mini_car_bikes_detection / mini_car_bikes_detection.py
alexrods's picture
Update mini_car_bikes_detection.py
1ade40b
raw
history blame
1.77 kB
from PIL import Image
import numpy as np
import json
import os
import datasets
_DESCRIPTION = """
"""
_HOMEPAGE = ""
_LICENSE = ""
_URL = "https://huggingface.co/datasets/alexrods/mini_car_bikes_detection/resolve/main"
_URLS = {
"train_images": f"{_URL}/data/train.zip",
"test_images": f"{_URL}/data/test.zip",
}
_CATEGORIES = ['Car', 'bike']
class MiniCarBikesDetection(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
def _info(self):
features = datasets.Features(
{
"image": datasets.Image(),
"image_name": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
)
def _split_generators(self, dl_manager):
data_files = dl_manager.download(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"image_files": dl_manager.iter_archive(data_files["train_images"]),
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"image_files": dl_manager.iter_archive(data_files["test_images"]),
},
),
]
def _generate_examples(self, image_files):
for image_file in image_files:
yield image_file, {
"image": {"path": image_file[0], "bytes": image_file[1].read()},
"image_name": image_file[0],
}