : val(x), next(nullptr) {}
* ListNode(int x, ListNode *next) : val(x), next(next) {}
* };
*/
class Solution {
public:
ListNode* mergeInBetween(ListNode* list1, int a, int b, ListNode* list2) {
auto p = list1, q = list1;
while (--a) {
p = p->next;
}
while (b--) {
q = q->next;
}
p->next = list2;
while (p->next) {
p = p->next;
}
p->next = q->next;
q->next = nullptr;
return list1;
}
};
| null | null |
/**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/
func mergeInBetween(list1 *ListNode, a int, b int, list2 *ListNode) *ListNode {
p, q := list1, list1
for ; a > 1; a-- {
p = p.Next
}
for ; b > 0; b-- {
q = q.Next
}
p.Next = list2
for p.Next != nil {
p = p.Next
}
p.Next = q.Next
q.Next = nil
return list1
}
|
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode() {}
* ListNode(int val) { this.val = val; }
* ListNode(int val, ListNode next) { this.val = val; this.next = next; }
* }
*/
class Solution {
public ListNode mergeInBetween(ListNode list1, int a, int b, ListNode list2) {
ListNode p = list1, q = list1;
while (--a > 0) {
p = p.next;
}
while (b-- > 0) {
q = q.next;
}
p.next = list2;
while (p.next != null) {
p = p.next;
}
p.next = q.next;
q.next = null;
return list1;
}
}
| null | null | null | null | null | null |
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def mergeInBetween(
self, list1: ListNode, a: int, b: int, list2: ListNode
) -> ListNode:
p = q = list1
for _ in range(a - 1):
p = p.next
for _ in range(b):
q = q.next
p.next = list2
while p.next:
p = p.next
p.next = q.next
q.next = None
return list1
| null | null | null | null | null |
/**
* Definition for singly-linked list.
* class ListNode {
* val: number
* next: ListNode | null
* constructor(val?: number, next?: ListNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.next = (next===undefined ? null : next)
* }
* }
*/
function mergeInBetween(
list1: ListNode | null,
a: number,
b: number,
list2: ListNode | null,
): ListNode | null {
let p = list1;
let q = list1;
while (--a > 0) {
p = p.next;
}
while (b-- > 0) {
q = q.next;
}
p.next = list2;
while (p.next) {
p = p.next;
}
p.next = q.next;
q.next = null;
return list1;
}
|
Divide Two Integers
|
Given two integers
dividend
and
divisor
, divide two integers
without
using multiplication, division, and mod operator.
The integer division should truncate toward zero, which means losing its fractional part. For example,
8.345
would be truncated to
8
, and
-2.7335
would be truncated to
-2
.
Return
the
quotient
after dividing
dividend
by
divisor
.
Note:
Assume we are dealing with an environment that could only store integers within the
32-bit
signed integer range:
[−2
31
, 2
31
− 1]
. For this problem, if the quotient is
strictly greater than
2
31
- 1
, then return
2
31
- 1
, and if the quotient is
strictly less than
-2
31
, then return
-2
31
.
Example 1:
Input:
dividend = 10, divisor = 3
Output:
3
Explanation:
10/3 = 3.33333.. which is truncated to 3.
Example 2:
Input:
dividend = 7, divisor = -3
Output:
-2
Explanation:
7/-3 = -2.33333.. which is truncated to -2.
Constraints:
-2
31
<= dividend, divisor <= 2
31
- 1
divisor != 0
| null |
public class Solution {
public int Divide(int a, int b) {
if (b == 1) {
return a;
}
if (a == int.MinValue && b == -1) {
return int.MaxValue;
}
bool sign = (a > 0 && b > 0) || (a < 0 && b < 0);
a = a > 0 ? -a : a;
b = b > 0 ? -b : b;
int ans = 0;
while (a <= b) {
int x = b;
int cnt = 1;
while (x >= (int.MinValue >> 1) && a <= (x << 1)) {
x <<= 1;
cnt <<= 1;
}
ans += cnt;
a -= x;
}
return sign ? ans : -ans;
}
}
|
class Solution {
public:
int divide(int a, int b) {
if (b == 1) {
return a;
}
if (a == INT_MIN && b == -1) {
return INT_MAX;
}
bool sign = (a > 0 && b > 0) || (a < 0 && b < 0);
a = a > 0 ? -a : a;
b = b > 0 ? -b : b;
int ans = 0;
while (a <= b) {
int x = b;
int cnt = 1;
while (x >= (INT_MIN >> 1) && a <= (x << 1)) {
x <<= 1;
cnt <<= 1;
}
ans += cnt;
a -= x;
}
return sign ? ans : -ans;
}
};
| null | null |
func divide(a int, b int) int {
if b == 1 {
return a
}
if a == math.MinInt32 && b == -1 {
return math.MaxInt32
}
sign := (a > 0 && b > 0) || (a < 0 && b < 0)
if a > 0 {
a = -a
}
if b > 0 {
b = -b
}
ans := 0
for a <= b {
x := b
cnt := 1
for x >= (math.MinInt32>>1) && a <= (x<<1) {
x <<= 1
cnt <<= 1
}
ans += cnt
a -= x
}
if sign {
return ans
}
return -ans
}
|
class Solution {
public int divide(int a, int b) {
if (b == 1) {
return a;
}
if (a == Integer.MIN_VALUE && b == -1) {
return Integer.MAX_VALUE;
}
boolean sign = (a > 0 && b > 0) || (a < 0 && b < 0);
a = a > 0 ? -a : a;
b = b > 0 ? -b : b;
int ans = 0;
while (a <= b) {
int x = b;
int cnt = 1;
while (x >= (Integer.MIN_VALUE >> 1) && a <= (x << 1)) {
x <<= 1;
cnt <<= 1;
}
ans += cnt;
a -= x;
}
return sign ? ans : -ans;
}
}
| null | null | null | null |
class Solution {
/**
* @param integer $a
* @param integer $b
* @return integer
*/
function divide($a, $b) {
if ($b == 0) {
throw new Exception('Can not divide by 0');
} elseif ($a == 0) {
return 0;
}
if ($a == -2147483648 && $b == -1) {
return 2147483647;
}
$sign = $a < 0 != $b < 0;
$a = abs($a);
$b = abs($b);
$ans = 0;
while ($a >= $b) {
$x = $b;
$cnt = 1;
while ($a >= $x << 1) {
$x <<= 1;
$cnt <<= 1;
}
$a -= $x;
$ans += $cnt;
}
return $sign ? -$ans : $ans;
}
}
| null |
class Solution:
def divide(self, a: int, b: int) -> int:
if b == 1:
return a
if a == -(2**31) and b == -1:
return 2**31 - 1
sign = (a > 0 and b > 0) or (a < 0 and b < 0)
a = -a if a > 0 else a
b = -b if b > 0 else b
ans = 0
while a <= b:
x = b
cnt = 1
while x >= (-(2**30)) and a <= (x << 1):
x <<= 1
cnt <<= 1
a -= x
ans += cnt
return ans if sign else -ans
| null | null | null | null | null |
function divide(a: number, b: number): number {
if (b === 1) {
return a;
}
if (a === -(2 ** 31) && b === -1) {
return 2 ** 31 - 1;
}
const sign: boolean = (a > 0 && b > 0) || (a < 0 && b < 0);
a = a > 0 ? -a : a;
b = b > 0 ? -b : b;
let ans: number = 0;
while (a <= b) {
let x: number = b;
let cnt: number = 1;
while (x >= -(2 ** 30) && a <= x << 1) {
x <<= 1;
cnt <<= 1;
}
ans += cnt;
a -= x;
}
return sign ? ans : -ans;
}
|
Array Transformation 🔒
|
Given an initial array
arr
, every day you produce a new array using the array of the previous day.
On the
i
-th day, you do the following operations on the array of day
i-1
to produce the array of day
i
:
If an element is smaller than both its left neighbor and its right neighbor, then this element is incremented.
If an element is bigger than both its left neighbor and its right neighbor, then this element is decremented.
The first and last elements never change.
After some days, the array does not change. Return that final array.
Example 1:
Input:
arr = [6,2,3,4]
Output:
[6,3,3,4]
Explanation:
On the first day, the array is changed from [6,2,3,4] to [6,3,3,4].
No more operations can be done to this array.
Example 2:
Input:
arr = [1,6,3,4,3,5]
Output:
[1,4,4,4,4,5]
Explanation:
On the first day, the array is changed from [1,6,3,4,3,5] to [1,5,4,3,4,5].
On the second day, the array is changed from [1,5,4,3,4,5] to [1,4,4,4,4,5].
No more operations can be done to this array.
Constraints:
3 <= arr.length <= 100
1 <= arr[i] <= 100
| null | null |
class Solution {
public:
vector<int> transformArray(vector<int>& arr) {
bool f = true;
while (f) {
f = false;
vector<int> t = arr;
for (int i = 1; i < arr.size() - 1; ++i) {
if (t[i] > t[i - 1] && t[i] > t[i + 1]) {
--arr[i];
f = true;
}
if (t[i] < t[i - 1] && t[i] < t[i + 1]) {
++arr[i];
f = true;
}
}
}
return arr;
}
};
| null | null |
func transformArray(arr []int) []int {
f := true
for f {
f = false
t := make([]int, len(arr))
copy(t, arr)
for i := 1; i < len(arr)-1; i++ {
if t[i] > t[i-1] && t[i] > t[i+1] {
arr[i]--
f = true
}
if t[i] < t[i-1] && t[i] < t[i+1] {
arr[i]++
f = true
}
}
}
return arr
}
|
class Solution {
public List<Integer> transformArray(int[] arr) {
boolean f = true;
while (f) {
f = false;
int[] t = arr.clone();
for (int i = 1; i < t.length - 1; ++i) {
if (t[i] > t[i - 1] && t[i] > t[i + 1]) {
--arr[i];
f = true;
}
if (t[i] < t[i - 1] && t[i] < t[i + 1]) {
++arr[i];
f = true;
}
}
}
List<Integer> ans = new ArrayList<>();
for (int x : arr) {
ans.add(x);
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def transformArray(self, arr: List[int]) -> List[int]:
f = True
while f:
f = False
t = arr[:]
for i in range(1, len(t) - 1):
if t[i] > t[i - 1] and t[i] > t[i + 1]:
arr[i] -= 1
f = True
if t[i] < t[i - 1] and t[i] < t[i + 1]:
arr[i] += 1
f = True
return arr
| null | null | null | null | null | null |
Longest Happy Prefix
|
A string is called a
happy prefix
if is a
non-empty
prefix which is also a suffix (excluding itself).
Given a string
s
, return
the
longest happy prefix
of
s
. Return an empty string
""
if no such prefix exists.
Example 1:
Input:
s = "level"
Output:
"l"
Explanation:
s contains 4 prefix excluding itself ("l", "le", "lev", "leve"), and suffix ("l", "el", "vel", "evel"). The largest prefix which is also suffix is given by "l".
Example 2:
Input:
s = "ababab"
Output:
"abab"
Explanation:
"abab" is the largest prefix which is also suffix. They can overlap in the original string.
Constraints:
1 <= s.length <= 10
5
s
contains only lowercase English letters.
| null | null |
class Solution {
public:
string longestPrefix(string s) {
s.push_back('#');
int n = s.size();
int next[n];
next[0] = -1;
next[1] = 0;
for (int i = 2, j = 0; i < n;) {
if (s[i - 1] == s[j]) {
next[i++] = ++j;
} else if (j > 0) {
j = next[j];
} else {
next[i++] = 0;
}
}
return s.substr(0, next[n - 1]);
}
};
| null | null |
func longestPrefix(s string) string {
s += "#"
n := len(s)
next := make([]int, n)
next[0], next[1] = -1, 0
for i, j := 2, 0; i < n; {
if s[i-1] == s[j] {
j++
next[i] = j
i++
} else if j > 0 {
j = next[j]
} else {
next[i] = 0
i++
}
}
return s[:next[n-1]]
}
|
class Solution {
public String longestPrefix(String s) {
s += "#";
int n = s.length();
int[] next = new int[n];
next[0] = -1;
for (int i = 2, j = 0; i < n;) {
if (s.charAt(i - 1) == s.charAt(j)) {
next[i++] = ++j;
} else if (j > 0) {
j = next[j];
} else {
next[i++] = 0;
}
}
return s.substring(0, next[n - 1]);
}
}
| null | null | null | null | null | null |
class Solution:
def longestPrefix(self, s: str) -> str:
s += "#"
n = len(s)
next = [0] * n
next[0] = -1
i, j = 2, 0
while i < n:
if s[i - 1] == s[j]:
j += 1
next[i] = j
i += 1
elif j:
j = next[j]
else:
next[i] = 0
i += 1
return s[: next[-1]]
| null |
impl Solution {
pub fn longest_prefix(s: String) -> String {
let n = s.len();
for i in (0..n).rev() {
if s[0..i] == s[n - i..n] {
return s[0..i].to_string();
}
}
String::new()
}
}
| null | null | null |
function longestPrefix(s: string): string {
s += '#';
const n = s.length;
const next: number[] = Array(n).fill(0);
next[0] = -1;
for (let i = 2, j = 0; i < n; ) {
if (s[i - 1] === s[j]) {
next[i++] = ++j;
} else if (j > 0) {
j = next[j];
} else {
next[i++] = 0;
}
}
return s.slice(0, next[n - 1]);
}
|
Article Views II 🔒
|
Table:
Views
+---------------+---------+
| Column Name | Type |
+---------------+---------+
| article_id | int |
| author_id | int |
| viewer_id | int |
| view_date | date |
+---------------+---------+
This table may have duplicate rows.
Each row of this table indicates that some viewer viewed an article (written by some author) on some date.
Note that equal author_id and viewer_id indicate the same person.
Write a solution to find all the people who viewed more than one article on the same date.
Return the result table sorted by
id
in ascending order.
The result format is in the following example.
Example 1:
Input:
Views table:
+------------+-----------+-----------+------------+
| article_id | author_id | viewer_id | view_date |
+------------+-----------+-----------+------------+
| 1 | 3 | 5 | 2019-08-01 |
| 3 | 4 | 5 | 2019-08-01 |
| 1 | 3 | 6 | 2019-08-02 |
| 2 | 7 | 7 | 2019-08-01 |
| 2 | 7 | 6 | 2019-08-02 |
| 4 | 7 | 1 | 2019-07-22 |
| 3 | 4 | 4 | 2019-07-21 |
| 3 | 4 | 4 | 2019-07-21 |
+------------+-----------+-----------+------------+
Output:
+------+
| id |
+------+
| 5 |
| 6 |
+------+
| null | null | null | null | null | null | null | null | null |
# Write your MySQL query statement below
SELECT DISTINCT viewer_id AS id
FROM Views
GROUP BY viewer_id, view_date
HAVING COUNT(DISTINCT article_id) > 1
ORDER BY 1;
| null | null | null | null | null | null | null | null | null | null |
Flipping an Image
|
Given an
n x n
binary matrix
image
, flip the image
horizontally
, then invert it, and return
the resulting image
.
To flip an image horizontally means that each row of the image is reversed.
For example, flipping
[1,1,0]
horizontally results in
[0,1,1]
.
To invert an image means that each
0
is replaced by
1
, and each
1
is replaced by
0
.
For example, inverting
[0,1,1]
results in
[1,0,0]
.
Example 1:
Input:
image = [[1,1,0],[1,0,1],[0,0,0]]
Output:
[[1,0,0],[0,1,0],[1,1,1]]
Explanation:
First reverse each row: [[0,1,1],[1,0,1],[0,0,0]].
Then, invert the image: [[1,0,0],[0,1,0],[1,1,1]]
Example 2:
Input:
image = [[1,1,0,0],[1,0,0,1],[0,1,1,1],[1,0,1,0]]
Output:
[[1,1,0,0],[0,1,1,0],[0,0,0,1],[1,0,1,0]]
Explanation:
First reverse each row: [[0,0,1,1],[1,0,0,1],[1,1,1,0],[0,1,0,1]].
Then invert the image: [[1,1,0,0],[0,1,1,0],[0,0,0,1],[1,0,1,0]]
Constraints:
n == image.length
n == image[i].length
1 <= n <= 20
images[i][j]
is either
0
or
1
.
| null | null |
class Solution {
public:
vector<vector<int>> flipAndInvertImage(vector<vector<int>>& image) {
for (auto& row : image) {
int i = 0, j = row.size() - 1;
for (; i < j; ++i, --j) {
if (row[i] == row[j]) {
row[i] ^= 1;
row[j] ^= 1;
}
}
if (i == j) {
row[i] ^= 1;
}
}
return image;
}
};
| null | null |
func flipAndInvertImage(image [][]int) [][]int {
for _, row := range image {
i, j := 0, len(row)-1
for ; i < j; i, j = i+1, j-1 {
if row[i] == row[j] {
row[i] ^= 1
row[j] ^= 1
}
}
if i == j {
row[i] ^= 1
}
}
return image
}
|
class Solution {
public int[][] flipAndInvertImage(int[][] image) {
for (var row : image) {
int i = 0, j = row.length - 1;
for (; i < j; ++i, --j) {
if (row[i] == row[j]) {
row[i] ^= 1;
row[j] ^= 1;
}
}
if (i == j) {
row[i] ^= 1;
}
}
return image;
}
}
|
/**
* @param {number[][]} image
* @return {number[][]}
*/
var flipAndInvertImage = function (image) {
for (const row of image) {
let i = 0;
let j = row.length - 1;
for (; i < j; ++i, --j) {
if (row[i] == row[j]) {
row[i] ^= 1;
row[j] ^= 1;
}
}
if (i == j) {
row[i] ^= 1;
}
}
return image;
};
| null | null | null | null | null |
class Solution:
def flipAndInvertImage(self, image: List[List[int]]) -> List[List[int]]:
n = len(image)
for row in image:
i, j = 0, n - 1
while i < j:
if row[i] == row[j]:
row[i] ^= 1
row[j] ^= 1
i, j = i + 1, j - 1
if i == j:
row[i] ^= 1
return image
| null | null | null | null | null | null |
Minimum Suffix Flips
|
You are given a
0-indexed
binary string
target
of length
n
. You have another binary string
s
of length
n
that is initially set to all zeros. You want to make
s
equal to
target
.
In one operation, you can pick an index
i
where
0 <= i < n
and flip all bits in the
inclusive
range
[i, n - 1]
. Flip means changing
'0'
to
'1'
and
'1'
to
'0'
.
Return
the minimum number of operations needed to make
s
equal to
target
.
Example 1:
Input:
target = "10111"
Output:
3
Explanation:
Initially, s = "00000".
Choose index i = 2: "00
000
" -> "00
111
"
Choose index i = 0: "
00111
" -> "
11000
"
Choose index i = 1: "1
1000
" -> "1
0111
"
We need at least 3 flip operations to form target.
Example 2:
Input:
target = "101"
Output:
3
Explanation:
Initially, s = "000".
Choose index i = 0: "
000
" -> "
111
"
Choose index i = 1: "1
11
" -> "1
00
"
Choose index i = 2: "10
0
" -> "10
1
"
We need at least 3 flip operations to form target.
Example 3:
Input:
target = "00000"
Output:
0
Explanation:
We do not need any operations since the initial s already equals target.
Constraints:
n == target.length
1 <= n <= 10
5
target[i]
is either
'0'
or
'1'
.
| null | null |
class Solution {
public:
int minFlips(string target) {
int ans = 0;
for (char c : target) {
int v = c - '0';
if ((ans & 1) ^ v) {
++ans;
}
}
return ans;
}
};
| null | null |
func minFlips(target string) int {
ans := 0
for _, c := range target {
v := int(c - '0')
if ((ans & 1) ^ v) != 0 {
ans++
}
}
return ans
}
|
class Solution {
public int minFlips(String target) {
int ans = 0;
for (int i = 0; i < target.length(); ++i) {
int v = target.charAt(i) - '0';
if (((ans & 1) ^ v) != 0) {
++ans;
}
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def minFlips(self, target: str) -> int:
ans = 0
for v in target:
if (ans & 1) ^ int(v):
ans += 1
return ans
| null | null | null | null | null | null |
Friday Purchases I 🔒
|
Table:
Purchases
+---------------+------+
| Column Name | Type |
+---------------+------+
| user_id | int |
| purchase_date | date |
| amount_spend | int |
+---------------+------+
(user_id, purchase_date, amount_spend) is the primary key (combination of columns with unique values) for this table.
purchase_date will range from November 1, 2023, to November 30, 2023, inclusive of both dates.
Each row contains user id, purchase date, and amount spend.
Write a solution to calculate the
total spending
by users on
each Friday
of
every week
in
November 2023
. Output only weeks that include
at least one
purchase on a
Friday
.
Return
the result table ordered by week of month
in
ascending
order.
The result format is in the following example.
Example 1:
Input:
Purchases table:
+---------+---------------+--------------+
| user_id | purchase_date | amount_spend |
+---------+---------------+--------------+
| 11 | 2023-11-07 | 1126 |
| 15 | 2023-11-30 | 7473 |
| 17 | 2023-11-14 | 2414 |
| 12 | 2023-11-24 | 9692 |
| 8 | 2023-11-03 | 5117 |
| 1 | 2023-11-16 | 5241 |
| 10 | 2023-11-12 | 8266 |
| 13 | 2023-11-24 | 12000 |
+---------+---------------+--------------+
Output:
+---------------+---------------+--------------+
| week_of_month | purchase_date | total_amount |
+---------------+---------------+--------------+
| 1 | 2023-11-03 | 5117 |
| 4 | 2023-11-24 | 21692 |
+---------------+---------------+--------------+
Explanation:
- During the first week of November 2023, transactions amounting to $5,117 occurred on Friday, 2023-11-03.
- For the second week of November 2023, there were no transactions on Friday, 2023-11-10.
- Similarly, during the third week of November 2023, there were no transactions on Friday, 2023-11-17.
- In the fourth week of November 2023, two transactions took place on Friday, 2023-11-24, amounting to $12,000 and $9,692 respectively, summing up to a total of $21,692.
Output table is ordered by week_of_month in ascending order.
| null | null | null | null | null | null | null | null | null |
# Write your MySQL query statement below
SELECT
CEIL(DAYOFMONTH(purchase_date) / 7) AS week_of_month,
purchase_date,
SUM(amount_spend) AS total_amount
FROM Purchases
WHERE DATE_FORMAT(purchase_date, '%Y%m') = '202311' AND DAYOFWEEK(purchase_date) = 6
GROUP BY 2
ORDER BY 1;
| null | null | null | null | null | null | null | null | null | null |
Depth of BST Given Insertion Order 🔒
|
You are given a
0-indexed
integer array
order
of length
n
, a
permutation
of integers from
1
to
n
representing the
order
of insertion into a
binary search tree
.
A binary search tree is defined as follows:
The left subtree of a node contains only nodes with keys
less than
the node's key.
The right subtree of a node contains only nodes with keys
greater than
the node's key.
Both the left and right subtrees must also be binary search trees.
The binary search tree is constructed as follows:
order[0]
will be the
root
of the binary search tree.
All subsequent elements are inserted as the
child
of
any
existing node such that the binary search tree properties hold.
Return
the
depth
of the binary search tree
.
A binary tree's
depth
is the number of
nodes
along the
longest path
from the root node down to the farthest leaf node.
Example 1:
Input:
order = [2,1,4,3]
Output:
3
Explanation:
The binary search tree has a depth of 3 with path 2->3->4.
Example 2:
Input:
order = [2,1,3,4]
Output:
3
Explanation:
The binary search tree has a depth of 3 with path 2->3->4.
Example 3:
Input:
order = [1,2,3,4]
Output:
4
Explanation:
The binary search tree has a depth of 4 with path 1->2->3->4.
Constraints:
n == order.length
1 <= n <= 10
5
order
is a permutation of integers between
1
and
n
.
| null | null | null | null | null | null |
class Solution {
public int maxDepthBST(int[] order) {
TreeMap<Integer, Integer> tm = new TreeMap<>();
tm.put(0, 0);
tm.put(Integer.MAX_VALUE, 0);
tm.put(order[0], 1);
int ans = 1;
for (int i = 1; i < order.length; ++i) {
int v = order[i];
Map.Entry<Integer, Integer> lower = tm.lowerEntry(v);
Map.Entry<Integer, Integer> higher = tm.higherEntry(v);
int depth = 1 + Math.max(lower.getValue(), higher.getValue());
ans = Math.max(ans, depth);
tm.put(v, depth);
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def maxDepthBST(self, order: List[int]) -> int:
sd = SortedDict({0: 0, inf: 0, order[0]: 1})
ans = 1
for v in order[1:]:
lower = sd.bisect_left(v) - 1
higher = lower + 1
depth = 1 + max(sd.values()[lower], sd.values()[higher])
ans = max(ans, depth)
sd[v] = depth
return ans
| null | null | null | null | null | null |
Detect Squares
|
You are given a stream of points on the X-Y plane. Design an algorithm that:
Adds
new points from the stream into a data structure.
Duplicate
points are allowed and should be treated as different points.
Given a query point,
counts
the number of ways to choose three points from the data structure such that the three points and the query point form an
axis-aligned square
with
positive area
.
An
axis-aligned square
is a square whose edges are all the same length and are either parallel or perpendicular to the x-axis and y-axis.
Implement the
DetectSquares
class:
DetectSquares()
Initializes the object with an empty data structure.
void add(int[] point)
Adds a new point
point = [x, y]
to the data structure.
int count(int[] point)
Counts the number of ways to form
axis-aligned squares
with point
point = [x, y]
as described above.
Example 1:
Input
["DetectSquares", "add", "add", "add", "count", "count", "add", "count"]
[[], [[3, 10]], [[11, 2]], [[3, 2]], [[11, 10]], [[14, 8]], [[11, 2]], [[11, 10]]]
Output
[null, null, null, null, 1, 0, null, 2]
Explanation
DetectSquares detectSquares = new DetectSquares();
detectSquares.add([3, 10]);
detectSquares.add([11, 2]);
detectSquares.add([3, 2]);
detectSquares.count([11, 10]); // return 1. You can choose:
// - The first, second, and third points
detectSquares.count([14, 8]); // return 0. The query point cannot form a square with any points in the data structure.
detectSquares.add([11, 2]); // Adding duplicate points is allowed.
detectSquares.count([11, 10]); // return 2. You can choose:
// - The first, second, and third points
// - The first, third, and fourth points
Constraints:
point.length == 2
0 <= x, y <= 1000
At most
3000
calls
in total
will be made to
add
and
count
.
| null | null |
class DetectSquares {
public:
DetectSquares() {
}
void add(vector<int> point) {
int x = point[0], y = point[1];
++cnt[x][y];
}
int count(vector<int> point) {
int x1 = point[0], y1 = point[1];
if (!cnt.count(x1)) {
return 0;
}
int ans = 0;
for (auto& [x2, cnt2] : cnt) {
if (x2 != x1) {
int d = x2 - x1;
auto& cnt1 = cnt[x1];
ans += cnt2[y1] * cnt1[y1 + d] * cnt2[y1 + d];
ans += cnt2[y1] * cnt1[y1 - d] * cnt2[y1 - d];
}
}
return ans;
}
private:
unordered_map<int, unordered_map<int, int>> cnt;
};
/**
* Your DetectSquares object will be instantiated and called as such:
* DetectSquares* obj = new DetectSquares();
* obj->add(point);
* int param_2 = obj->count(point);
*/
| null | null |
type DetectSquares struct {
cnt map[int]map[int]int
}
func Constructor() DetectSquares {
return DetectSquares{map[int]map[int]int{}}
}
func (this *DetectSquares) Add(point []int) {
x, y := point[0], point[1]
if _, ok := this.cnt[x]; !ok {
this.cnt[x] = map[int]int{}
}
this.cnt[x][y]++
}
func (this *DetectSquares) Count(point []int) (ans int) {
x1, y1 := point[0], point[1]
if cnt1, ok := this.cnt[x1]; ok {
for x2, cnt2 := range this.cnt {
if x2 != x1 {
d := x2 - x1
ans += cnt2[y1] * cnt1[y1+d] * cnt2[y1+d]
ans += cnt2[y1] * cnt1[y1-d] * cnt2[y1-d]
}
}
}
return
}
/**
* Your DetectSquares object will be instantiated and called as such:
* obj := Constructor();
* obj.Add(point);
* param_2 := obj.Count(point);
*/
|
class DetectSquares {
private Map<Integer, Map<Integer, Integer>> cnt = new HashMap<>();
public DetectSquares() {
}
public void add(int[] point) {
int x = point[0], y = point[1];
cnt.computeIfAbsent(x, k -> new HashMap<>()).merge(y, 1, Integer::sum);
}
public int count(int[] point) {
int x1 = point[0], y1 = point[1];
if (!cnt.containsKey(x1)) {
return 0;
}
int ans = 0;
for (var e : cnt.entrySet()) {
int x2 = e.getKey();
if (x2 != x1) {
int d = x2 - x1;
var cnt1 = cnt.get(x1);
var cnt2 = e.getValue();
ans += cnt2.getOrDefault(y1, 0) * cnt1.getOrDefault(y1 + d, 0)
* cnt2.getOrDefault(y1 + d, 0);
ans += cnt2.getOrDefault(y1, 0) * cnt1.getOrDefault(y1 - d, 0)
* cnt2.getOrDefault(y1 - d, 0);
}
}
return ans;
}
}
/**
* Your DetectSquares object will be instantiated and called as such:
* DetectSquares obj = new DetectSquares();
* obj.add(point);
* int param_2 = obj.count(point);
*/
| null | null | null | null | null | null |
class DetectSquares:
def __init__(self):
self.cnt = defaultdict(Counter)
def add(self, point: List[int]) -> None:
x, y = point
self.cnt[x][y] += 1
def count(self, point: List[int]) -> int:
x1, y1 = point
if x1 not in self.cnt:
return 0
ans = 0
for x2 in self.cnt.keys():
if x2 != x1:
d = x2 - x1
ans += self.cnt[x2][y1] * self.cnt[x1][y1 + d] * self.cnt[x2][y1 + d]
ans += self.cnt[x2][y1] * self.cnt[x1][y1 - d] * self.cnt[x2][y1 - d]
return ans
# Your DetectSquares object will be instantiated and called as such:
# obj = DetectSquares()
# obj.add(point)
# param_2 = obj.count(point)
| null | null | null | null | null | null |
Circular Array Loop
|
You are playing a game involving a
circular
array of non-zero integers
nums
. Each
nums[i]
denotes the number of indices forward/backward you must move if you are located at index
i
:
If
nums[i]
is positive, move
nums[i]
steps
forward
, and
If
nums[i]
is negative, move
nums[i]
steps
backward
.
Since the array is
circular
, you may assume that moving forward from the last element puts you on the first element, and moving backwards from the first element puts you on the last element.
A
cycle
in the array consists of a sequence of indices
seq
of length
k
where:
Following the movement rules above results in the repeating index sequence
seq[0] -> seq[1] -> ... -> seq[k - 1] -> seq[0] -> ...
Every
nums[seq[j]]
is either
all positive
or
all negative
.
k > 1
Return
true
if there is a
cycle
in
nums
, or
false
otherwise
.
Example 1:
Input:
nums = [2,-1,1,2,2]
Output:
true
Explanation:
The graph shows how the indices are connected. White nodes are jumping forward, while red is jumping backward.
We can see the cycle 0 --> 2 --> 3 --> 0 --> ..., and all of its nodes are white (jumping in the same direction).
Example 2:
Input:
nums = [-1,-2,-3,-4,-5,6]
Output:
false
Explanation:
The graph shows how the indices are connected. White nodes are jumping forward, while red is jumping backward.
The only cycle is of size 1, so we return false.
Example 3:
Input:
nums = [1,-1,5,1,4]
Output:
true
Explanation:
The graph shows how the indices are connected. White nodes are jumping forward, while red is jumping backward.
We can see the cycle 0 --> 1 --> 0 --> ..., and while it is of size > 1, it has a node jumping forward and a node jumping backward, so
it is not a cycle
.
We can see the cycle 3 --> 4 --> 3 --> ..., and all of its nodes are white (jumping in the same direction).
Constraints:
1 <= nums.length <= 5000
-1000 <= nums[i] <= 1000
nums[i] != 0
Follow up:
Could you solve it in
O(n)
time complexity and
O(1)
extra space complexity?
| null | null |
class Solution {
public:
bool circularArrayLoop(vector<int>& nums) {
int n = nums.size();
for (int i = 0; i < n; ++i) {
if (!nums[i]) continue;
int slow = i, fast = next(nums, i);
while (nums[slow] * nums[fast] > 0 && nums[slow] * nums[next(nums, fast)] > 0) {
if (slow == fast) {
if (slow != next(nums, slow)) return true;
break;
}
slow = next(nums, slow);
fast = next(nums, next(nums, fast));
}
int j = i;
while (nums[j] * nums[next(nums, j)] > 0) {
nums[j] = 0;
j = next(nums, j);
}
}
return false;
}
int next(vector<int>& nums, int i) {
int n = nums.size();
return (i + nums[i] % n + n) % n;
}
};
| null | null |
func circularArrayLoop(nums []int) bool {
for i, num := range nums {
if num == 0 {
continue
}
slow, fast := i, next(nums, i)
for nums[slow]*nums[fast] > 0 && nums[slow]*nums[next(nums, fast)] > 0 {
if slow == fast {
if slow != next(nums, slow) {
return true
}
break
}
slow, fast = next(nums, slow), next(nums, next(nums, fast))
}
j := i
for nums[j]*nums[next(nums, j)] > 0 {
nums[j] = 0
j = next(nums, j)
}
}
return false
}
func next(nums []int, i int) int {
n := len(nums)
return (i + nums[i]%n + n) % n
}
|
class Solution {
private int n;
private int[] nums;
public boolean circularArrayLoop(int[] nums) {
n = nums.length;
this.nums = nums;
for (int i = 0; i < n; ++i) {
if (nums[i] == 0) {
continue;
}
int slow = i, fast = next(i);
while (nums[slow] * nums[fast] > 0 && nums[slow] * nums[next(fast)] > 0) {
if (slow == fast) {
if (slow != next(slow)) {
return true;
}
break;
}
slow = next(slow);
fast = next(next(fast));
}
int j = i;
while (nums[j] * nums[next(j)] > 0) {
nums[j] = 0;
j = next(j);
}
}
return false;
}
private int next(int i) {
return (i + nums[i] % n + n) % n;
}
}
| null | null | null | null | null | null |
class Solution:
def circularArrayLoop(self, nums: List[int]) -> bool:
n = len(nums)
def next(i):
return (i + nums[i] % n + n) % n
for i in range(n):
if nums[i] == 0:
continue
slow, fast = i, next(i)
while nums[slow] * nums[fast] > 0 and nums[slow] * nums[next(fast)] > 0:
if slow == fast:
if slow != next(slow):
return True
break
slow, fast = next(slow), next(next(fast))
j = i
while nums[j] * nums[next(j)] > 0:
nums[j] = 0
j = next(j)
return False
| null | null | null | null | null | null |
Count Integers in Intervals
|
Given an
empty
set of intervals, implement a data structure that can:
Add
an interval to the set of intervals.
Count
the number of integers that are present in
at least one
interval.
Implement the
CountIntervals
class:
CountIntervals()
Initializes the object with an empty set of intervals.
void add(int left, int right)
Adds the interval
[left, right]
to the set of intervals.
int count()
Returns the number of integers that are present in
at least one
interval.
Note
that an interval
[left, right]
denotes all the integers
x
where
left <= x <= right
.
Example 1:
Input
["CountIntervals", "add", "add", "count", "add", "count"]
[[], [2, 3], [7, 10], [], [5, 8], []]
Output
[null, null, null, 6, null, 8]
Explanation
CountIntervals countIntervals = new CountIntervals(); // initialize the object with an empty set of intervals.
countIntervals.add(2, 3); // add [2, 3] to the set of intervals.
countIntervals.add(7, 10); // add [7, 10] to the set of intervals.
countIntervals.count(); // return 6
// the integers 2 and 3 are present in the interval [2, 3].
// the integers 7, 8, 9, and 10 are present in the interval [7, 10].
countIntervals.add(5, 8); // add [5, 8] to the set of intervals.
countIntervals.count(); // return 8
// the integers 2 and 3 are present in the interval [2, 3].
// the integers 5 and 6 are present in the interval [5, 8].
// the integers 7 and 8 are present in the intervals [5, 8] and [7, 10].
// the integers 9 and 10 are present in the interval [7, 10].
Constraints:
1 <= left <= right <= 10
9
At most
10
5
calls
in total
will be made to
add
and
count
.
At least
one
call will be made to
count
.
| null | null |
class Node {
public:
Node(int l, int r)
: l(l)
, r(r)
, mid((l + r) / 2)
, v(0)
, add(0)
, left(nullptr)
, right(nullptr) {}
int l, r, mid, v, add;
Node* left;
Node* right;
};
class SegmentTree {
public:
SegmentTree()
: root(new Node(1, 1000000001)) {}
void modify(int l, int r, int v, Node* node = nullptr) {
if (node == nullptr) {
node = root;
}
if (l > r) {
return;
}
if (node->l >= l && node->r <= r) {
node->v = node->r - node->l + 1;
node->add = v;
return;
}
pushdown(node);
if (l <= node->mid) {
modify(l, r, v, node->left);
}
if (r > node->mid) {
modify(l, r, v, node->right);
}
pushup(node);
}
int query(int l, int r, Node* node = nullptr) {
if (node == nullptr) {
node = root;
}
if (l > r) {
return 0;
}
if (node->l >= l && node->r <= r) {
return node->v;
}
pushdown(node);
int v = 0;
if (l <= node->mid) {
v += query(l, r, node->left);
}
if (r > node->mid) {
v += query(l, r, node->right);
}
return v;
}
private:
Node* root;
void pushup(Node* node) {
node->v = node->left->v + node->right->v;
}
void pushdown(Node* node) {
if (node->left == nullptr) {
node->left = new Node(node->l, node->mid);
}
if (node->right == nullptr) {
node->right = new Node(node->mid + 1, node->r);
}
if (node->add != 0) {
Node* left = node->left;
Node* right = node->right;
left->add = node->add;
right->add = node->add;
left->v = left->r - left->l + 1;
right->v = right->r - right->l + 1;
node->add = 0;
}
}
};
class CountIntervals {
public:
CountIntervals() {}
void add(int left, int right) {
tree.modify(left, right, 1);
}
int count() {
return tree.query(1, 1000000000);
}
private:
SegmentTree tree;
};
/**
* Your CountIntervals object will be instantiated and called as such:
* CountIntervals* obj = new CountIntervals();
* obj->add(left,right);
* int param_2 = obj->count();
*/
| null | null |
type Node struct {
left *Node
right *Node
l int
r int
mid int
v int
add int
}
type SegmentTree struct {
root *Node
}
func newNode(l, r int) *Node {
return &Node{
left: nil,
right: nil,
l: l,
r: r,
mid: (l + r) / 2,
v: 0,
add: 0,
}
}
func newSegmentTree() *SegmentTree {
return &SegmentTree{
root: newNode(1, 1000000001),
}
}
func (st *SegmentTree) modify(l, r, v int, node *Node) {
if node == nil {
node = st.root
}
if l > r {
return
}
if node.l >= l && node.r <= r {
node.v = node.r - node.l + 1
node.add = v
return
}
st.pushdown(node)
if l <= node.mid {
st.modify(l, r, v, node.left)
}
if r > node.mid {
st.modify(l, r, v, node.right)
}
st.pushup(node)
}
func (st *SegmentTree) query(l, r int, node *Node) int {
if node == nil {
node = st.root
}
if l > r {
return 0
}
if node.l >= l && node.r <= r {
return node.v
}
st.pushdown(node)
v := 0
if l <= node.mid {
v += st.query(l, r, node.left)
}
if r > node.mid {
v += st.query(l, r, node.right)
}
return v
}
func (st *SegmentTree) pushup(node *Node) {
node.v = node.left.v + node.right.v
}
func (st *SegmentTree) pushdown(node *Node) {
if node.left == nil {
node.left = newNode(node.l, node.mid)
}
if node.right == nil {
node.right = newNode(node.mid+1, node.r)
}
if node.add != 0 {
left := node.left
right := node.right
left.add = node.add
right.add = node.add
left.v = left.r - left.l + 1
right.v = right.r - right.l + 1
node.add = 0
}
}
type CountIntervals struct {
tree *SegmentTree
}
func Constructor() CountIntervals {
return CountIntervals{
tree: newSegmentTree(),
}
}
func (ci *CountIntervals) Add(left, right int) {
ci.tree.modify(left, right, 1, nil)
}
func (ci *CountIntervals) Count() int {
return ci.tree.query(1, 1000000000, nil)
}
/**
* Your CountIntervals object will be instantiated and called as such:
* obj := Constructor();
* obj.Add(left,right);
* param_2 := obj.Count();
*/
|
class Node {
Node left;
Node right;
int l;
int r;
int mid;
int v;
int add;
public Node(int l, int r) {
this.l = l;
this.r = r;
this.mid = (l + r) >> 1;
}
}
class SegmentTree {
private Node root = new Node(1, (int) 1e9 + 1);
public SegmentTree() {
}
public void modify(int l, int r, int v) {
modify(l, r, v, root);
}
public void modify(int l, int r, int v, Node node) {
if (l > r) {
return;
}
if (node.l >= l && node.r <= r) {
node.v = node.r - node.l + 1;
node.add = v;
return;
}
pushdown(node);
if (l <= node.mid) {
modify(l, r, v, node.left);
}
if (r > node.mid) {
modify(l, r, v, node.right);
}
pushup(node);
}
public int query(int l, int r) {
return query(l, r, root);
}
public int query(int l, int r, Node node) {
if (l > r) {
return 0;
}
if (node.l >= l && node.r <= r) {
return node.v;
}
pushdown(node);
int v = 0;
if (l <= node.mid) {
v += query(l, r, node.left);
}
if (r > node.mid) {
v += query(l, r, node.right);
}
return v;
}
public void pushup(Node node) {
node.v = node.left.v + node.right.v;
}
public void pushdown(Node node) {
if (node.left == null) {
node.left = new Node(node.l, node.mid);
}
if (node.right == null) {
node.right = new Node(node.mid + 1, node.r);
}
if (node.add != 0) {
Node left = node.left, right = node.right;
left.add = node.add;
right.add = node.add;
left.v = left.r - left.l + 1;
right.v = right.r - right.l + 1;
node.add = 0;
}
}
}
class CountIntervals {
private SegmentTree tree = new SegmentTree();
public CountIntervals() {
}
public void add(int left, int right) {
tree.modify(left, right, 1);
}
public int count() {
return tree.query(1, (int) 1e9);
}
}
/**
* Your CountIntervals object will be instantiated and called as such:
* CountIntervals obj = new CountIntervals();
* obj.add(left,right);
* int param_2 = obj.count();
*/
| null | null | null | null | null | null |
class Node:
__slots__ = ("left", "right", "l", "r", "mid", "v", "add")
def __init__(self, l, r):
self.left = None
self.right = None
self.l = l
self.r = r
self.mid = (l + r) // 2
self.v = 0
self.add = 0
class SegmentTree:
def __init__(self):
self.root = Node(1, int(1e9) + 1)
def modify(self, l, r, v, node=None):
if node is None:
node = self.root
if l > r:
return
if node.l >= l and node.r <= r:
node.v = node.r - node.l + 1
node.add = v
return
self.pushdown(node)
if l <= node.mid:
self.modify(l, r, v, node.left)
if r > node.mid:
self.modify(l, r, v, node.right)
self.pushup(node)
def query(self, l, r, node=None):
if node is None:
node = self.root
if l > r:
return 0
if node.l >= l and node.r <= r:
return node.v
self.pushdown(node)
v = 0
if l <= node.mid:
v += self.query(l, r, node.left)
if r > node.mid:
v += self.query(l, r, node.right)
return v
def pushup(self, node):
node.v = node.left.v + node.right.v
def pushdown(self, node):
if node.left is None:
node.left = Node(node.l, node.mid)
if node.right is None:
node.right = Node(node.mid + 1, node.r)
if node.add != 0:
left, right = node.left, node.right
left.add = node.add
right.add = node.add
left.v = left.r - left.l + 1
right.v = right.r - right.l + 1
node.add = 0
class CountIntervals:
def __init__(self):
self.tree = SegmentTree()
def add(self, left, right):
self.tree.modify(left, right, 1)
def count(self):
return self.tree.query(1, int(1e9))
# Your CountIntervals object will be instantiated and called as such:
# obj = CountIntervals()
# obj.add(left, right)
# param_2 = obj.count()
| null | null | null | null | null |
class CountIntervals {
left: null | CountIntervals;
right: null | CountIntervals;
start: number;
end: number;
sum: number;
constructor(start: number = 0, end: number = 10 ** 9) {
this.left = null;
this.right = null;
this.start = start;
this.end = end;
this.sum = 0;
}
add(left: number, right: number): void {
if (this.sum == this.end - this.start + 1) return;
if (left <= this.start && right >= this.end) {
this.sum = this.end - this.start + 1;
return;
}
let mid = (this.start + this.end) >> 1;
if (!this.left) this.left = new CountIntervals(this.start, mid);
if (!this.right) this.right = new CountIntervals(mid + 1, this.end);
if (left <= mid) this.left.add(left, right);
if (right > mid) this.right.add(left, right);
this.sum = this.left.sum + this.right.sum;
}
count(): number {
return this.sum;
}
}
/**
* Your CountIntervals object will be instantiated and called as such:
* var obj = new CountIntervals()
* obj.add(left,right)
* var param_2 = obj.count()
*/
|
Delete Columns to Make Sorted
|
You are given an array of
n
strings
strs
, all of the same length.
The strings can be arranged such that there is one on each line, making a grid.
For example,
strs = ["abc", "bce", "cae"]
can be arranged as follows:
abc
bce
cae
You want to
delete
the columns that are
not sorted lexicographically
. In the above example (
0-indexed
), columns 0 (
'a'
,
'b'
,
'c'
) and 2 (
'c'
,
'e'
,
'e'
) are sorted, while column 1 (
'b'
,
'c'
,
'a'
) is not, so you would delete column 1.
Return
the number of columns that you will delete
.
Example 1:
Input:
strs = ["cba","daf","ghi"]
Output:
1
Explanation:
The grid looks as follows:
cba
daf
ghi
Columns 0 and 2 are sorted, but column 1 is not, so you only need to delete 1 column.
Example 2:
Input:
strs = ["a","b"]
Output:
0
Explanation:
The grid looks as follows:
a
b
Column 0 is the only column and is sorted, so you will not delete any columns.
Example 3:
Input:
strs = ["zyx","wvu","tsr"]
Output:
3
Explanation:
The grid looks as follows:
zyx
wvu
tsr
All 3 columns are not sorted, so you will delete all 3.
Constraints:
n == strs.length
1 <= n <= 100
1 <= strs[i].length <= 1000
strs[i]
consists of lowercase English letters.
| null | null |
class Solution {
public:
int minDeletionSize(vector<string>& strs) {
int m = strs[0].size(), n = strs.size();
int ans = 0;
for (int j = 0; j < m; ++j) {
for (int i = 1; i < n; ++i) {
if (strs[i][j] < strs[i - 1][j]) {
++ans;
break;
}
}
}
return ans;
}
};
| null | null |
func minDeletionSize(strs []string) (ans int) {
m, n := len(strs[0]), len(strs)
for j := 0; j < m; j++ {
for i := 1; i < n; i++ {
if strs[i][j] < strs[i-1][j] {
ans++
break
}
}
}
return
}
|
class Solution {
public int minDeletionSize(String[] strs) {
int m = strs[0].length(), n = strs.length;
int ans = 0;
for (int j = 0; j < m; ++j) {
for (int i = 1; i < n; ++i) {
if (strs[i].charAt(j) < strs[i - 1].charAt(j)) {
++ans;
break;
}
}
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def minDeletionSize(self, strs: List[str]) -> int:
m, n = len(strs[0]), len(strs)
ans = 0
for j in range(m):
for i in range(1, n):
if strs[i][j] < strs[i - 1][j]:
ans += 1
break
return ans
| null |
impl Solution {
pub fn min_deletion_size(strs: Vec<String>) -> i32 {
let n = strs.len();
let m = strs[0].len();
let mut ans = 0;
for j in 0..m {
for i in 1..n {
if strs[i].as_bytes()[j] < strs[i - 1].as_bytes()[j] {
ans += 1;
break;
}
}
}
ans
}
}
| null | null | null |
function minDeletionSize(strs: string[]): number {
const [m, n] = [strs[0].length, strs.length];
let ans = 0;
for (let j = 0; j < m; ++j) {
for (let i = 1; i < n; ++i) {
if (strs[i][j] < strs[i - 1][j]) {
++ans;
break;
}
}
}
return ans;
}
|
Binary Subarrays With Sum
|
Given a binary array
nums
and an integer
goal
, return
the number of non-empty
subarrays
with a sum
goal
.
A
subarray
is a contiguous part of the array.
Example 1:
Input:
nums = [1,0,1,0,1], goal = 2
Output:
4
Explanation:
The 4 subarrays are bolded and underlined below:
[
1,0,1
,0,1]
[
1,0,1,0
,1]
[1,
0,1,0,1
]
[1,0,
1,0,1
]
Example 2:
Input:
nums = [0,0,0,0,0], goal = 0
Output:
15
Constraints:
1 <= nums.length <= 3 * 10
4
nums[i]
is either
0
or
1
.
0 <= goal <= nums.length
| null | null |
class Solution {
public:
int numSubarraysWithSum(vector<int>& nums, int goal) {
int i1 = 0, i2 = 0, s1 = 0, s2 = 0, j = 0, ans = 0;
int n = nums.size();
while (j < n) {
s1 += nums[j];
s2 += nums[j];
while (i1 <= j && s1 > goal) s1 -= nums[i1++];
while (i2 <= j && s2 >= goal) s2 -= nums[i2++];
ans += i2 - i1;
++j;
}
return ans;
}
};
| null | null |
func numSubarraysWithSum(nums []int, goal int) int {
i1, i2, s1, s2, j, ans, n := 0, 0, 0, 0, 0, 0, len(nums)
for j < n {
s1 += nums[j]
s2 += nums[j]
for i1 <= j && s1 > goal {
s1 -= nums[i1]
i1++
}
for i2 <= j && s2 >= goal {
s2 -= nums[i2]
i2++
}
ans += i2 - i1
j++
}
return ans
}
|
class Solution {
public int numSubarraysWithSum(int[] nums, int goal) {
int i1 = 0, i2 = 0, s1 = 0, s2 = 0, j = 0, ans = 0;
int n = nums.length;
while (j < n) {
s1 += nums[j];
s2 += nums[j];
while (i1 <= j && s1 > goal) {
s1 -= nums[i1++];
}
while (i2 <= j && s2 >= goal) {
s2 -= nums[i2++];
}
ans += i2 - i1;
++j;
}
return ans;
}
}
|
/**
* @param {number[]} nums
* @param {number} goal
* @return {number}
*/
var numSubarraysWithSum = function (nums, goal) {
let i1 = 0,
i2 = 0,
s1 = 0,
s2 = 0,
j = 0,
ans = 0;
const n = nums.length;
while (j < n) {
s1 += nums[j];
s2 += nums[j];
while (i1 <= j && s1 > goal) s1 -= nums[i1++];
while (i2 <= j && s2 >= goal) s2 -= nums[i2++];
ans += i2 - i1;
++j;
}
return ans;
};
| null | null | null | null | null |
class Solution:
def numSubarraysWithSum(self, nums: List[int], goal: int) -> int:
i1 = i2 = s1 = s2 = j = ans = 0
n = len(nums)
while j < n:
s1 += nums[j]
s2 += nums[j]
while i1 <= j and s1 > goal:
s1 -= nums[i1]
i1 += 1
while i2 <= j and s2 >= goal:
s2 -= nums[i2]
i2 += 1
ans += i2 - i1
j += 1
return ans
| null | null | null | null | null | null |
Shortest Word Distance 🔒
|
Given an array of strings
wordsDict
and two different strings that already exist in the array
word1
and
word2
, return
the shortest distance between these two words in the list
.
Example 1:
Input:
wordsDict = ["practice", "makes", "perfect", "coding", "makes"], word1 = "coding", word2 = "practice"
Output:
3
Example 2:
Input:
wordsDict = ["practice", "makes", "perfect", "coding", "makes"], word1 = "makes", word2 = "coding"
Output:
1
Constraints:
2 <= wordsDict.length <= 3 * 10
4
1 <= wordsDict[i].length <= 10
wordsDict[i]
consists of lowercase English letters.
word1
and
word2
are in
wordsDict
.
word1 != word2
| null | null |
class Solution {
public:
int shortestDistance(vector<string>& wordsDict, string word1, string word2) {
int ans = INT_MAX;
for (int k = 0, i = -1, j = -1; k < wordsDict.size(); ++k) {
if (wordsDict[k] == word1) {
i = k;
}
if (wordsDict[k] == word2) {
j = k;
}
if (i != -1 && j != -1) {
ans = min(ans, abs(i - j));
}
}
return ans;
}
};
| null | null |
func shortestDistance(wordsDict []string, word1 string, word2 string) int {
ans := 0x3f3f3f3f
i, j := -1, -1
for k, w := range wordsDict {
if w == word1 {
i = k
}
if w == word2 {
j = k
}
if i != -1 && j != -1 {
ans = min(ans, abs(i-j))
}
}
return ans
}
func abs(x int) int {
if x < 0 {
return -x
}
return x
}
|
class Solution {
public int shortestDistance(String[] wordsDict, String word1, String word2) {
int ans = 0x3f3f3f3f;
for (int k = 0, i = -1, j = -1; k < wordsDict.length; ++k) {
if (wordsDict[k].equals(word1)) {
i = k;
}
if (wordsDict[k].equals(word2)) {
j = k;
}
if (i != -1 && j != -1) {
ans = Math.min(ans, Math.abs(i - j));
}
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def shortestDistance(self, wordsDict: List[str], word1: str, word2: str) -> int:
i = j = -1
ans = inf
for k, w in enumerate(wordsDict):
if w == word1:
i = k
if w == word2:
j = k
if i != -1 and j != -1:
ans = min(ans, abs(i - j))
return ans
| null | null | null | null | null | null |
Find the K-or of an Array
|
You are given an integer array
nums
, and an integer
k
. Let's introduce
K-or
operation by extending the standard bitwise OR. In K-or, a bit position in the result is set to
1
if at least
k
numbers in
nums
have a
1
in that position.
Return
the K-or of
nums
.
Example 1:
Input:
nums = [7,12,9,8,9,15], k = 4
Output:
9
Explanation:
Represent numbers in binary:
Number
Bit 3
Bit 2
Bit 1
Bit 0
7
0
1
1
1
12
1
1
0
0
9
1
0
0
1
8
1
0
0
0
9
1
0
0
1
15
1
1
1
1
Result = 9
1
0
0
1
Bit 0 is set in 7, 9, 9, and 15. Bit 3 is set in 12, 9, 8, 9, and 15.
Only bits 0 and 3 qualify. The result is
(1001)
2
= 9
.
Example 2:
Input:
nums = [2,12,1,11,4,5], k = 6
Output:
0
Explanation:
No bit appears as 1 in all six array numbers, as required for K-or with
k = 6
. Thus, the result is 0.
Example 3:
Input:
nums = [10,8,5,9,11,6,8], k = 1
Output:
15
Explanation:
Since
k == 1
, the 1-or of the array is equal to the bitwise OR of all its elements. Hence, the answer is
10 OR 8 OR 5 OR 9 OR 11 OR 6 OR 8 = 15
.
Constraints:
1 <= nums.length <= 50
0 <= nums[i] < 2
31
1 <= k <= nums.length
| null |
public class Solution {
public int FindKOr(int[] nums, int k) {
int ans = 0;
for (int i = 0; i < 32; ++i) {
int cnt = 0;
foreach (int x in nums) {
cnt += (x >> i & 1);
}
if (cnt >= k) {
ans |= 1 << i;
}
}
return ans;
}
}
|
class Solution {
public:
int findKOr(vector<int>& nums, int k) {
int ans = 0;
for (int i = 0; i < 32; ++i) {
int cnt = 0;
for (int x : nums) {
cnt += (x >> i & 1);
}
if (cnt >= k) {
ans |= 1 << i;
}
}
return ans;
}
};
| null | null |
func findKOr(nums []int, k int) (ans int) {
for i := 0; i < 32; i++ {
cnt := 0
for _, x := range nums {
cnt += (x >> i & 1)
}
if cnt >= k {
ans |= 1 << i
}
}
return
}
|
class Solution {
public int findKOr(int[] nums, int k) {
int ans = 0;
for (int i = 0; i < 32; ++i) {
int cnt = 0;
for (int x : nums) {
cnt += (x >> i & 1);
}
if (cnt >= k) {
ans |= 1 << i;
}
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def findKOr(self, nums: List[int], k: int) -> int:
ans = 0
for i in range(32):
cnt = sum(x >> i & 1 for x in nums)
if cnt >= k:
ans |= 1 << i
return ans
| null | null | null | null | null |
function findKOr(nums: number[], k: number): number {
let ans = 0;
for (let i = 0; i < 32; ++i) {
let cnt = 0;
for (const x of nums) {
cnt += (x >> i) & 1;
}
if (cnt >= k) {
ans |= 1 << i;
}
}
return ans;
}
|
Find Sum of Array Product of Magical Sequences
|
You are given two integers,
m
and
k
, and an integer array
nums
.
A sequence of integers
seq
is called
magical
if:
seq
has a size of
m
.
0 <= seq[i] < nums.length
The
binary representation
of
2
seq[0]
+ 2
seq[1]
+ ... + 2
seq[m - 1]
has
k
set bits
.
The
array product
of this sequence is defined as
prod(seq) = (nums[seq[0]] * nums[seq[1]] * ... * nums[seq[m - 1]])
.
Return the
sum
of the
array products
for all valid
magical
sequences.
Since the answer may be large, return it
modulo
10
9
+ 7
.
A
set bit
refers to a bit in the binary representation of a number that has a value of 1.
Example 1:
Input:
m = 5, k = 5, nums = [1,10,100,10000,1000000]
Output:
991600007
Explanation:
All permutations of
[0, 1, 2, 3, 4]
are magical sequences, each with an array product of 10
13
.
Example 2:
Input:
m = 2, k = 2, nums = [5,4,3,2,1]
Output:
170
Explanation:
The magical sequences are
[0, 1]
,
[0, 2]
,
[0, 3]
,
[0, 4]
,
[1, 0]
,
[1, 2]
,
[1, 3]
,
[1, 4]
,
[2, 0]
,
[2, 1]
,
[2, 3]
,
[2, 4]
,
[3, 0]
,
[3, 1]
,
[3, 2]
,
[3, 4]
,
[4, 0]
,
[4, 1]
,
[4, 2]
, and
[4, 3]
.
Example 3:
Input:
m = 1, k = 1, nums = [28]
Output:
28
Explanation:
The only magical sequence is
[0]
.
Constraints:
1 <= k <= m <= 30
1 <= nums.length <= 50
1 <= nums[i] <= 10
8
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
Jump Game V
|
Given an array of integers
arr
and an integer
d
. In one step you can jump from index
i
to index:
i + x
where:
i + x < arr.length
and
0 < x <= d
.
i - x
where:
i - x >= 0
and
0 < x <= d
.
In addition, you can only jump from index
i
to index
j
if
arr[i] > arr[j]
and
arr[i] > arr[k]
for all indices
k
between
i
and
j
(More formally
min(i, j) < k < max(i, j)
).
You can choose any index of the array and start jumping. Return
the maximum number of indices
you can visit.
Notice that you can not jump outside of the array at any time.
Example 1:
Input:
arr = [6,4,14,6,8,13,9,7,10,6,12], d = 2
Output:
4
Explanation:
You can start at index 10. You can jump 10 --> 8 --> 6 --> 7 as shown.
Note that if you start at index 6 you can only jump to index 7. You cannot jump to index 5 because 13 > 9. You cannot jump to index 4 because index 5 is between index 4 and 6 and 13 > 9.
Similarly You cannot jump from index 3 to index 2 or index 1.
Example 2:
Input:
arr = [3,3,3,3,3], d = 3
Output:
1
Explanation:
You can start at any index. You always cannot jump to any index.
Example 3:
Input:
arr = [7,6,5,4,3,2,1], d = 1
Output:
7
Explanation:
Start at index 0. You can visit all the indicies.
Constraints:
1 <= arr.length <= 1000
1 <= arr[i] <= 10
5
1 <= d <= arr.length
| null | null |
class Solution {
public:
int maxJumps(vector<int>& arr, int d) {
int n = arr.size();
vector<int> idx(n);
iota(idx.begin(), idx.end(), 0);
sort(idx.begin(), idx.end(), [&](int i, int j) { return arr[i] < arr[j]; });
vector<int> f(n, 1);
for (int i : idx) {
for (int j = i - 1; j >= 0; --j) {
if (i - j > d || arr[j] >= arr[i]) {
break;
}
f[i] = max(f[i], 1 + f[j]);
}
for (int j = i + 1; j < n; ++j) {
if (j - i > d || arr[j] >= arr[i]) {
break;
}
f[i] = max(f[i], 1 + f[j]);
}
}
return *max_element(f.begin(), f.end());
}
};
| null | null |
func maxJumps(arr []int, d int) int {
n := len(arr)
idx := make([]int, n)
f := make([]int, n)
for i := range f {
idx[i] = i
f[i] = 1
}
sort.Slice(idx, func(i, j int) bool { return arr[idx[i]] < arr[idx[j]] })
for _, i := range idx {
for j := i - 1; j >= 0; j-- {
if i-j > d || arr[j] >= arr[i] {
break
}
f[i] = max(f[i], 1+f[j])
}
for j := i + 1; j < n; j++ {
if j-i > d || arr[j] >= arr[i] {
break
}
f[i] = max(f[i], 1+f[j])
}
}
return slices.Max(f)
}
|
class Solution {
public int maxJumps(int[] arr, int d) {
int n = arr.length;
Integer[] idx = new Integer[n];
Arrays.setAll(idx, i -> i);
Arrays.sort(idx, (i, j) -> arr[i] - arr[j]);
int[] f = new int[n];
Arrays.fill(f, 1);
int ans = 0;
for (int i : idx) {
for (int j = i - 1; j >= 0; --j) {
if (i - j > d || arr[j] >= arr[i]) {
break;
}
f[i] = Math.max(f[i], 1 + f[j]);
}
for (int j = i + 1; j < n; ++j) {
if (j - i > d || arr[j] >= arr[i]) {
break;
}
f[i] = Math.max(f[i], 1 + f[j]);
}
ans = Math.max(ans, f[i]);
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def maxJumps(self, arr: List[int], d: int) -> int:
n = len(arr)
f = [1] * n
for x, i in sorted(zip(arr, range(n))):
for j in range(i - 1, -1, -1):
if i - j > d or arr[j] >= x:
break
f[i] = max(f[i], 1 + f[j])
for j in range(i + 1, n):
if j - i > d or arr[j] >= x:
break
f[i] = max(f[i], 1 + f[j])
return max(f)
| null | null | null | null | null | null |
Check if Number Has Equal Digit Count and Digit Value
|
You are given a
0-indexed
string
num
of length
n
consisting of digits.
Return
true
if for
every
index
i
in the range
0 <= i < n
, the digit
i
occurs
num[i]
times in
num
, otherwise return
false
.
Example 1:
Input:
num = "1210"
Output:
true
Explanation:
num[0] = '1'. The digit 0 occurs once in num.
num[1] = '2'. The digit 1 occurs twice in num.
num[2] = '1'. The digit 2 occurs once in num.
num[3] = '0'. The digit 3 occurs zero times in num.
The condition holds true for every index in "1210", so return true.
Example 2:
Input:
num = "030"
Output:
false
Explanation:
num[0] = '0'. The digit 0 should occur zero times, but actually occurs twice in num.
num[1] = '3'. The digit 1 should occur three times, but actually occurs zero times in num.
num[2] = '0'. The digit 2 occurs zero times in num.
The indices 0 and 1 both violate the condition, so return false.
Constraints:
n == num.length
1 <= n <= 10
num
consists of digits.
|
bool digitCount(char* num) {
int cnt[10] = {0};
for (int i = 0; num[i] != '\0'; ++i) {
++cnt[num[i] - '0'];
}
for (int i = 0; num[i] != '\0'; ++i) {
if (cnt[i] != num[i] - '0') {
return false;
}
}
return true;
}
| null |
class Solution {
public:
bool digitCount(string num) {
int cnt[10]{};
for (char& c : num) {
++cnt[c - '0'];
}
for (int i = 0; i < num.size(); ++i) {
if (cnt[i] != num[i] - '0') {
return false;
}
}
return true;
}
};
| null | null |
func digitCount(num string) bool {
cnt := [10]int{}
for _, c := range num {
cnt[c-'0']++
}
for i, c := range num {
if int(c-'0') != cnt[i] {
return false
}
}
return true
}
|
class Solution {
public boolean digitCount(String num) {
int[] cnt = new int[10];
int n = num.length();
for (int i = 0; i < n; ++i) {
++cnt[num.charAt(i) - '0'];
}
for (int i = 0; i < n; ++i) {
if (num.charAt(i) - '0' != cnt[i]) {
return false;
}
}
return true;
}
}
| null | null | null | null | null | null |
class Solution:
def digitCount(self, num: str) -> bool:
cnt = Counter(int(x) for x in num)
return all(cnt[i] == int(x) for i, x in enumerate(num))
| null |
impl Solution {
pub fn digit_count(num: String) -> bool {
let mut cnt = vec![0; 10];
for c in num.chars() {
let x = c.to_digit(10).unwrap() as usize;
cnt[x] += 1;
}
for (i, c) in num.chars().enumerate() {
let x = c.to_digit(10).unwrap() as usize;
if cnt[i] != x {
return false;
}
}
true
}
}
| null | null | null |
function digitCount(num: string): boolean {
const cnt: number[] = Array(10).fill(0);
for (const c of num) {
++cnt[+c];
}
for (let i = 0; i < num.length; ++i) {
if (cnt[i] !== +num[i]) {
return false;
}
}
return true;
}
|
Design Tic-Tac-Toe 🔒
|
Assume the following rules are for the tic-tac-toe game on an
n x n
board between two players:
A move is guaranteed to be valid and is placed on an empty block.
Once a winning condition is reached, no more moves are allowed.
A player who succeeds in placing
n
of their marks in a horizontal, vertical, or diagonal row wins the game.
Implement the
TicTacToe
class:
TicTacToe(int n)
Initializes the object the size of the board
n
.
int move(int row, int col, int player)
Indicates that the player with id
player
plays at the cell
(row, col)
of the board. The move is guaranteed to be a valid move, and the two players alternate in making moves. Return
0
if there is
no winner
after the move,
1
if
player 1
is the winner after the move, or
2
if
player 2
is the winner after the move.
Example 1:
Input
["TicTacToe", "move", "move", "move", "move", "move", "move", "move"]
[[3], [0, 0, 1], [0, 2, 2], [2, 2, 1], [1, 1, 2], [2, 0, 1], [1, 0, 2], [2, 1, 1]]
Output
[null, 0, 0, 0, 0, 0, 0, 1]
Explanation
TicTacToe ticTacToe = new TicTacToe(3);
Assume that player 1 is "X" and player 2 is "O" in the board.
ticTacToe.move(0, 0, 1); // return 0 (no one wins)
|X| | |
| | | | // Player 1 makes a move at (0, 0).
| | | |
ticTacToe.move(0, 2, 2); // return 0 (no one wins)
|X| |O|
| | | | // Player 2 makes a move at (0, 2).
| | | |
ticTacToe.move(2, 2, 1); // return 0 (no one wins)
|X| |O|
| | | | // Player 1 makes a move at (2, 2).
| | |X|
ticTacToe.move(1, 1, 2); // return 0 (no one wins)
|X| |O|
| |O| | // Player 2 makes a move at (1, 1).
| | |X|
ticTacToe.move(2, 0, 1); // return 0 (no one wins)
|X| |O|
| |O| | // Player 1 makes a move at (2, 0).
|X| |X|
ticTacToe.move(1, 0, 2); // return 0 (no one wins)
|X| |O|
|O|O| | // Player 2 makes a move at (1, 0).
|X| |X|
ticTacToe.move(2, 1, 1); // return 1 (player 1 wins)
|X| |O|
|O|O| | // Player 1 makes a move at (2, 1).
|X|X|X|
Constraints:
2 <= n <= 100
player is
1
or
2
.
0 <= row, col < n
(row, col)
are
unique
for each different call to
move
.
At most
n
2
calls will be made to
move
.
Follow-up:
Could you do better than
O(n
2
)
per
move()
operation?
| null | null |
class TicTacToe {
private:
int n;
vector<vector<int>> cnt;
public:
TicTacToe(int n)
: n(n)
, cnt(2, vector<int>((n << 1) + 2, 0)) {
}
int move(int row, int col, int player) {
vector<int>& cur = cnt[player - 1];
++cur[row];
++cur[n + col];
if (row == col) {
++cur[n << 1];
}
if (row + col == n - 1) {
++cur[n << 1 | 1];
}
if (cur[row] == n || cur[n + col] == n || cur[n << 1] == n || cur[n << 1 | 1] == n) {
return player;
}
return 0;
}
};
/**
* Your TicTacToe object will be instantiated and called as such:
* TicTacToe* obj = new TicTacToe(n);
* int param_1 = obj->move(row,col,player);
*/
| null | null |
type TicTacToe struct {
n int
cnt [][]int
}
func Constructor(n int) TicTacToe {
cnt := make([][]int, 2)
for i := range cnt {
cnt[i] = make([]int, (n<<1)+2)
}
return TicTacToe{n, cnt}
}
func (this *TicTacToe) Move(row int, col int, player int) int {
cur := this.cnt[player-1]
cur[row]++
cur[this.n+col]++
if row == col {
cur[this.n<<1]++
}
if row+col == this.n-1 {
cur[this.n<<1|1]++
}
if cur[row] == this.n || cur[this.n+col] == this.n || cur[this.n<<1] == this.n || cur[this.n<<1|1] == this.n {
return player
}
return 0
}
/**
* Your TicTacToe object will be instantiated and called as such:
* obj := Constructor(n);
* param_1 := obj.Move(row,col,player);
*/
|
class TicTacToe {
private int n;
private int[][] cnt;
public TicTacToe(int n) {
this.n = n;
cnt = new int[2][(n << 1) + 2];
}
public int move(int row, int col, int player) {
int[] cur = cnt[player - 1];
++cur[row];
++cur[n + col];
if (row == col) {
++cur[n << 1];
}
if (row + col == n - 1) {
++cur[n << 1 | 1];
}
if (cur[row] == n || cur[n + col] == n || cur[n << 1] == n || cur[n << 1 | 1] == n) {
return player;
}
return 0;
}
}
/**
* Your TicTacToe object will be instantiated and called as such:
* TicTacToe obj = new TicTacToe(n);
* int param_1 = obj.move(row,col,player);
*/
| null | null | null | null | null | null |
class TicTacToe:
def __init__(self, n: int):
self.n = n
self.cnt = [defaultdict(int), defaultdict(int)]
def move(self, row: int, col: int, player: int) -> int:
cur = self.cnt[player - 1]
n = self.n
cur[row] += 1
cur[n + col] += 1
if row == col:
cur[n << 1] += 1
if row + col == n - 1:
cur[n << 1 | 1] += 1
if any(cur[i] == n for i in (row, n + col, n << 1, n << 1 | 1)):
return player
return 0
# Your TicTacToe object will be instantiated and called as such:
# obj = TicTacToe(n)
# param_1 = obj.move(row,col,player)
| null | null | null | null | null |
class TicTacToe {
private n: number;
private cnt: number[][];
constructor(n: number) {
this.n = n;
this.cnt = [Array((n << 1) + 2).fill(0), Array((n << 1) + 2).fill(0)];
}
move(row: number, col: number, player: number): number {
const cur = this.cnt[player - 1];
cur[row]++;
cur[this.n + col]++;
if (row === col) {
cur[this.n << 1]++;
}
if (row + col === this.n - 1) {
cur[(this.n << 1) | 1]++;
}
if (
cur[row] === this.n ||
cur[this.n + col] === this.n ||
cur[this.n << 1] === this.n ||
cur[(this.n << 1) | 1] === this.n
) {
return player;
}
return 0;
}
}
/**
* Your TicTacToe object will be instantiated and called as such:
* var obj = new TicTacToe(n)
* var param_1 = obj.move(row,col,player)
*/
|
Find the Sum of Encrypted Integers
|
You are given an integer array
nums
containing
positive
integers. We define a function
encrypt
such that
encrypt(x)
replaces
every
digit in
x
with the
largest
digit in
x
. For example,
encrypt(523) = 555
and
encrypt(213) = 333
.
Return
the
sum
of encrypted elements
.
Example 1:
Input:
nums = [1,2,3]
Output:
6
Explanation:
The encrypted elements are
[1,2,3]
. The sum of encrypted elements is
1 + 2 + 3 == 6
.
Example 2:
Input:
nums = [10,21,31]
Output:
66
Explanation:
The encrypted elements are
[11,22,33]
. The sum of encrypted elements is
11 + 22 + 33 == 66
.
Constraints:
1 <= nums.length <= 50
1 <= nums[i] <= 1000
| null | null |
class Solution {
public:
int sumOfEncryptedInt(vector<int>& nums) {
auto encrypt = [&](int x) {
int mx = 0, p = 0;
for (; x; x /= 10) {
mx = max(mx, x % 10);
p = p * 10 + 1;
}
return mx * p;
};
int ans = 0;
for (int x : nums) {
ans += encrypt(x);
}
return ans;
}
};
| null | null |
func sumOfEncryptedInt(nums []int) (ans int) {
encrypt := func(x int) int {
mx, p := 0, 0
for ; x > 0; x /= 10 {
mx = max(mx, x%10)
p = p*10 + 1
}
return mx * p
}
for _, x := range nums {
ans += encrypt(x)
}
return
}
|
class Solution {
public int sumOfEncryptedInt(int[] nums) {
int ans = 0;
for (int x : nums) {
ans += encrypt(x);
}
return ans;
}
private int encrypt(int x) {
int mx = 0, p = 0;
for (; x > 0; x /= 10) {
mx = Math.max(mx, x % 10);
p = p * 10 + 1;
}
return mx * p;
}
}
| null | null | null | null | null | null |
class Solution:
def sumOfEncryptedInt(self, nums: List[int]) -> int:
def encrypt(x: int) -> int:
mx = p = 0
while x:
x, v = divmod(x, 10)
mx = max(mx, v)
p = p * 10 + 1
return mx * p
return sum(encrypt(x) for x in nums)
| null | null | null | null | null |
function sumOfEncryptedInt(nums: number[]): number {
const encrypt = (x: number): number => {
let [mx, p] = [0, 0];
for (; x > 0; x = Math.floor(x / 10)) {
mx = Math.max(mx, x % 10);
p = p * 10 + 1;
}
return mx * p;
};
return nums.reduce((acc, x) => acc + encrypt(x), 0);
}
|
Maximum Matrix Sum
|
You are given an
n x n
integer
matrix
. You can do the following operation
any
number of times:
Choose any two
adjacent
elements of
matrix
and
multiply
each of them by
-1
.
Two elements are considered
adjacent
if and only if they share a
border
.
Your goal is to
maximize
the summation of the matrix's elements. Return
the
maximum
sum of the matrix's elements using the operation mentioned above.
Example 1:
Input:
matrix = [[1,-1],[-1,1]]
Output:
4
Explanation:
We can follow the following steps to reach sum equals 4:
- Multiply the 2 elements in the first row by -1.
- Multiply the 2 elements in the first column by -1.
Example 2:
Input:
matrix = [[1,2,3],[-1,-2,-3],[1,2,3]]
Output:
16
Explanation:
We can follow the following step to reach sum equals 16:
- Multiply the 2 last elements in the second row by -1.
Constraints:
n == matrix.length == matrix[i].length
2 <= n <= 250
-10
5
<= matrix[i][j] <= 10
5
| null | null |
class Solution {
public:
long long maxMatrixSum(vector<vector<int>>& matrix) {
long long s = 0;
int mi = 1 << 30, cnt = 0;
for (const auto& row : matrix) {
for (int x : row) {
cnt += x < 0 ? 1 : 0;
int y = abs(x);
mi = min(mi, y);
s += y;
}
}
return cnt % 2 == 0 ? s : s - mi * 2;
}
};
| null | null |
func maxMatrixSum(matrix [][]int) int64 {
var s int64
mi, cnt := 1<<30, 0
for _, row := range matrix {
for _, x := range row {
if x < 0 {
cnt++
x = -x
}
mi = min(mi, x)
s += int64(x)
}
}
if cnt%2 == 0 {
return s
}
return s - int64(mi*2)
}
|
class Solution {
public long maxMatrixSum(int[][] matrix) {
long s = 0;
int mi = 1 << 30, cnt = 0;
for (var row : matrix) {
for (int x : row) {
cnt += x < 0 ? 1 : 0;
int y = Math.abs(x);
mi = Math.min(mi, y);
s += y;
}
}
return cnt % 2 == 0 ? s : s - mi * 2;
}
}
|
/**
* @param {number[][]} matrix
* @return {number}
*/
var maxMatrixSum = function (matrix) {
let [s, cnt, mi] = [0, 0, Infinity];
for (const row of matrix) {
for (const x of row) {
if (x < 0) {
++cnt;
}
const y = Math.abs(x);
s += y;
mi = Math.min(mi, y);
}
}
return cnt % 2 === 0 ? s : s - 2 * mi;
};
| null | null | null | null | null |
class Solution:
def maxMatrixSum(self, matrix: List[List[int]]) -> int:
mi = inf
s = cnt = 0
for row in matrix:
for x in row:
cnt += x < 0
y = abs(x)
mi = min(mi, y)
s += y
return s if cnt % 2 == 0 else s - mi * 2
| null |
impl Solution {
pub fn max_matrix_sum(matrix: Vec<Vec<i32>>) -> i64 {
let mut s = 0;
let mut mi = i32::MAX;
let mut cnt = 0;
for row in matrix {
for &x in row.iter() {
cnt += if x < 0 { 1 } else { 0 };
let y = x.abs();
mi = mi.min(y);
s += y as i64;
}
}
if cnt % 2 == 0 {
s
} else {
s - (mi as i64 * 2)
}
}
}
| null | null | null |
function maxMatrixSum(matrix: number[][]): number {
let [s, cnt, mi] = [0, 0, Infinity];
for (const row of matrix) {
for (const x of row) {
if (x < 0) {
++cnt;
}
const y = Math.abs(x);
s += y;
mi = Math.min(mi, y);
}
}
return cnt % 2 === 0 ? s : s - 2 * mi;
}
|
Change Null Values in a Table to the Previous Value 🔒
|
Table:
CoffeeShop
+-------------+---------+
| Column Name | Type |
+-------------+---------+
| id | int |
| drink | varchar |
+-------------+---------+
id is the primary key (column with unique values) for this table.
Each row in this table shows the order id and the name of the drink ordered. Some drink rows are nulls.
Write a solution to replace the
null
values of the drink with the name of the drink of the previous row that is not
null
. It is guaranteed that the drink on the first row of the table is not
null
.
Return the result table
in the same order as the input
.
The result format is shown in the following example.
Example 1:
Input:
CoffeeShop table:
+----+-------------------+
| id | drink |
+----+-------------------+
| 9 | Rum and Coke |
| 6 | null |
| 7 | null |
| 3 | St Germain Spritz |
| 1 | Orange Margarita |
| 2 | null |
+----+-------------------+
Output:
+----+-------------------+
| id | drink |
+----+-------------------+
| 9 | Rum and Coke |
| 6 | Rum and Coke |
| 7 | Rum and Coke |
| 3 | St Germain Spritz |
| 1 | Orange Margarita |
| 2 | Orange Margarita |
+----+-------------------+
Explanation:
For ID 6, the previous value that is not null is from ID 9. We replace the null with "Rum and Coke".
For ID 7, the previous value that is not null is from ID 9. We replace the null with "Rum and Coke;.
For ID 2, the previous value that is not null is from ID 1. We replace the null with "Orange Margarita".
Note that the rows in the output are the same as in the input.
| null | null | null | null | null | null | null | null | null |
# Write your MySQL query statement below
WITH
S AS (
SELECT *, ROW_NUMBER() OVER () AS rk
FROM CoffeeShop
),
T AS (
SELECT
*,
SUM(
CASE
WHEN drink IS NULL THEN 0
ELSE 1
END
) OVER (ORDER BY rk) AS gid
FROM S
)
SELECT
id,
MAX(drink) OVER (
PARTITION BY gid
ORDER BY rk
) AS drink
FROM T;
| null | null | null | null | null | null | null | null | null | null |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.