Update metric.py
Browse files
metric.py
CHANGED
@@ -1,5 +1,10 @@
|
|
|
|
1 |
from openai import OpenAI
|
2 |
-
|
|
|
|
|
|
|
|
|
3 |
|
4 |
import pandas as pd
|
5 |
from huggingface_hub import hf_hub_download
|
@@ -26,9 +31,47 @@ def compute(params):
|
|
26 |
)
|
27 |
submission_df = pd.read_csv(submission_file)
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
submitted_answer = str(submission_df.iloc[0]['pred'])
|
30 |
gt = str(solution_df.iloc[0]['pred'])
|
31 |
-
|
32 |
prompt=f"Give me a score from 1 to 10 (higher is better) judging how similar these two captions are. Caption one: {submitted_answer}. Caption two: {gt}\nScore:"
|
33 |
|
34 |
try:
|
@@ -44,8 +87,10 @@ def compute(params):
|
|
44 |
except:
|
45 |
print("Error w/ api")
|
46 |
|
|
|
|
|
47 |
private_score = public_score
|
48 |
-
|
49 |
metric_dict = {"public_score": {"metric1": public_score},
|
50 |
"private_score": {"metric1": private_score}
|
51 |
}
|
|
|
1 |
+
import os
|
2 |
from openai import OpenAI
|
3 |
+
if "OPENAI" in os.environ:
|
4 |
+
pass
|
5 |
+
else:
|
6 |
+
print('Doesn\'t find OPENAI')
|
7 |
+
client = OpenAI(api_key = os.environ['OPENAI'])
|
8 |
|
9 |
import pandas as pd
|
10 |
from huggingface_hub import hf_hub_download
|
|
|
31 |
)
|
32 |
submission_df = pd.read_csv(submission_file)
|
33 |
|
34 |
+
public_ids = solution_df[solution_df.split == "public"][params.submission_id_col].values
|
35 |
+
private_ids = solution_df[solution_df.split == "private"][params.submission_id_col].values
|
36 |
+
|
37 |
+
public_solution_df = solution_df[solution_df[params.submission_id_col].isin(public_ids)]
|
38 |
+
public_submission_df = submission_df[submission_df[params.submission_id_col].isin(public_ids)]
|
39 |
+
|
40 |
+
private_solution_df = solution_df[solution_df[params.submission_id_col].isin(private_ids)]
|
41 |
+
private_submission_df = submission_df[submission_df[params.submission_id_col].isin(private_ids)]
|
42 |
+
|
43 |
+
public_solution_df = public_solution_df.sort_values(params.submission_id_col).reset_index(drop=True)
|
44 |
+
public_submission_df = public_submission_df.sort_values(params.submission_id_col).reset_index(drop=True)
|
45 |
+
|
46 |
+
private_solution_df = private_solution_df.sort_values(params.submission_id_col).reset_index(drop=True)
|
47 |
+
private_submission_df = private_submission_df.sort_values(params.submission_id_col).reset_index(drop=True)
|
48 |
+
|
49 |
+
# METRICS Calculation Evaluation
|
50 |
+
# _metric = SOME METRIC FUNCTION
|
51 |
+
def _metric(outputs, targets):
|
52 |
+
# input example: public_solution_df[target_cols], public_submission_df[target_cols]
|
53 |
+
|
54 |
+
score = 0.5
|
55 |
+
return score
|
56 |
+
|
57 |
+
target_cols = [col for col in solution_df.columns if col not in [params.submission_id_col, "split"]]
|
58 |
+
public_score = _metric(public_solution_df[target_cols], public_submission_df[target_cols])
|
59 |
+
private_score = _metric(private_solution_df[target_cols], private_submission_df[target_cols])
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
## LLM Scoring Evaluation
|
64 |
+
|
65 |
+
|
66 |
+
def _metric(outputs, targets):
|
67 |
+
# input example: public_solution_df[target_cols], public_submission_df[target_cols]
|
68 |
+
|
69 |
+
score = 0.5
|
70 |
+
return score
|
71 |
+
|
72 |
submitted_answer = str(submission_df.iloc[0]['pred'])
|
73 |
gt = str(solution_df.iloc[0]['pred'])
|
74 |
+
|
75 |
prompt=f"Give me a score from 1 to 10 (higher is better) judging how similar these two captions are. Caption one: {submitted_answer}. Caption two: {gt}\nScore:"
|
76 |
|
77 |
try:
|
|
|
87 |
except:
|
88 |
print("Error w/ api")
|
89 |
|
90 |
+
|
91 |
+
|
92 |
private_score = public_score
|
93 |
+
|
94 |
metric_dict = {"public_score": {"metric1": public_score},
|
95 |
"private_score": {"metric1": private_score}
|
96 |
}
|