Invalsi / Invalsi.py
gpucce's picture
rename
507bf63
raw
history blame
5.71 kB
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
import csv
import json
import os
import datasets
_CITATION = """\
@misc{esuli2024invalsi,
title={The Invalsi Benchmark: measuring Language Models Mathematical and Language understanding in Italian},
author={Andrea Esuli and Giovanni Puccetti},
year={2024},
eprint={2403.18697},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
_DESCRIPTION = """\
This new dataset is designed to measure Language Models mathematical and language understanding in Italian.
"""
_HOMEPAGE = ""
_LICENSE = "CC BY 4.0"
_URLS = {
"mate": "https:/invalsi_mate_data//huggingface.co/datasets/ai4text/Invalsi/tree/main/invalsi_mate_data",
"ita": "https://huggingface.co/datasets/ai4text/Invalsi/tree/main/invalsi_ita_data",
}
class invalsi(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("0.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="mate", version=VERSION, description="Mathematical Understanding"),
datasets.BuilderConfig(name="ita", version=VERSION, description="Italian Understanding"),
]
DEFAULT_CONFIG_NAME = "mate"
def _info(self):
if self.config.name == "mate":
features = datasets.Features(
{
"domanda": datasets.Value("string"),
"risposta": datasets.Value("string"),
"immagine": datasets.Value("string"),
"test_id": datasets.Value("string"),
}
)
elif self.config.name == "ita":
features = datasets.Features(
{
"testo": datasets.Value("string"),
"domanda": datasets.Value("string"),
"risposta": datasets.Value("string"),
"immagine": datasets.Value("string"),
"test_id": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
urls = _URLS[self.config.name]
# data_dir = dl_manager.download_and_extract(urls)
data_dir = "."
if self.config.name == "mate":
data_file = "Invalsi/invalsi_mate_data/invalsi_mate_clean.csv"
elif self.config.name == "ita":
data_file = "Invalsi/invalsi_ita_data/invalsi_ita_clean.csv"
return [
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, data_file),
"split": "val",
},
),
]
def _generate_examples(self, filepath, split):
ds = datasets.load_dataset("csv", data_files=filepath)["train"]
for key, row in enumerate(ds):
# data = json.loads(row)
if self.config.name == "mate":
# Yields examples as (key, example) tuples
out = {
# "domanda": datasets.Value("string"),
# "risposta": datasets.Value("string"),
# "immagine": datasets.Value("string"),
# "test_id": datasets.Value("string"),
"domanda": row["domanda"],
"risposta": row["risposta"],
"test_id": row["test_id"],
}
if "image_file_names" in row:
out["immagine"] = row["image_file_names"]
yield key, out
elif self.config.name == "ita":
yield key, {
# "testo": datasets.Value("string"),
# "domanda": datasets.Value("string"),
# "risposta": datasets.Value("string"),
# "immagine": datasets.Value("string"),
# "test_id": datasets.Value("string"),
"testo": row["testo"],
"domanda": row["domanda"],
"risposta": row["risposta"],
"immagine": row["image_file_names"],
"test_id": row["test_id"],
}