albertvillanova HF staff commited on
Commit
cb8cff7
1 Parent(s): d6cb7a1

Update dataset card

Browse files
Files changed (1) hide show
  1. README.md +162 -0
README.md CHANGED
@@ -1,3 +1,165 @@
1
  ---
 
 
2
  license: unknown
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
  license: unknown
5
+ multilinguality:
6
+ - monolingual
7
+ pretty_name: MeQSum
8
+ size_categories:
9
+ - n<1K
10
+ source_datasets:
11
+ - original
12
+ task_categories:
13
+ - summarization
14
+ task_ids: []
15
+ paperswithcode_id: meqsum
16
  ---
17
+
18
+ # Dataset Card for MeQSum
19
+
20
+ ## Table of Contents
21
+ - [Table of Contents](#table-of-contents)
22
+ - [Dataset Description](#dataset-description)
23
+ - [Dataset Summary](#dataset-summary)
24
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
25
+ - [Languages](#languages)
26
+ - [Dataset Structure](#dataset-structure)
27
+ - [Data Instances](#data-instances)
28
+ - [Data Fields](#data-fields)
29
+ - [Data Splits](#data-splits)
30
+ - [Dataset Creation](#dataset-creation)
31
+ - [Curation Rationale](#curation-rationale)
32
+ - [Source Data](#source-data)
33
+ - [Annotations](#annotations)
34
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
35
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
36
+ - [Social Impact of Dataset](#social-impact-of-dataset)
37
+ - [Discussion of Biases](#discussion-of-biases)
38
+ - [Other Known Limitations](#other-known-limitations)
39
+ - [Additional Information](#additional-information)
40
+ - [Dataset Curators](#dataset-curators)
41
+ - [Licensing Information](#licensing-information)
42
+ - [Citation Information](#citation-information)
43
+ - [Contributions](#contributions)
44
+
45
+ ## Dataset Description
46
+
47
+ - **Homepage:**
48
+ - **Repository:** https://github.com/abachaa/MeQSum
49
+ - **Paper:** [On the Summarization of Consumer Health Questions](https://aclanthology.org/P19-1215)
50
+ - **Leaderboard:**
51
+ - **Point of Contact:** [Asma Ben Abacha](mailto:asma.benabacha@nih.gov)
52
+
53
+ ### Dataset Summary
54
+
55
+ MeQSum corpus is a dataset for medical question summarization. It contains 1,000 summarized consumer health questions.
56
+
57
+ ### Supported Tasks and Leaderboards
58
+
59
+ [More Information Needed]
60
+
61
+ ### Languages
62
+
63
+ English (`en`).
64
+
65
+ ## Dataset Structure
66
+
67
+ ### Data Instances
68
+
69
+ ```
70
+ {
71
+ "CHQ": "SUBJECT: who and where to get cetirizine - D\\nMESSAGE: I need\\/want to know who manufscturs Cetirizine. My Walmart is looking for a new supply and are not getting the recent",
72
+ "Summary": "Who manufactures cetirizine?",
73
+ "File": "1-131188152.xml.txt"
74
+ }
75
+ ```
76
+
77
+ ### Data Fields
78
+
79
+ - `CHQ` (str): Consumer health question.
80
+ - `Summary` (str): Question summarization, i.e., condensed question expressing the minimum information required to find correct answers to the original question.
81
+ - `File` (str): Filename.
82
+
83
+ ### Data Splits
84
+
85
+ The dataset consists of a single `train` split containing 1,000 examples.
86
+
87
+ ## Dataset Creation
88
+
89
+ ### Curation Rationale
90
+
91
+ [More Information Needed]
92
+
93
+ ### Source Data
94
+
95
+ #### Initial Data Collection and Normalization
96
+
97
+ [More Information Needed]
98
+
99
+ #### Who are the source language producers?
100
+
101
+ [More Information Needed]
102
+
103
+ ### Annotations
104
+
105
+ #### Annotation process
106
+
107
+ [More Information Needed]
108
+
109
+ #### Who are the annotators?
110
+
111
+ [More Information Needed]
112
+
113
+ ### Personal and Sensitive Information
114
+
115
+ [More Information Needed]
116
+
117
+ ## Considerations for Using the Data
118
+
119
+ ### Social Impact of Dataset
120
+
121
+ [More Information Needed]
122
+
123
+ ### Discussion of Biases
124
+
125
+ [More Information Needed]
126
+
127
+ ### Other Known Limitations
128
+
129
+ [More Information Needed]
130
+
131
+ ## Additional Information
132
+
133
+ ### Dataset Curators
134
+
135
+ [More Information Needed]
136
+
137
+ ### Licensing Information
138
+
139
+ [More Information Needed]
140
+
141
+ ### Citation Information
142
+
143
+ If you use the MeQSum corpus, please cite:
144
+
145
+ ```
146
+ @inproceedings{ben-abacha-demner-fushman-2019-summarization,
147
+ title = "On the Summarization of Consumer Health Questions",
148
+ author = "Ben Abacha, Asma and
149
+ Demner-Fushman, Dina",
150
+ booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
151
+ month = jul,
152
+ year = "2019",
153
+ address = "Florence, Italy",
154
+ publisher = "Association for Computational Linguistics",
155
+ url = "https://aclanthology.org/P19-1215",
156
+ doi = "10.18653/v1/P19-1215",
157
+ pages = "2228--2234",
158
+ abstract = "Question understanding is one of the main challenges in question answering. In real world applications, users often submit natural language questions that are longer than needed and include peripheral information that increases the complexity of the question, leading to substantially more false positives in answer retrieval. In this paper, we study neural abstractive models for medical question summarization. We introduce the MeQSum corpus of 1,000 summarized consumer health questions. We explore data augmentation methods and evaluate state-of-the-art neural abstractive models on this new task. In particular, we show that semantic augmentation from question datasets improves the overall performance, and that pointer-generator networks outperform sequence-to-sequence attentional models on this task, with a ROUGE-1 score of 44.16{\%}. We also present a detailed error analysis and discuss directions for improvement that are specific to question summarization.",
159
+ }
160
+ ```
161
+
162
+ ### Contributions
163
+
164
+ Thanks to [@albertvillanova](https://huggingface.co/albertvillanova) for adding this dataset.
165
+