|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import numbers
|
|
|
import os
|
|
|
from typing import Any
|
|
|
|
|
|
import numpy as np
|
|
|
import rerun as rr
|
|
|
|
|
|
from .constants import OBS_PREFIX, OBS_STR
|
|
|
|
|
|
|
|
|
def init_rerun(session_name: str = "lerobot_control_loop") -> None:
|
|
|
"""Initializes the Rerun SDK for visualizing the control loop."""
|
|
|
batch_size = os.getenv("RERUN_FLUSH_NUM_BYTES", "8000")
|
|
|
os.environ["RERUN_FLUSH_NUM_BYTES"] = batch_size
|
|
|
rr.init(session_name)
|
|
|
memory_limit = os.getenv("LEROBOT_RERUN_MEMORY_LIMIT", "10%")
|
|
|
rr.spawn(memory_limit=memory_limit)
|
|
|
|
|
|
|
|
|
def _is_scalar(x):
|
|
|
return isinstance(x, (float | numbers.Real | np.integer | np.floating)) or (
|
|
|
isinstance(x, np.ndarray) and x.ndim == 0
|
|
|
)
|
|
|
|
|
|
|
|
|
def log_rerun_data(
|
|
|
observation: dict[str, Any] | None = None,
|
|
|
action: dict[str, Any] | None = None,
|
|
|
) -> None:
|
|
|
"""
|
|
|
Logs observation and action data to Rerun for real-time visualization.
|
|
|
|
|
|
This function iterates through the provided observation and action dictionaries and sends their contents
|
|
|
to the Rerun viewer. It handles different data types appropriately:
|
|
|
- Scalars values (floats, ints) are logged as `rr.Scalars`.
|
|
|
- 3D NumPy arrays that resemble images (e.g., with 1, 3, or 4 channels first) are transposed
|
|
|
from CHW to HWC format and logged as `rr.Image`.
|
|
|
- 1D NumPy arrays are logged as a series of individual scalars, with each element indexed.
|
|
|
- Other multi-dimensional arrays are flattened and logged as individual scalars.
|
|
|
|
|
|
Keys are automatically namespaced with "observation." or "action." if not already present.
|
|
|
|
|
|
Args:
|
|
|
observation: An optional dictionary containing observation data to log.
|
|
|
action: An optional dictionary containing action data to log.
|
|
|
"""
|
|
|
if observation:
|
|
|
for k, v in observation.items():
|
|
|
if v is None:
|
|
|
continue
|
|
|
key = k if str(k).startswith(OBS_PREFIX) else f"{OBS_STR}.{k}"
|
|
|
|
|
|
if _is_scalar(v):
|
|
|
rr.log(key, rr.Scalars(float(v)))
|
|
|
elif isinstance(v, np.ndarray):
|
|
|
arr = v
|
|
|
|
|
|
if arr.ndim == 3 and arr.shape[0] in (1, 3, 4) and arr.shape[-1] not in (1, 3, 4):
|
|
|
arr = np.transpose(arr, (1, 2, 0))
|
|
|
if arr.ndim == 1:
|
|
|
for i, vi in enumerate(arr):
|
|
|
rr.log(f"{key}_{i}", rr.Scalars(float(vi)))
|
|
|
else:
|
|
|
rr.log(key, rr.Image(arr), static=True)
|
|
|
|
|
|
if action:
|
|
|
for k, v in action.items():
|
|
|
if v is None:
|
|
|
continue
|
|
|
key = k if str(k).startswith("action.") else f"action.{k}"
|
|
|
|
|
|
if _is_scalar(v):
|
|
|
rr.log(key, rr.Scalars(float(v)))
|
|
|
elif isinstance(v, np.ndarray):
|
|
|
if v.ndim == 1:
|
|
|
for i, vi in enumerate(v):
|
|
|
rr.log(f"{key}_{i}", rr.Scalars(float(vi)))
|
|
|
else:
|
|
|
|
|
|
flat = v.flatten()
|
|
|
for i, vi in enumerate(flat):
|
|
|
rr.log(f"{key}_{i}", rr.Scalars(float(vi)))
|
|
|
|