|
|
|
|
|
|
|
import datasets |
|
import pandas as pd |
|
from datasets import ClassLabel |
|
import os |
|
|
|
"""The Audio, Speech, and Vision Processing Lab - Emotional Sound Database (ASVP - ESD)""" |
|
|
|
_HOMEPAGE = "https://affective-meld.github.io/" |
|
|
|
_CITATION = """\ |
|
@article{poria2018meld, |
|
title={Meld: A multimodal multi-party dataset for emotion recognition in conversations}, |
|
author={Poria, Soujanya and Hazarika, Devamanyu and Majumder, Navonil and Naik, Gautam and Cambria, Erik and Mihalcea, Rada}, |
|
journal={arXiv preprint arXiv:1810.02508}, |
|
year={2018} |
|
} |
|
@article{chen2018emotionlines, |
|
title={Emotionlines: An emotion corpus of multi-party conversations}, |
|
author={Chen, Sheng-Yeh and Hsu, Chao-Chun and Kuo, Chuan-Chun and Ku, Lun-Wei and others}, |
|
journal={arXiv preprint arXiv:1802.08379}, |
|
year={2018} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Multimodal EmotionLines Dataset (MELD) has been created by enhancing and extending EmotionLines dataset. |
|
MELD contains the same dialogue instances available in EmotionLines, but it also encompasses audio and |
|
visual modality along with text. MELD has more than 1400 dialogues and 13000 utterances from Friends TV series. |
|
Multiple speakers participated in the dialogues. Each utterance in a dialogue has been labeled by any of these |
|
seven emotions -- Anger, Disgust, Sadness, Joy, Neutral, Surprise and Fear. MELD also has sentiment (positive, |
|
negative and neutral) annotation for each utterance. |
|
This dataset is modified from https://huggingface.co/datasets/zrr1999/MELD_Text_Audio. |
|
The audio is extracted from MELD mp4 files while the audio only has one channel with sample rate 16khz. |
|
""" |
|
|
|
_LICENSE = "gpl-3.0" |
|
|
|
|
|
class MELD_Audio(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_WRITER_BATCH_SIZE = 256 |
|
DEFAULT_CONFIG_NAME = "MELD_Audio" |
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="MELD_Audio", version=datasets.Version("0.0.1"), description="MELD audio"), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"path": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=16000), |
|
"emotion": datasets.Value("string"), |
|
"sentiment": datasets.Value("string"), |
|
} |
|
), |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
metadata_dir: dict[str, str] = dl_manager.download_and_extract( |
|
{"train": "train.csv", "dev": "dev.csv", "test": "test.csv"} |
|
) |
|
data_path: dict[str, str] = dl_manager.download( |
|
{ |
|
"train": "archive/train.tar.gz", |
|
"dev": "archive/dev.tar.gz", |
|
"test": "archive/test.tar.gz", |
|
} |
|
) |
|
local_extracted_archive: dict[str, str] = ( |
|
dl_manager.extract(data_path) |
|
if not dl_manager.is_streaming |
|
else { |
|
"train": None, |
|
"dev": None, |
|
"test": None, |
|
} |
|
) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": metadata_dir["train"], |
|
"split": "train", |
|
"local_extracted_archive": local_extracted_archive["train"], |
|
"audio_files": dl_manager.iter_archive(data_path["train"]), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": metadata_dir["dev"], |
|
"split": "dev", |
|
"local_extracted_archive": local_extracted_archive["dev"], |
|
"audio_files": dl_manager.iter_archive(data_path["dev"]), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": metadata_dir["test"], |
|
"split": "test", |
|
"local_extracted_archive": local_extracted_archive["test"], |
|
"audio_files": dl_manager.iter_archive(data_path["test"]), |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split, local_extracted_archive, audio_files): |
|
"""Yields examples.""" |
|
metadata_df = pd.read_csv(filepath, sep=",", index_col=0, header=0) |
|
metadata = {} |
|
for _, row in metadata_df.iterrows(): |
|
id_ = f"dia{row['Dialogue_ID']}_utt{row['Utterance_ID']}" |
|
audio_path = f"{split}/{id_}.flac" |
|
metadata[audio_path] = row |
|
|
|
id_ = 0 |
|
for path, f in audio_files: |
|
if path in metadata: |
|
row = metadata[path] |
|
path = os.path.join(local_extracted_archive, path) if local_extracted_archive else path |
|
audio = {"path": path, bytes: f.read()} |
|
yield ( |
|
id_, |
|
{ |
|
"text": row["Utterance"], |
|
"path": path, |
|
"audio": audio, |
|
"emotion": row["Emotion"], |
|
"sentiment": row["Sentiment"], |
|
}, |
|
) |
|
id_ += 1 |
|
|