code
stringlengths
20
13.2k
label
stringlengths
21
6.26k
1 def removeChars(str, n): 2 return str[n:] 3 4 print("pynative") 5 n = int(input("Enter the removing number: ")) 6 print(removeChars("pynative", n))
2 - warning: bad-indentation 1 - warning: redefined-builtin 1 - warning: redefined-outer-name
1 import pyautogui 2 import time 3 message = 100 4 while message > 0: 5 time.sleep(0) 6 pyautogui.typewrite('Hi BC!!!') 7 pyautogui.press('enter') 8 message = message - 1
Clean Code: No Issues Detected
1 def divisible(numl): 2 print("Given List is ",numl) 3 print("Divisible of 5 in a list ") 4 for num in numl : 5 if (num % 5 == 0): 6 print(num) 7 8 numl = [10, 15, 12, 17, 20] 9 divisible(numl)
1 - warning: redefined-outer-name
1 2 3 n = int(input("Enter the last number: ")) 4 sum = 0 5 for x in range(2,n+2,2): 6 sum = sum+x*x 7 print(sum)
4 - warning: redefined-builtin
1 roll = [101,102,103,104,105,106] 2 name = ["Alex Biswas", "Sabuj Chandra Das", "Ahad Islam Moeen", "Sonia Akter", "Mariam Akter", "Sajib Das"] 3 4 print(list(zip(roll,name))) 5 print(list(zip(roll,name,"ABCDEF")))
Clean Code: No Issues Detected
1 import torch 2 from torchvision import transforms 3 from ops import relu_x_1_style_decorator_transform, relu_x_1_transform 4 from PIL import Image 5 import os 6 7 8 def eval_transform(size): 9 return transforms.Compose([ 10 transforms.Resize(size), 11 transforms.ToTensor() 12 ]) 13 14 15 def load_image(path): 16 return Image.open(path).convert('RGB') 17 18 19 def preprocess(img, size): 20 transform = eval_transform(size) 21 return transform(img).unsqueeze(0) 22 23 24 def deprocess(tensor): 25 tensor = tensor.cpu() 26 tensor = tensor.squeeze(0) 27 tensor = torch.clamp(tensor, 0, 1) 28 return transforms.ToPILImage()(tensor) 29 30 31 def extract_image_names(path): 32 r_ = [] 33 valid_ext = ['.jpg', '.png'] 34 35 items = os.listdir(path) 36 37 for item in items: 38 item_path = os.path.join(path, item) 39 40 _, ext = os.path.splitext(item_path) 41 if ext not in valid_ext: 42 continue 43 44 r_.append(item_path) 45 46 return r_
3 - warning: unused-import 3 - warning: unused-import
1 import torch 2 import torch.nn.functional as F 3 4 5 def extract_image_patches_(image, kernel_size, strides): 6 kh, kw = kernel_size 7 sh, sw = strides 8 patches = image.unfold(2, kh, sh).unfold(3, kw, sw) 9 patches = patches.permute(0, 2, 3, 1, 4, 5) 10 patches = patches.reshape(-1, *patches.shape[-3:]) # (patch_numbers, C, kh, kw) 11 return patches 12 13 14 def style_swap(c_features, s_features, kernel_size, stride=1): 15 16 s_patches = extract_image_patches_(s_features, [kernel_size, kernel_size], [stride, stride]) 17 s_patches_matrix = s_patches.reshape(s_patches.shape[0], -1) 18 s_patch_wise_norm = torch.norm(s_patches_matrix, dim=1) 19 s_patch_wise_norm = s_patch_wise_norm.reshape(-1, 1, 1, 1) 20 s_patches_normalized = s_patches / (s_patch_wise_norm + 1e-8) 21 # Computes the normalized cross-correlations. 22 # At each spatial location, "K" is a vector of cross-correlations 23 # between a content activation patch and all style activation patches. 24 K = F.conv2d(c_features, s_patches_normalized, stride=stride) 25 # Replace each vector "K" by a one-hot vector corresponding 26 # to the best matching style activation patch. 27 best_matching_idx = K.argmax(1, keepdim=True) 28 one_hot = torch.zeros_like(K) 29 one_hot.scatter_(1, best_matching_idx, 1) 30 # At each spatial location, only the best matching style 31 # activation patch is in the output, as the other patches 32 # are multiplied by zero. 33 F_ss = F.conv_transpose2d(one_hot, s_patches, stride=stride) 34 overlap = F.conv_transpose2d(one_hot, torch.ones_like(s_patches), stride=stride) 35 F_ss = F_ss / overlap 36 return F_ss 37 38 39 def relu_x_1_transform(c, s, encoder, decoder, relu_target, alpha=1): 40 c_latent = encoder(c, relu_target) 41 s_latent = encoder(s, relu_target) 42 t_features = wct(c_latent, s_latent, alpha) 43 return decoder(t_features) 44 45 46 def relu_x_1_style_decorator_transform(c, s, encoder, decoder, relu_target, kernel_size, stride=1, alpha=1): 47 c_latent = encoder(c, relu_target) 48 s_latent = encoder(s, relu_target) 49 t_features = style_decorator(c_latent, s_latent, kernel_size, stride, alpha) 50 return decoder(t_features) 51 52 53 def style_decorator(cf, sf, kernel_size, stride=1, alpha=1): 54 cf_shape = cf.shape 55 sf_shape = sf.shape 56 57 b, c, h, w = cf_shape 58 cf_vectorized = cf.reshape(c, h * w) 59 60 b, c, h, w = sf.shape 61 sf_vectorized = sf.reshape(c, h * w) 62 63 # map features to normalized domain 64 cf_whiten = whitening(cf_vectorized) 65 sf_whiten = whitening(sf_vectorized) 66 67 # in this normalized domain, we want to align 68 # any element in cf with the nearest element in sf 69 reassembling_f = style_swap( 70 cf_whiten.reshape(cf_shape), 71 sf_whiten.reshape(sf_shape), 72 kernel_size, stride 73 ) 74 75 b, c, h, w = reassembling_f.shape 76 reassembling_vectorized = reassembling_f.reshape(c, h*w) 77 # reconstruct reassembling features into the 78 # domain of the style features 79 result = coloring(reassembling_vectorized, sf_vectorized) 80 result = result.reshape(cf_shape) 81 82 bland = alpha * result + (1 - alpha) * cf 83 return bland 84 85 86 def wct(cf, sf, alpha=1): 87 cf_shape = cf.shape 88 89 b, c, h, w = cf_shape 90 cf_vectorized = cf.reshape(c, h*w) 91 92 b, c, h, w = sf.shape 93 sf_vectorized = sf.reshape(c, h*w) 94 95 cf_transformed = whitening(cf_vectorized) 96 cf_transformed = coloring(cf_transformed, sf_vectorized) 97 98 cf_transformed = cf_transformed.reshape(cf_shape) 99 100 bland = alpha * cf_transformed + (1 - alpha) * cf 101 return bland 102 103 104 def feature_decomposition(x): 105 x_mean = x.mean(1, keepdims=True) 106 x_center = x - x_mean 107 x_cov = x_center.mm(x_center.t()) / (x_center.size(1) - 1) 108 109 e, d, _ = torch.svd(x_cov) 110 d = d[d > 0] 111 e = e[:, :d.size(0)] 112 113 return e, d, x_center, x_mean 114 115 116 def whitening(x): 117 e, d, x_center, _ = feature_decomposition(x) 118 119 transform_matrix = e.mm(torch.diag(d ** -0.5)).mm(e.t()) 120 return transform_matrix.mm(x_center) 121 122 123 def coloring(x, y): 124 e, d, _, y_mean = feature_decomposition(y) 125 126 transform_matrix = e.mm(torch.diag(d ** 0.5)).mm(e.t()) 127 return transform_matrix.mm(x) + y_mean
24 - error: not-callable 33 - error: not-callable 34 - error: not-callable 39 - refactor: too-many-arguments 39 - refactor: too-many-positional-arguments 46 - refactor: too-many-arguments 46 - refactor: too-many-positional-arguments 53 - refactor: too-many-locals 57 - warning: unused-variable 89 - warning: unused-variable
1 import torch 2 from models import NormalisedVGG, Decoder 3 from utils import load_image, preprocess, deprocess, extract_image_names 4 from ops import style_decorator, wct 5 import argparse 6 import os 7 8 9 parser = argparse.ArgumentParser(description='WCT') 10 11 parser.add_argument('--content-path', type=str, help='path to the content image') 12 parser.add_argument('--style-path', type=str, help='path to the style image') 13 parser.add_argument('--content-dir', type=str, help='path to the content image folder') 14 parser.add_argument('--style-dir', type=str, help='path to the style image folder') 15 16 parser.add_argument('--style-decorator', type=int, default=1) 17 parser.add_argument('--kernel-size', type=int, default=12) 18 parser.add_argument('--stride', type=int, default=1) 19 parser.add_argument('--alpha', type=float, default=0.8) 20 parser.add_argument('--ss-alpha', type=float, default=0.6) 21 parser.add_argument('--synthesis', type=int, default=0, help='0-transfer, 1-synthesis') 22 23 parser.add_argument('--encoder-path', type=str, default='encoder/vgg_normalised_conv5_1.pth') 24 parser.add_argument('--decoders-dir', type=str, default='decoders') 25 26 parser.add_argument('--save-dir', type=str, default='./results') 27 parser.add_argument('--save-name', type=str, default='result', help='save name for single output image') 28 parser.add_argument('--save-ext', type=str, default='jpg', help='The extension name of the output image') 29 30 parser.add_argument('--content-size', type=int, default=768, help='New (minimum) size for the content image') 31 parser.add_argument('--style-size', type=int, default=768, help='New (minimum) size for the style image') 32 parser.add_argument('--gpu', type=int, default=0, help='ID of the GPU to use; for CPU mode set --gpu = -1') 33 34 args = parser.parse_args() 35 36 assert args.content_path is not None or args.content_dir is not None, \ 37 'Either --content-path or --content-dir should be given.' 38 assert args.style_path is not None or args.style_dir is not None, \ 39 'Either --style-path or --style-dir should be given.' 40 41 device = torch.device('cuda:%s' % args.gpu if torch.cuda.is_available() and args.gpu != -1 else 'cpu') 42 43 encoder = NormalisedVGG(pretrained_path=args.encoder_path).to(device) 44 d5 = Decoder('relu5_1', pretrained_path=os.path.join(args.decoders_dir, 'd5.pth')).to(device) 45 d4 = Decoder('relu4_1', pretrained_path=os.path.join(args.decoders_dir, 'd4.pth')).to(device) 46 d3 = Decoder('relu3_1', pretrained_path=os.path.join(args.decoders_dir, 'd3.pth')).to(device) 47 d2 = Decoder('relu2_1', pretrained_path=os.path.join(args.decoders_dir, 'd2.pth')).to(device) 48 d1 = Decoder('relu1_1', pretrained_path=os.path.join(args.decoders_dir, 'd1.pth')).to(device) 49 50 51 def style_transfer(content, style): 52 53 if args.style_decorator: 54 relu5_1_cf = encoder(content, 'relu5_1') 55 relu5_1_sf = encoder(style, 'relu5_1') 56 relu5_1_scf = style_decorator(relu5_1_cf, relu5_1_sf, args.kernel_size, args.stride, args.ss_alpha) 57 relu5_1_recons = d5(relu5_1_scf) 58 else: 59 relu5_1_cf = encoder(content, 'relu5_1') 60 relu5_1_sf = encoder(style, 'relu5_1') 61 relu5_1_scf = wct(relu5_1_cf, relu5_1_sf, args.alpha) 62 relu5_1_recons = d5(relu5_1_scf) 63 64 relu4_1_cf = encoder(relu5_1_recons, 'relu4_1') 65 relu4_1_sf = encoder(style, 'relu4_1') 66 relu4_1_scf = wct(relu4_1_cf, relu4_1_sf, args.alpha) 67 relu4_1_recons = d4(relu4_1_scf) 68 69 relu3_1_cf = encoder(relu4_1_recons, 'relu3_1') 70 relu3_1_sf = encoder(style, 'relu3_1') 71 relu3_1_scf = wct(relu3_1_cf, relu3_1_sf, args.alpha) 72 relu3_1_recons = d3(relu3_1_scf) 73 74 relu2_1_cf = encoder(relu3_1_recons, 'relu2_1') 75 relu2_1_sf = encoder(style, 'relu2_1') 76 relu2_1_scf = wct(relu2_1_cf, relu2_1_sf, args.alpha) 77 relu2_1_recons = d2(relu2_1_scf) 78 79 relu1_1_cf = encoder(relu2_1_recons, 'relu1_1') 80 relu1_1_sf = encoder(style, 'relu1_1') 81 relu1_1_scf = wct(relu1_1_cf, relu1_1_sf, args.alpha) 82 relu1_1_recons = d1(relu1_1_scf) 83 84 return relu1_1_recons 85 86 87 if not os.path.exists(args.save_dir): 88 print('Creating save folder at', args.save_dir) 89 os.mkdir(args.save_dir) 90 91 content_paths = [] 92 style_paths = [] 93 94 if args.content_dir: 95 # use a batch of content images 96 content_paths = extract_image_names(args.content_dir) 97 else: 98 # use a single content image 99 content_paths.append(args.content_path) 100 101 if args.style_dir: 102 # use a batch of style images 103 style_paths = extract_image_names(args.style_dir) 104 else: 105 # use a single style image 106 style_paths.append(args.style_path) 107 108 print('Number content images:', len(content_paths)) 109 print('Number style images:', len(style_paths)) 110 111 with torch.no_grad(): 112 113 for i in range(len(content_paths)): 114 content = load_image(content_paths[i]) 115 content = preprocess(content, args.content_size) 116 content = content.to(device) 117 118 for j in range(len(style_paths)): 119 style = load_image(style_paths[j]) 120 style = preprocess(style, args.style_size) 121 style = style.to(device) 122 123 if args.synthesis == 0: 124 output = style_transfer(content, style) 125 output = deprocess(output) 126 127 if len(content_paths) == 1 and len(style_paths) == 1: 128 # used a single content and style image 129 save_path = '%s/%s.%s' % (args.save_dir, args.save_name, args.save_ext) 130 else: 131 # used a batch of content and style images 132 save_path = '%s/%s_%s.%s' % (args.save_dir, i, j, args.save_ext) 133 134 print('Output image saved at:', save_path) 135 output.save(save_path) 136 else: 137 content = torch.rand(*content.shape).uniform_(0, 1).to(device) 138 for iteration in range(3): 139 output = style_transfer(content, style) 140 content = output 141 output = deprocess(output) 142 143 if len(content_paths) == 1 and len(style_paths) == 1: 144 # used a single content and style image 145 save_path = '%s/%s_%s.%s' % (args.save_dir, args.save_name, iteration, args.save_ext) 146 else: 147 # used a batch of content and style images 148 save_path = '%s/%s_%s_%s.%s' % (args.save_dir, i, j, iteration, args.save_ext) 149 150 print('Output image saved at:', save_path) 151 output.save(save_path)
51 - refactor: too-many-locals 51 - warning: redefined-outer-name 51 - warning: redefined-outer-name
1 import torch 2 import torch.nn as nn 3 import copy 4 5 6 normalised_vgg_relu5_1 = nn.Sequential( 7 nn.Conv2d(3, 3, 1), 8 nn.ReflectionPad2d((1, 1, 1, 1)), 9 nn.Conv2d(3, 64, 3), 10 nn.ReLU(), 11 nn.ReflectionPad2d((1, 1, 1, 1)), 12 nn.Conv2d(64, 64, 3), 13 nn.ReLU(), 14 nn.MaxPool2d(2, ceil_mode=True), 15 nn.ReflectionPad2d((1, 1, 1, 1)), 16 nn.Conv2d(64, 128, 3), 17 nn.ReLU(), 18 nn.ReflectionPad2d((1, 1, 1, 1)), 19 nn.Conv2d(128, 128, 3), 20 nn.ReLU(), 21 nn.MaxPool2d(2, ceil_mode=True), 22 nn.ReflectionPad2d((1, 1, 1, 1)), 23 nn.Conv2d(128, 256, 3), 24 nn.ReLU(), 25 nn.ReflectionPad2d((1, 1, 1, 1)), 26 nn.Conv2d(256, 256, 3), 27 nn.ReLU(), 28 nn.ReflectionPad2d((1, 1, 1, 1)), 29 nn.Conv2d(256, 256, 3), 30 nn.ReLU(), 31 nn.ReflectionPad2d((1, 1, 1, 1)), 32 nn.Conv2d(256, 256, 3), 33 nn.ReLU(), 34 nn.MaxPool2d(2, ceil_mode=True), 35 nn.ReflectionPad2d((1, 1, 1, 1)), 36 nn.Conv2d(256, 512, 3), 37 nn.ReLU(), 38 nn.ReflectionPad2d((1, 1, 1, 1)), 39 nn.Conv2d(512, 512, 3), 40 nn.ReLU(), 41 nn.ReflectionPad2d((1, 1, 1, 1)), 42 nn.Conv2d(512, 512, 3), 43 nn.ReLU(), 44 nn.ReflectionPad2d((1, 1, 1, 1)), 45 nn.Conv2d(512, 512, 3), 46 nn.ReLU(), 47 nn.MaxPool2d(2, ceil_mode=True), 48 nn.ReflectionPad2d((1, 1, 1, 1)), 49 nn.Conv2d(512, 512, 3), 50 nn.ReLU() 51 ) 52 53 54 class NormalisedVGG(nn.Module): 55 56 def __init__(self, pretrained_path=None): 57 super().__init__() 58 self.net = normalised_vgg_relu5_1 59 if pretrained_path is not None: 60 self.net.load_state_dict(torch.load(pretrained_path, map_location=lambda storage, loc: storage)) 61 62 def forward(self, x, target): 63 if target == 'relu1_1': 64 return self.net[:4](x) 65 elif target == 'relu2_1': 66 return self.net[:11](x) 67 elif target == 'relu3_1': 68 return self.net[:18](x) 69 elif target == 'relu4_1': 70 return self.net[:31](x) 71 elif target == 'relu5_1': 72 return self.net(x) 73 74 75 vgg_decoder_relu5_1 = nn.Sequential( 76 nn.ReflectionPad2d((1, 1, 1, 1)), 77 nn.Conv2d(512, 512, 3), 78 nn.ReLU(), 79 nn.Upsample(scale_factor=2), 80 nn.ReflectionPad2d((1, 1, 1, 1)), 81 nn.Conv2d(512, 512, 3), 82 nn.ReLU(), 83 nn.ReflectionPad2d((1, 1, 1, 1)), 84 nn.Conv2d(512, 512, 3), 85 nn.ReLU(), 86 nn.ReflectionPad2d((1, 1, 1, 1)), 87 nn.Conv2d(512, 512, 3), 88 nn.ReLU(), 89 nn.ReflectionPad2d((1, 1, 1, 1)), 90 nn.Conv2d(512, 256, 3), 91 nn.ReLU(), 92 nn.Upsample(scale_factor=2), 93 nn.ReflectionPad2d((1, 1, 1, 1)), 94 nn.Conv2d(256, 256, 3), 95 nn.ReLU(), 96 nn.ReflectionPad2d((1, 1, 1, 1)), 97 nn.Conv2d(256, 256, 3), 98 nn.ReLU(), 99 nn.ReflectionPad2d((1, 1, 1, 1)), 100 nn.Conv2d(256, 256, 3), 101 nn.ReLU(), 102 nn.ReflectionPad2d((1, 1, 1, 1)), 103 nn.Conv2d(256, 128, 3), 104 nn.ReLU(), 105 nn.Upsample(scale_factor=2), 106 nn.ReflectionPad2d((1, 1, 1, 1)), 107 nn.Conv2d(128, 128, 3), 108 nn.ReLU(), 109 nn.ReflectionPad2d((1, 1, 1, 1)), 110 nn.Conv2d(128, 64, 3), 111 nn.ReLU(), 112 nn.Upsample(scale_factor=2), 113 nn.ReflectionPad2d((1, 1, 1, 1)), 114 nn.Conv2d(64, 64, 3), 115 nn.ReLU(), 116 nn.ReflectionPad2d((1, 1, 1, 1)), 117 nn.Conv2d(64, 3, 3) 118 ) 119 120 121 class Decoder(nn.Module): 122 def __init__(self, target, pretrained_path=None): 123 super().__init__() 124 if target == 'relu1_1': 125 self.net = nn.Sequential(*copy.deepcopy(list(vgg_decoder_relu5_1.children())[-5:])) # current -2 126 elif target == 'relu2_1': 127 self.net = nn.Sequential(*copy.deepcopy(list(vgg_decoder_relu5_1.children())[-9:])) 128 elif target == 'relu3_1': 129 self.net = nn.Sequential(*copy.deepcopy(list(vgg_decoder_relu5_1.children())[-16:])) 130 elif target == 'relu4_1': 131 self.net = nn.Sequential(*copy.deepcopy(list(vgg_decoder_relu5_1.children())[-29:])) 132 elif target == 'relu5_1': 133 self.net = nn.Sequential(*copy.deepcopy(list(vgg_decoder_relu5_1.children()))) 134 135 if pretrained_path is not None: 136 self.net.load_state_dict(torch.load(pretrained_path, map_location=lambda storage, loc: storage)) 137 138 def forward(self, x): 139 return self.net(x)
2 - refactor: consider-using-from-import 63 - refactor: no-else-return 62 - refactor: inconsistent-return-statements
1 import zmq 2 3 PUB_ADDR = 'ipc:///tmp/pub'; 4 SUB_ADDR = 'ipc:///tmp/sub'; 5 6 class zcomm: 7 8 def __init__(self): 9 self.ctx = zmq.Context() 10 self.pub = self.ctx.socket(zmq.PUB) 11 self.pub.connect(PUB_ADDR) 12 self.sub = self.ctx.socket(zmq.SUB) 13 self.sub.connect(SUB_ADDR) 14 self.callbacks = {} # maps channels -> callbacks 15 16 def subscribe(self, channel, callback): 17 self.sub.setsockopt(zmq.SUBSCRIBE, channel) 18 self.callbacks[channel] = callback 19 20 def publish(self, channel, data): 21 self.pub.send_multipart([channel, data]) 22 23 def handle(self): 24 channel, msg = self.sub.recv_multipart() 25 if channel in self.callbacks: 26 self.callbacks[channel](channel, msg) 27 elif '' in self.callbacks: 28 self.callbacks[''](channel, msg) 29 30 def run(self): 31 while True: 32 self.handle()
3 - warning: unnecessary-semicolon 4 - warning: unnecessary-semicolon
1 #!/usr/bin/env python 2 import itertools 3 import sys 4 import time 5 from zcomm import zcomm 6 7 HZ = 1 8 9 def main(argv): 10 z = zcomm() 11 12 msg_counter = itertools.count() 13 while True: 14 msg = str(msg_counter.next()) 15 z.publish('FROB_DATA', msg); 16 time.sleep(1/float(HZ)) 17 18 if __name__ == "__main__": 19 try: 20 main(sys.argv) 21 except KeyboardInterrupt: 22 pass
15 - warning: unnecessary-semicolon 14 - error: no-member 9 - warning: unused-argument
1 #!/usr/bin/env python 2 import sys 3 import time 4 from zcomm import zcomm 5 6 def handle_msg(channel, data): 7 print ' channel:%s, data:%s' % (channel, data) 8 9 def main(argv): 10 z = zcomm() 11 z.subscribe('', handle_msg) 12 z.run() 13 14 if __name__ == "__main__": 15 try: 16 main(sys.argv) 17 except KeyboardInterrupt: 18 pass
7 - error: syntax-error
1 #!/usr/bin/env python 2 import zmq 3 4 SUB_ADDR = 'ipc:///tmp/sub' 5 PUB_ADDR = 'ipc:///tmp/pub' 6 7 def main(): 8 9 try: 10 context = zmq.Context(1) 11 12 userpub = context.socket(zmq.SUB) 13 userpub.bind(PUB_ADDR) 14 userpub.setsockopt(zmq.SUBSCRIBE, "") 15 16 usersub = context.socket(zmq.PUB) 17 usersub.bind(SUB_ADDR) 18 19 zmq.device(zmq.FORWARDER, userpub, usersub) 20 except Exception, e: 21 print e 22 print "bringing down zmq device" 23 except KeyboardInterrupt: 24 pass 25 finally: 26 pass 27 userpub.close() 28 usersub.close() 29 context.term() 30 31 if __name__ == "__main__": 32 main()
20 - error: syntax-error
1 # AC: 2 # from others' solution 3 # 4 class Solution(object): 5 def distinctEchoSubstrings(self, S): 6 N = len(S) 7 P, MOD = 37, 344555666677777 # MOD is prime 8 Pinv = pow(P, MOD - 2, MOD) 9 10 prefix = [0] 11 pwr = 1 12 ha = 0 13 14 for x in map(ord, S): 15 ha = (ha + pwr * x) % MOD 16 pwr = pwr * P % MOD 17 prefix.append(ha) 18 19 seen = set() 20 pwr = 1 21 for length in range(1, N // 2 + 1): 22 pwr = pwr * P % MOD # pwr = P^length 23 for i in range(N - 2 * length + 1): 24 left = (prefix[i + length] - prefix[i]) * pwr % MOD # hash of s[i:i+length] * P^length 25 right = (prefix[i + 2 * length] - prefix[i + length]) % MOD # hash of s[i+length:i+2*length] 26 if left == right: 27 seen.add(left * pow(Pinv, i, MOD) % MOD) # left * P^-i is the canonical representation 28 return len(seen)
4 - refactor: useless-object-inheritance 4 - refactor: too-few-public-methods
1 # -*- coding: utf-8 -*- 2 """ 3 Created on Wed Oct 24 09:50:29 2018 4 5 @author: fd 6 """ 7 8 import json 9 10 dic = { 11 "真实流量测试": 12 { 13 "dspflow": ["flow.pcap"], 14 15 "flow": ["flow2.pcap", "3.pcap"], 16 }, 17 18 "恶意流量测试": 19 { 20 "情况1": ["6.pcap"], 21 22 "情况2": ["7.pcap", "8.pcap"], 23 "情况3": ["9.pcap", "10.pcap"], 24 }, 25 "具体流量测试": 26 { 27 "ARP": ["arp.pcap"], 28 "DB2": ["db2.pcap"], 29 "DNS": ["dns.pcap"], 30 "FTP": ["dns.pcap"], 31 "HTTP": ["http.pcap"], 32 "HTTPS": ["https.pcap"], 33 "MEMCACHE": ["memcached.pcap"], 34 "MONGO": ["mongo.pcap"], 35 "MYSQL": ["mysql.pcap"], 36 "ORACLE": ["oracle.pcap"], 37 "REDIS": ["redis.pcap"], 38 "SMTP": ["smtp.pcap"], 39 "SNMPv1": ["snmp1.pcap"], 40 "SNMPv2": ["snmp2.pcap"], 41 "SNMPv3": ["snmp3.pcap"], 42 "SSH": ["ssh.pcap"], 43 "SSL": ["ssl.pcap"], 44 "SYBASE": ["sybase.pcap"], 45 "TELNET": ["telnet.pcap"], 46 "UDP": ["udp.pcap"], 47 "VLAN": ["vlan.pcap"], 48 } 49 50 } 51 with open("config.json","w") as dump_f: 52 json.dump(dic,dump_f,ensure_ascii=False) 53 54 with open('config.json', 'r') as json_file: 55 """ 56 读取该json文件时,先按照gbk的方式对其解码再编码为utf-8的格式 57 """ 58 data = json_file.read() 59 print(type(data)) # type(data) = 'str' 60 result = json.loads(data) 61 print(result)
51 - warning: unspecified-encoding 54 - warning: unspecified-encoding 55 - warning: pointless-string-statement
1 # -*- coding: utf-8 -*- 2 """ 3 Created on Tue Nov 27 20:07:59 2018 4 5 @author: Imen 6 """ 7 8 import numpy as np 9 import pandas as pd 10 from sklearn.cluster import KMeans 11 import matplotlib.pyplot as plt 12 from sklearn.datasets.samples_generator import make_blobs 13 14 #Create a database of random values of 4 features and a fixed number of clusters 15 n_clusters=6 16 dataset,y=make_blobs(n_samples=200,n_features=4,centers=n_clusters) 17 #plt.scatter(dataset[:,2],dataset[:,3]) 18 19 #Firstly,i will calculate Vsc for this number of clusters 20 #Create the k-means 21 kmeans=KMeans(init="k-means++",n_clusters=n_clusters,random_state=0) 22 kmeans.fit(dataset) 23 mu_i=kmeans.cluster_centers_ 24 k_means_labels=kmeans.labels_ 25 mu=dataset.mean(axis=0) 26 SB=np.zeros((4,4)) 27 for line in mu_i: 28 diff1=line.reshape(1,4)-mu.reshape(1,4) 29 diff2=np.transpose(line.reshape(1,4)-mu.reshape(1,4)) 30 SB+=diff1*diff2 31 Sw=np.zeros((4,4)) 32 sum_in_cluster=np.zeros((4,4)) 33 comp_c=0 34 for k in range(n_clusters): 35 mes_points=(k_means_labels==k) 36 cluster_center=mu_i[k] 37 for i in dataset[mes_points]: 38 diff11=i.reshape(1,4)-cluster_center.reshape(1,4) 39 diff22=np.transpose(i.reshape(1,4)-cluster_center.reshape(1,4)) 40 sum_in_cluster+=diff11*diff22 41 Sw+=sum_in_cluster 42 comp_c+=np.trace(Sw) 43 44 sep_c=np.trace(SB) 45 Vsc=sep_c/comp_c 46 print("For n_clusters=",n_clusters," => Vsc=",Vsc) 47 48 #Secondly,i will determine Vsc for each number of cluster from 2 to 10 49 #Define a function validity_index 50 def validity_index(c): 51 kmeans=KMeans(init="k-means++",n_clusters=c,random_state=0) 52 kmeans.fit(dataset) 53 #mu_i is the centers of clusters 54 mu_i=kmeans.cluster_centers_ 55 k_means_labels=kmeans.labels_ 56 #mu is the center of the whole dataset 57 mu=dataset.mean(axis=0) 58 #initialize the between clusters matrix 59 SB=np.zeros((4,4)) 60 for line in mu_i: 61 diff1=line.reshape(1,4)-mu.reshape(1,4) 62 diff2=np.transpose(line.reshape(1,4)-mu.reshape(1,4)) 63 SB+=diff1*diff2 64 comp_c=0 65 #initialize the within matrix 66 Sw=np.zeros((4,4)) 67 sum_in_cluster=np.zeros((4,4)) 68 for k in range(c): 69 mes_points=(k_means_labels==k) 70 cluster_center=mu_i[k] 71 for i in dataset[mes_points]: 72 diff11=i.reshape(1,4)-cluster_center.reshape(1,4) 73 diff22=np.transpose(i.reshape(1,4)-cluster_center.reshape(1,4)) 74 sum_in_cluster+=diff11*diff22 75 Sw+=sum_in_cluster 76 #calculate the compactness in each cluster 77 comp_c+=np.trace(Sw) 78 #define the separation between clusters 79 sep_c=np.trace(SB) 80 #determin the Vsc 81 Vsc=sep_c/comp_c 82 return Vsc 83 #We have to find that the max Vsc is for the n_cluster defined initially 84 Vsc_vector=[] 85 cc=[2,3,4,5,6,7,8,9,10] 86 for i in cc: 87 Vsc_vector.append(validity_index(i)) 88 print("Number of clusters which has max of Vsc:",Vsc_vector.index(max(Vsc_vector))+2 ,"=> Vsc=",max(Vsc_vector))
50 - refactor: too-many-locals 51 - warning: redefined-outer-name 54 - warning: redefined-outer-name 55 - warning: redefined-outer-name 57 - warning: redefined-outer-name 59 - warning: redefined-outer-name 60 - warning: redefined-outer-name 61 - warning: redefined-outer-name 62 - warning: redefined-outer-name 64 - warning: redefined-outer-name 66 - warning: redefined-outer-name 67 - warning: redefined-outer-name 68 - warning: redefined-outer-name 69 - warning: redefined-outer-name 70 - warning: redefined-outer-name 71 - warning: redefined-outer-name 72 - warning: redefined-outer-name 73 - warning: redefined-outer-name 79 - warning: redefined-outer-name 81 - warning: redefined-outer-name 9 - warning: unused-import 11 - warning: unused-import
1 AWS_SCIPY_ARN = 'arn:aws:lambda:region:account_id:layer:AWSLambda-Python37-SciPy1x:2'
Clean Code: No Issues Detected
1 def lambda_handler(event, context): 2 if event['parallel_no'] % 2 == 0: 3 raise Exception('偶数です') 4 5 return { 6 'message': event['message'], 7 'const_value': event['const_value'] 8 }
3 - warning: broad-exception-raised 1 - warning: unused-argument
1 def lambda_handler(event, context): 2 if event['parallel_no'] == 1: 3 raise Exception('強制的にエラーとします') 4 5 return 'only 3rd message.'
3 - warning: broad-exception-raised 1 - warning: unused-argument
1 #!/usr/bin/env python3 2 3 from aws_cdk import core 4 5 from step_functions.step_functions_stack import StepFunctionsStack 6 7 8 app = core.App() 9 10 # CFnのStack名を第2引数で渡す 11 StepFunctionsStack(app, 'step-functions') 12 13 app.synth()
Clean Code: No Issues Detected
1 import json 2 3 4 def lambda_handler(event, context): 5 # { 6 # "resource": "arn:aws:lambda:region:id:function:sfn_error_lambda", 7 # "input": { 8 # "Error": "Exception", 9 # "Cause": "{\"errorMessage\": \"\\u5076\\u6570\\u3067\\u3059\", 10 # \"errorType\": \"Exception\", 11 # \"stackTrace\": [\" File \\\"/var/task/lambda_function.py\\\", line 5, 12 # in lambda_handler\\n raise Exception('\\u5076\\u6570\\u3067\\u3059') 13 # \\n\"]}" 14 # }, 15 # "timeoutInSeconds": null 16 # } 17 18 return { 19 # JSONをPythonオブジェクト化することで、文字化けを直す 20 'error_message': json.loads(event['Cause']), 21 }
4 - warning: unused-argument
1 import os 2 import boto3 3 from numpy.random import rand 4 5 6 def lambda_handler(event, context): 7 body = f'{event["message"]} \n value: {rand()}' 8 client = boto3.client('s3') 9 client.put_object( 10 Bucket=os.environ['BUCKET_NAME'], 11 Key='sfn_first.txt', 12 Body=body, 13 ) 14 15 return { 16 'body': body, 17 'message': event['message'], 18 }
6 - warning: unused-argument
1 import time 2 import cPickle 3 import numpy as np 4 import torch 5 6 class InstanceBag(object): 7 def __init__(self, entities, rel, num, sentences, positions, entitiesPos): 8 self.entities = entities 9 self.rel = rel 10 self.num = num 11 self.sentences = sentences 12 self.positions = positions 13 self.entitiesPos = entitiesPos 14 15 def bags_decompose(data_bags): 16 bag_sent = [data_bag.sentences for data_bag in data_bags] 17 bag_pos = [data_bag.positions for data_bag in data_bags] 18 bag_num = [data_bag.num for data_bag in data_bags] 19 bag_rel = [data_bag.rel for data_bag in data_bags] 20 bag_epos = [data_bag.entitiesPos for data_bag in data_bags] 21 return [bag_rel, bag_num, bag_sent, bag_pos, bag_epos] 22 23 def select_instance(rels, nums, sents, poss, eposs, model): 24 batch_x = [] 25 batch_len = [] 26 batch_epos = [] 27 batch_y = [] 28 for bagIndex, insNum in enumerate(nums): 29 maxIns = 0 30 maxP = -1 31 if insNum > 1: 32 for m in range(insNum): 33 insX = sents[bagIndex][m] 34 epos = eposs[bagIndex][m] 35 sel_x, sel_len, sel_epos = prepare_data([insX], [epos]) 36 results = model(sel_x, sel_len, sel_epos) 37 tmpMax = results.max() 38 if tmpMax > maxP: 39 maxIns = m 40 maxP=tmpMax 41 42 batch_x.append(sents[bagIndex][maxIns]) 43 batch_epos.append(eposs[bagIndex][maxIns]) 44 batch_y.append(rels[bagIndex]) 45 46 batch_x, batch_len, batch_epos = prepare_data(batch_x, batch_epos) 47 batch_y = torch.LongTensor(np.array(batch_y).astype("int32")).cuda() 48 49 return [batch_x, batch_len, batch_epos, batch_y] 50 51 def prepare_data(sents, epos): 52 lens = [len(sent) for sent in sents] 53 54 n_samples = len(lens) 55 max_len = max(lens) 56 57 batch_x = np.zeros((n_samples, max_len)).astype("int32") 58 for idx, s in enumerate(sents): 59 batch_x[idx, :lens[idx]] = s 60 61 batch_len = np.array(lens).astype("int32") 62 batch_epos = np.array(epos).astype("int32") 63 64 return torch.LongTensor(batch_x).cuda(), torch.LongTensor(batch_len).cuda(), torch.LongTensor(batch_epos).cuda()
34 - error: syntax-error
1 import sys 2 import re 3 import numpy as np 4 import cPickle as pkl 5 import codecs 6 7 import logging 8 9 from data_iterator import * 10 11 logger = logging.getLogger() 12 extra_token = ["<PAD>", "<UNK>"] 13 14 def display(msg): 15 print(msg) 16 logger.info(msg) 17 18 def datafold(filename): 19 f = open(filename, 'r') 20 data = [] 21 while 1: 22 line = f.readline() 23 if not line: 24 break 25 entities = map(int, line.split(' ')) 26 line = f.readline() 27 bagLabel = line.split(' ') 28 29 rel = map(int, bagLabel[0:-1]) 30 num = int(bagLabel[-1]) 31 positions = [] 32 sentences = [] 33 entitiesPos = [] 34 for i in range(0, num): 35 sent = f.readline().split(' ') 36 positions.append(map(int, sent[0:2])) 37 epos = map(int, sent[0:2]) 38 epos.sort() 39 entitiesPos.append(epos) 40 sentences.append(map(int, sent[2:-1])) 41 ins = InstanceBag(entities, rel, num, sentences, positions, entitiesPos) 42 data += [ins] 43 f.close() 44 return data 45 46 def dicfold(textfile): 47 vocab = [] 48 with codecs.open(textfile, "r", encoding = "utf8") as f: 49 for line in f: 50 line = line.strip() 51 if line: 52 vocab.append(line) 53 return vocab 54 55 def build_word2idx(vocab, textFile): 56 msg = "Building word2idx..." 57 display(msg) 58 59 pre_train_emb = [] 60 part_point = len(vocab) 61 62 if textFile: 63 word2emb = load_emb(vocab, textFile) 64 65 pre_train_vocab = [] 66 un_pre_train_vocab = [] 67 68 for word in vocab: 69 if word in word2emb: 70 pre_train_vocab.append(word) 71 pre_train_emb.append(word2emb[word]) 72 else: 73 un_pre_train_vocab.append(word) 74 75 part_point = len(un_pre_train_vocab) 76 un_pre_train_vocab.extend(pre_train_vocab) 77 vocab = un_pre_train_vocab 78 79 word2idx = {} 80 for v, k in enumerate(extra_token): 81 word2idx[k] = v 82 83 for v, k in enumerate(vocab): 84 word2idx[k] = v + 2 85 86 part_point += 2 87 88 return word2idx, pre_train_emb, part_point 89 90 def load_emb(vocab, textFile): 91 msg = 'load emb from ' + textFile 92 display(msg) 93 94 vocab_set = set(vocab) 95 word2emb = {} 96 97 emb_p = re.compile(r" |\t") 98 count = 0 99 with codecs.open(textFile, "r", "utf8") as filein: 100 for line in filein: 101 count += 1 102 array = emb_p.split(line.strip()) 103 word = array[0] 104 if word in vocab_set: 105 vector = [float(array[i]) for i in range(1, len(array))] 106 word2emb[word] = vector 107 108 del vocab_set 109 110 msg = "find %d words in %s" %(count, textFile) 111 display(msg) 112 113 msg = "Summary: %d words in the vocabulary and %d of them appear in the %s" %(len(vocab), len(word2emb), textFile) 114 display(msg) 115 116 return word2emb 117 118 def positive_evaluation(predict_results): 119 predict_y = predict_results[0] 120 predict_y_prob = predict_results[1] 121 y_given = predict_results[2] 122 123 positive_num = 0 124 #find the number of positive examples 125 for yi in range(y_given.shape[0]): 126 if y_given[yi, 0] > 0: 127 positive_num += 1 128 # if positive_num == 0: 129 # positive_num = 1 130 # sort prob 131 index = np.argsort(predict_y_prob)[::-1] 132 133 all_pre = [0] 134 all_rec = [0] 135 p_n = 0 136 p_p = 0 137 n_p = 0 138 # print y_given.shape[0] 139 for i in range(y_given.shape[0]): 140 labels = y_given[index[i],:] # key given labels 141 py = predict_y[index[i]] # answer 142 143 if labels[0] == 0: 144 # NA bag 145 if py > 0: 146 n_p += 1 147 else: 148 # positive bag 149 if py == 0: 150 p_n += 1 151 else: 152 flag = False 153 for j in range(y_given.shape[1]): 154 if j == -1: 155 break 156 if py == labels[j]: 157 flag = True # true positive 158 break 159 if flag: 160 p_p += 1 161 if (p_p+n_p) == 0: 162 precision = 1 163 else: 164 precision = float(p_p)/(p_p+n_p) 165 recall = float(p_p)/positive_num 166 if precision != all_pre[-1] or recall != all_rec[-1]: 167 all_pre.append(precision) 168 all_rec.append(recall) 169 return [all_pre[1:], all_rec[1:]]
15 - warning: bad-indentation 16 - warning: bad-indentation 19 - warning: bad-indentation 20 - warning: bad-indentation 21 - warning: bad-indentation 22 - warning: bad-indentation 23 - warning: bad-indentation 24 - warning: bad-indentation 25 - warning: bad-indentation 26 - warning: bad-indentation 27 - warning: bad-indentation 29 - warning: bad-indentation 30 - warning: bad-indentation 31 - warning: bad-indentation 32 - warning: bad-indentation 33 - warning: bad-indentation 34 - warning: bad-indentation 35 - warning: bad-indentation 36 - warning: bad-indentation 37 - warning: bad-indentation 38 - warning: bad-indentation 39 - warning: bad-indentation 40 - warning: bad-indentation 41 - warning: bad-indentation 42 - warning: bad-indentation 43 - warning: bad-indentation 44 - warning: bad-indentation 47 - warning: bad-indentation 48 - warning: bad-indentation 49 - warning: bad-indentation 50 - warning: bad-indentation 51 - warning: bad-indentation 52 - warning: bad-indentation 53 - warning: bad-indentation 56 - warning: bad-indentation 57 - warning: bad-indentation 59 - warning: bad-indentation 60 - warning: bad-indentation 62 - warning: bad-indentation 63 - warning: bad-indentation 65 - warning: bad-indentation 66 - warning: bad-indentation 68 - warning: bad-indentation 69 - warning: bad-indentation 70 - warning: bad-indentation 71 - warning: bad-indentation 72 - warning: bad-indentation 73 - warning: bad-indentation 75 - warning: bad-indentation 76 - warning: bad-indentation 77 - warning: bad-indentation 79 - warning: bad-indentation 80 - warning: bad-indentation 81 - warning: bad-indentation 83 - warning: bad-indentation 84 - warning: bad-indentation 86 - warning: bad-indentation 88 - warning: bad-indentation 91 - warning: bad-indentation 92 - warning: bad-indentation 94 - warning: bad-indentation 95 - warning: bad-indentation 97 - warning: bad-indentation 98 - warning: bad-indentation 99 - warning: bad-indentation 100 - warning: bad-indentation 101 - warning: bad-indentation 102 - warning: bad-indentation 103 - warning: bad-indentation 104 - warning: bad-indentation 105 - warning: bad-indentation 106 - warning: bad-indentation 108 - warning: bad-indentation 110 - warning: bad-indentation 111 - warning: bad-indentation 113 - warning: bad-indentation 114 - warning: bad-indentation 116 - warning: bad-indentation 119 - warning: bad-indentation 120 - warning: bad-indentation 121 - warning: bad-indentation 123 - warning: bad-indentation 125 - warning: bad-indentation 126 - warning: bad-indentation 127 - warning: bad-indentation 131 - warning: bad-indentation 133 - warning: bad-indentation 134 - warning: bad-indentation 135 - warning: bad-indentation 136 - warning: bad-indentation 137 - warning: bad-indentation 139 - warning: bad-indentation 140 - warning: bad-indentation 141 - warning: bad-indentation 143 - warning: bad-indentation 145 - warning: bad-indentation 146 - warning: bad-indentation 147 - warning: bad-indentation 149 - warning: bad-indentation 150 - warning: bad-indentation 151 - warning: bad-indentation 152 - warning: bad-indentation 153 - warning: bad-indentation 154 - warning: bad-indentation 155 - warning: bad-indentation 156 - warning: bad-indentation 157 - warning: bad-indentation 158 - warning: bad-indentation 159 - warning: bad-indentation 160 - warning: bad-indentation 161 - warning: bad-indentation 162 - warning: bad-indentation 163 - warning: bad-indentation 164 - warning: bad-indentation 165 - warning: bad-indentation 166 - warning: bad-indentation 167 - warning: bad-indentation 168 - warning: bad-indentation 169 - warning: bad-indentation 9 - warning: wildcard-import 19 - warning: unspecified-encoding 38 - error: no-member 41 - error: undefined-variable 19 - refactor: consider-using-with 34 - warning: unused-variable 118 - refactor: too-many-locals 118 - refactor: too-many-branches 1 - warning: unused-import 4 - warning: unused-import
1 from module import * 2 from util import * 3 from data_iterator import *
1 - warning: wildcard-import 2 - warning: wildcard-import 3 - warning: wildcard-import
1 import sys 2 import codecs 3 4 class InstanceBag(object): 5 def __init__(self, entities, rel, num, sentences, positions, entitiesPos): 6 self.entities = entities 7 self.rel = rel 8 self.num = num 9 self.sentences = sentences 10 self.positions = positions 11 self.entitiesPos = entitiesPos 12 13 def bags_decompose(data_bags): 14 bag_sent = [data_bag.sentences for data_bag in data_bags] 15 bag_pos = [data_bag.positions for data_bag in data_bags] 16 bag_num = [data_bag.num for data_bag in data_bags] 17 bag_rel = [data_bag.rel for data_bag in data_bags] 18 bag_epos = [data_bag.entitiesPos for data_bag in data_bags] 19 return [bag_rel, bag_num, bag_sent, bag_pos, bag_epos] 20 21 def datafold(filename): 22 f = open(filename, 'r') 23 data = [] 24 while 1: 25 line = f.readline() 26 if not line: 27 break 28 entities = map(int, line.split(' ')) 29 line = f.readline() 30 bagLabel = line.split(' ') 31 32 rel = map(int, bagLabel[0:-1]) 33 num = int(bagLabel[-1]) 34 positions = [] 35 sentences = [] 36 entitiesPos = [] 37 for i in range(0, num): 38 sent = f.readline().split(' ') 39 positions.append(map(int, sent[0:2])) 40 epos = map(int, sent[0:2]) 41 epos.sort() 42 entitiesPos.append(epos) 43 sentences.append(map(int, sent[2:-1])) 44 ins = InstanceBag(entities, rel, num, sentences, positions, entitiesPos) 45 data += [ins] 46 f.close() 47 return data 48 49 def change_word_idx(data): 50 new_data = [] 51 for inst in data: 52 entities = inst.entities 53 rel = inst.rel 54 num = inst.num 55 sentences = inst.sentences 56 positions = inst.positions 57 entitiesPos = inst.entitiesPos 58 new_sentences = [] 59 for sent in sentences: 60 new_sent = [] 61 for word in sent: 62 if word == 160696: 63 new_sent.append(1) 64 elif word == 0: 65 new_sent.append(0) 66 else: 67 new_sent.append(word + 1) 68 new_sentences.append(new_sent) 69 new_inst = InstanceBag(entities, rel, num, new_sentences, positions, entitiesPos) 70 new_data.append(new_inst) 71 return new_data 72 73 def save_data(data, textfile): 74 with codecs.open(textfile, "w", encoding = "utf8") as f: 75 for inst in data: 76 f.write("%s\n" %(" ".join(map(str, inst.entities)))) 77 f.write("%s %s\n" %(" ".join(map(str, inst.rel)), str(inst.num))) 78 for pos, sent in zip(inst.positions, inst.sentences): 79 f.write("%s %s\n" %(" ".join(map(str, pos)), " ".join(map(str, sent)))) 80 81 def main(argv): 82 data = datafold(argv[0]) 83 new_data = change_word_idx(data) 84 save_data(new_data, argv[1]) 85 86 if "__main__" == __name__: 87 main(sys.argv[1:])
5 - warning: bad-indentation 6 - warning: bad-indentation 7 - warning: bad-indentation 8 - warning: bad-indentation 9 - warning: bad-indentation 10 - warning: bad-indentation 11 - warning: bad-indentation 22 - warning: bad-indentation 23 - warning: bad-indentation 24 - warning: bad-indentation 25 - warning: bad-indentation 26 - warning: bad-indentation 27 - warning: bad-indentation 28 - warning: bad-indentation 29 - warning: bad-indentation 30 - warning: bad-indentation 32 - warning: bad-indentation 33 - warning: bad-indentation 34 - warning: bad-indentation 35 - warning: bad-indentation 36 - warning: bad-indentation 37 - warning: bad-indentation 38 - warning: bad-indentation 39 - warning: bad-indentation 40 - warning: bad-indentation 41 - warning: bad-indentation 42 - warning: bad-indentation 43 - warning: bad-indentation 44 - warning: bad-indentation 45 - warning: bad-indentation 46 - warning: bad-indentation 47 - warning: bad-indentation 50 - warning: bad-indentation 51 - warning: bad-indentation 52 - warning: bad-indentation 53 - warning: bad-indentation 54 - warning: bad-indentation 55 - warning: bad-indentation 56 - warning: bad-indentation 57 - warning: bad-indentation 58 - warning: bad-indentation 59 - warning: bad-indentation 60 - warning: bad-indentation 61 - warning: bad-indentation 62 - warning: bad-indentation 63 - warning: bad-indentation 64 - warning: bad-indentation 65 - warning: bad-indentation 66 - warning: bad-indentation 67 - warning: bad-indentation 68 - warning: bad-indentation 69 - warning: bad-indentation 70 - warning: bad-indentation 71 - warning: bad-indentation 74 - warning: bad-indentation 75 - warning: bad-indentation 76 - warning: bad-indentation 77 - warning: bad-indentation 78 - warning: bad-indentation 79 - warning: bad-indentation 82 - warning: bad-indentation 83 - warning: bad-indentation 84 - warning: bad-indentation 87 - warning: bad-indentation 4 - refactor: useless-object-inheritance 5 - refactor: too-many-arguments 5 - refactor: too-many-positional-arguments 4 - refactor: too-few-public-methods 22 - warning: unspecified-encoding 41 - error: no-member 22 - refactor: consider-using-with 37 - warning: unused-variable
1 import torch 2 import torch.nn as nn 3 4 from lib import * 5 6 class Model(nn.Module): 7 def __init__(self, 8 fine_tune, 9 pre_train_emb, 10 part_point, 11 size_vocab, 12 dim_emb, 13 dim_proj, 14 head_count, 15 dim_FNN, 16 act_str, 17 num_layer, 18 num_class, 19 dropout_rate): 20 super(Model, self).__init__() 21 22 self.fine_tune = fine_tune 23 self.pre_train_emb = pre_train_emb 24 self.part_point = part_point 25 self.size_vocab = size_vocab 26 self.dim_emb = dim_emb 27 self.dim_proj = dim_proj 28 self.head_count = head_count 29 self.dim_FNN = dim_FNN 30 self.act_str = act_str 31 self.num_layer = num_layer 32 self.num_class = num_class 33 self.dropout_rate = dropout_rate 34 35 self._init_params() 36 37 def _init_params(self): 38 self.wemb = Word_Emb(self.fine_tune, 39 self.pre_train_emb, 40 self.part_point, 41 self.size_vocab, 42 self.dim_emb) 43 44 self.encoder = TransformerEncoder(self.dim_proj, 45 self.head_count, 46 self.dim_FNN, 47 self.act_str, 48 self.num_layer, 49 self.dropout_rate) 50 51 self.dense = MLP(self.dim_proj * 3, self.dim_proj) 52 self.relu = torch.nn.ReLU() 53 self.classifier = MLP(self.dim_proj, self.num_class) 54 self.dropout = nn.Dropout(self.dropout_rate) 55 56 def forward(self, inp, lengths, epos): 57 mask, mask_l, mask_m, mask_r = self.pos2mask(epos, lengths) 58 59 emb_inp = self.wemb(inp) 60 emb_inp = self.dropout(emb_inp) 61 62 proj_inp, _ = self.encoder(emb_inp, self.create_attention_mask(mask, mask)) 63 proj_inp = proj_inp * mask[:, :, None] 64 65 pool_inp_l = torch.sum(proj_inp * mask_l[:, :, None], dim = 1) / torch.sum(mask_l, dim = 1)[:, None] 66 pool_inp_m = torch.sum(proj_inp * mask_m[:, :, None], dim = 1) / torch.sum(mask_m, dim = 1)[:, None] 67 pool_inp_r = torch.sum(proj_inp * mask_r[:, :, None], dim = 1) / torch.sum(mask_r, dim = 1)[:, None] 68 69 pool_inp = torch.cat([pool_inp_l, pool_inp_m, pool_inp_r], dim = 1) 70 71 pool_inp = self.dropout(pool_inp) 72 73 logit = self.relu(self.dense(pool_inp)) 74 75 logit = self.dropout(logit) 76 77 logit = self.classifier(logit) 78 79 return logit 80 81 def pos2mask(self, epos, lengths): 82 mask = self.len2mask(lengths) 83 84 nsample = lengths.size()[0] 85 max_len = torch.max(lengths) 86 idxes = torch.arange(0, max_len).cuda() 87 mask_l = (idxes < epos[:, 0].unsqueeze(1)).float() 88 mask_r = mask - (idxes < epos[:, 1].unsqueeze(1)).float() 89 mask_m = torch.ones([nsample, max_len]).float().cuda() - mask_l - mask_r 90 return mask, mask_l, mask_m, mask_r 91 92 def len2mask(self, lengths): 93 max_len = torch.max(lengths) 94 idxes = torch.arange(0, max_len).cuda() 95 mask = (idxes < lengths.unsqueeze(1)).float() 96 return mask 97 98 def create_attention_mask(self, query_mask, key_mask): 99 return torch.matmul(query_mask[:, :, None], key_mask[:, None, :]).byte()
7 - warning: bad-indentation 20 - warning: bad-indentation 22 - warning: bad-indentation 23 - warning: bad-indentation 24 - warning: bad-indentation 25 - warning: bad-indentation 26 - warning: bad-indentation 27 - warning: bad-indentation 28 - warning: bad-indentation 29 - warning: bad-indentation 30 - warning: bad-indentation 31 - warning: bad-indentation 32 - warning: bad-indentation 33 - warning: bad-indentation 35 - warning: bad-indentation 37 - warning: bad-indentation 38 - warning: bad-indentation 44 - warning: bad-indentation 51 - warning: bad-indentation 52 - warning: bad-indentation 53 - warning: bad-indentation 54 - warning: bad-indentation 56 - warning: bad-indentation 57 - warning: bad-indentation 59 - warning: bad-indentation 60 - warning: bad-indentation 62 - warning: bad-indentation 63 - warning: bad-indentation 65 - warning: bad-indentation 66 - warning: bad-indentation 67 - warning: bad-indentation 69 - warning: bad-indentation 71 - warning: bad-indentation 73 - warning: bad-indentation 75 - warning: bad-indentation 77 - warning: bad-indentation 79 - warning: bad-indentation 81 - warning: bad-indentation 82 - warning: bad-indentation 84 - warning: bad-indentation 85 - warning: bad-indentation 86 - warning: bad-indentation 87 - warning: bad-indentation 88 - warning: bad-indentation 89 - warning: bad-indentation 90 - warning: bad-indentation 92 - warning: bad-indentation 93 - warning: bad-indentation 94 - warning: bad-indentation 95 - warning: bad-indentation 96 - warning: bad-indentation 98 - warning: bad-indentation 99 - warning: bad-indentation 2 - refactor: consider-using-from-import 4 - warning: wildcard-import 6 - refactor: too-many-instance-attributes 7 - refactor: too-many-arguments 7 - refactor: too-many-positional-arguments 20 - refactor: super-with-arguments 38 - error: undefined-variable 44 - error: undefined-variable 51 - error: undefined-variable 53 - error: undefined-variable
1 from os import path 2 3 from bcbio.pipeline import config_utils 4 from bcbio.utils import safe_makedir, file_exists, get_in 5 from bcbio.provenance import do 6 7 CLEANUP_FILES = ["Aligned.out.sam", "Log.out", "Log.progress.out"] 8 9 def align(fastq_file, pair_file, ref_file, names, align_dir, data): 10 config = data["config"] 11 out_prefix = path.join(align_dir, names["lane"]) 12 out_file = out_prefix + "Aligned.out.sam" 13 if file_exists(out_file): 14 return out_file 15 star_path = config_utils.get_program("STAR", config) 16 fastq = " ".join([fastq_file, pair_file]) if pair_file else fastq_file 17 num_cores = config["algorithm"].get("num_cores", 1) 18 19 safe_makedir(align_dir) 20 cmd = ("{star_path} --genomeDir {ref_file} --readFilesIn {fastq} " 21 "--runThreadN {num_cores} --outFileNamePrefix {out_prefix} " 22 "--outReadsUnmapped Fastx --outFilterMultimapNmax 10") 23 fusion_mode = get_in(data, ("config", "algorithm", "fusion_mode"), False) 24 if fusion_mode: 25 cmd += " --chimSegmentMin 15 --chimJunctionOverhangMin 15" 26 strandedness = get_in(data, ("config", "algorithm", "strandedness"), 27 "unstranded").lower() 28 if strandedness == "unstranded": 29 cmd += " --outSAMstrandField intronMotif" 30 run_message = "Running STAR aligner on %s and %s." % (pair_file, ref_file) 31 do.run(cmd.format(**locals()), run_message, None) 32 return out_file 33 34 def _get_quality_format(config): 35 qual_format = config["algorithm"].get("quality_format", None) 36 if qual_format.lower() == "illumina": 37 return "fastq-illumina" 38 elif qual_format.lower() == "solexa": 39 return "fastq-solexa" 40 else: 41 return "fastq-sanger" 42 43 def remap_index_fn(ref_file): 44 """Map sequence references to equivalent star indexes 45 """ 46 return path.join(path.dirname(path.dirname(ref_file)), "star") 47 48 def job_requirements(cores, memory): 49 MIN_STAR_MEMORY = 30.0 50 if not memory or cores * memory < MIN_STAR_MEMORY: 51 memory = MIN_STAR_MEMORY / cores 52 return cores, memory 53 54 align.job_requirements = job_requirements
9 - refactor: too-many-arguments 9 - refactor: too-many-positional-arguments 9 - refactor: too-many-locals 15 - warning: possibly-unused-variable 16 - warning: possibly-unused-variable 17 - warning: possibly-unused-variable 36 - refactor: no-else-return
1 """Calculate potential effects of variations using external programs. 2 3 Supported: 4 snpEff: http://sourceforge.net/projects/snpeff/ 5 """ 6 import os 7 import csv 8 import glob 9 10 from bcbio import utils 11 from bcbio.distributed.transaction import file_transaction 12 from bcbio.pipeline import config_utils, tools 13 from bcbio.provenance import do 14 from bcbio.variation import vcfutils 15 16 # ## snpEff variant effects 17 18 def snpeff_effects(data): 19 """Annotate input VCF file with effects calculated by snpEff. 20 """ 21 vcf_in = data["vrn_file"] 22 interval_file = data["config"]["algorithm"].get("variant_regions", None) 23 if vcfutils.vcf_has_variants(vcf_in): 24 se_interval = (_convert_to_snpeff_interval(interval_file, vcf_in) 25 if interval_file else None) 26 try: 27 vcf_file = _run_snpeff(vcf_in, se_interval, "vcf", data) 28 finally: 29 for fname in [se_interval]: 30 if fname and os.path.exists(fname): 31 os.remove(fname) 32 return vcf_file 33 34 def _snpeff_args_from_config(data): 35 """Retrieve snpEff arguments supplied through input configuration. 36 """ 37 config = data["config"] 38 args = [] 39 # General supplied arguments 40 resources = config_utils.get_resources("snpeff", config) 41 if resources.get("options"): 42 args += [str(x) for x in resources.get("options", [])] 43 # cancer specific calling arguments 44 if data.get("metadata", {}).get("phenotype") in ["tumor", "normal"]: 45 args += ["-cancer"] 46 # Provide options tuned to reporting variants in clinical environments 47 if config["algorithm"].get("clinical_reporting"): 48 args += ["-canon", "-hgvs"] 49 return args 50 51 def get_db(ref_file, resources, config=None): 52 """Retrieve a snpEff database name and location relative to reference file. 53 """ 54 snpeff_db = resources.get("aliases", {}).get("snpeff") 55 if snpeff_db: 56 snpeff_base_dir = utils.safe_makedir(os.path.normpath(os.path.join( 57 os.path.dirname(os.path.dirname(ref_file)), "snpeff"))) 58 # back compatible retrieval of genome from installation directory 59 if config and not os.path.exists(os.path.join(snpeff_base_dir, snpeff_db)): 60 snpeff_base_dir, snpeff_db = _installed_snpeff_genome(snpeff_db, config) 61 else: 62 snpeff_base_dir = None 63 return snpeff_db, snpeff_base_dir 64 65 def get_cmd(cmd_name, datadir, config): 66 """Retrieve snpEff base command line, handling command line and jar based installs. 67 """ 68 resources = config_utils.get_resources("snpeff", config) 69 memory = " ".join(resources.get("jvm_opts", ["-Xms750m", "-Xmx5g"])) 70 try: 71 snpeff = config_utils.get_program("snpeff", config) 72 cmd = "{snpeff} {memory} {cmd_name} -dataDir {datadir}" 73 except config_utils.CmdNotFound: 74 snpeff_jar = config_utils.get_jar("snpEff", 75 config_utils.get_program("snpeff", config, "dir")) 76 config_file = "%s.config" % os.path.splitext(snpeff_jar)[0] 77 cmd = "java {memory} -jar {snpeff_jar} {cmd_name} -c {config_file} -dataDir {datadir}" 78 return cmd.format(**locals()) 79 80 def _run_snpeff(snp_in, se_interval, out_format, data): 81 snpeff_db, datadir = get_db(data["sam_ref"], data["genome_resources"], data["config"]) 82 assert datadir is not None, \ 83 "Did not find snpEff resources in genome configuration: %s" % data["genome_resources"] 84 assert os.path.exists(os.path.join(datadir, snpeff_db)), \ 85 "Did not find %s snpEff genome data in %s" % (snpeff_db, datadir) 86 snpeff_cmd = get_cmd("eff", datadir, data["config"]) 87 ext = utils.splitext_plus(snp_in)[1] if out_format == "vcf" else ".tsv" 88 out_file = "%s-effects%s" % (utils.splitext_plus(snp_in)[0], ext) 89 if not utils.file_exists(out_file): 90 interval = "-filterinterval %s" % (se_interval) if se_interval else "" 91 config_args = " ".join(_snpeff_args_from_config(data)) 92 if ext.endswith(".gz"): 93 bgzip_cmd = "| %s -c" % tools.get_bgzip_cmd(data["config"]) 94 else: 95 bgzip_cmd = "" 96 with file_transaction(out_file) as tx_out_file: 97 cmd = ("{snpeff_cmd} {interval} {config_args} -noLog -1 -i vcf -o {out_format} " 98 "{snpeff_db} {snp_in} {bgzip_cmd} > {tx_out_file}") 99 do.run(cmd.format(**locals()), "snpEff effects", data) 100 if ext.endswith(".gz"): 101 out_file = vcfutils.bgzip_and_index(out_file, data["config"]) 102 return out_file 103 104 def _convert_to_snpeff_interval(in_file, base_file): 105 """Handle wide variety of BED-like inputs, converting to BED-3. 106 """ 107 out_file = "%s-snpeff-intervals.bed" % utils.splitext_plus(base_file)[0] 108 if not os.path.exists(out_file): 109 with open(out_file, "w") as out_handle: 110 writer = csv.writer(out_handle, dialect="excel-tab") 111 with open(in_file) as in_handle: 112 for line in (l for l in in_handle if not l.startswith(("@", "#"))): 113 parts = line.split() 114 writer.writerow(parts[:3]) 115 return out_file 116 117 # ## back-compatibility 118 119 def _find_snpeff_datadir(config_file): 120 with open(config_file) as in_handle: 121 for line in in_handle: 122 if line.startswith("data_dir"): 123 data_dir = config_utils.expand_path(line.split("=")[-1].strip()) 124 if not data_dir.startswith("/"): 125 data_dir = os.path.join(os.path.dirname(config_file), data_dir) 126 return data_dir 127 raise ValueError("Did not find data directory in snpEff config file: %s" % config_file) 128 129 def _installed_snpeff_genome(base_name, config): 130 """Find the most recent installed genome for snpEff with the given name. 131 """ 132 snpeff_config_file = os.path.join(config_utils.get_program("snpEff", config, "dir"), 133 "snpEff.config") 134 data_dir = _find_snpeff_datadir(snpeff_config_file) 135 dbs = [d for d in sorted(glob.glob(os.path.join(data_dir, "%s*" % base_name)), reverse=True) 136 if os.path.isdir(d)] 137 if len(dbs) == 0: 138 raise ValueError("No database found in %s for %s" % (data_dir, base_name)) 139 else: 140 return data_dir, os.path.split(dbs[0])[-1]
18 - refactor: inconsistent-return-statements 65 - warning: unused-argument 65 - warning: unused-argument 69 - warning: possibly-unused-variable 71 - warning: possibly-unused-variable 76 - warning: possibly-unused-variable 86 - warning: possibly-unused-variable 90 - warning: possibly-unused-variable 91 - warning: possibly-unused-variable 93 - warning: possibly-unused-variable 96 - warning: possibly-unused-variable 109 - warning: unspecified-encoding 111 - warning: unspecified-encoding 120 - warning: unspecified-encoding 137 - refactor: no-else-raise
1 """Run distributed functions provided a name and json/YAML file with arguments. 2 3 Enables command line access and alternative interfaces to run specific 4 functionality within bcbio-nextgen. 5 """ 6 import yaml 7 8 from bcbio.distributed import multitasks 9 10 def process(args): 11 """Run the function in args.name given arguments in args.argfile. 12 """ 13 try: 14 fn = getattr(multitasks, args.name) 15 except AttributeError: 16 raise AttributeError("Did not find exposed function in bcbio.distributed.multitasks named '%s'" % args.name) 17 with open(args.argfile) as in_handle: 18 fnargs = yaml.safe_load(in_handle) 19 fn(fnargs) 20 21 def add_subparser(subparsers): 22 parser = subparsers.add_parser("runfn", help=("Run a specific bcbio-nextgen function." 23 "Intended for distributed use.")) 24 parser.add_argument("name", help="Name of the function to run") 25 parser.add_argument("argfile", help="JSON file with arguments to the function")
16 - warning: raise-missing-from 17 - warning: unspecified-encoding
1 """Run distributed tasks in parallel using IPython or joblib on multiple cores. 2 """ 3 import functools 4 5 try: 6 import joblib 7 except ImportError: 8 joblib = False 9 10 from bcbio.distributed import ipython 11 from bcbio.log import logger, setup_local_logging 12 from bcbio.provenance import diagnostics, system 13 14 def parallel_runner(parallel, dirs, config): 15 """Process a supplied function: single, multi-processor or distributed. 16 """ 17 def run_parallel(fn_name, items, metadata=None): 18 items = [x for x in items if x is not None] 19 if len(items) == 0: 20 return [] 21 items = diagnostics.track_parallel(items, fn_name) 22 sysinfo = system.get_info(dirs, parallel) 23 if parallel["type"] == "ipython": 24 return ipython.runner(parallel, fn_name, items, dirs["work"], sysinfo, config) 25 else: 26 imodule = parallel.get("module", "bcbio.distributed") 27 logger.info("multiprocessing: %s" % fn_name) 28 fn = getattr(__import__("{base}.multitasks".format(base=imodule), 29 fromlist=["multitasks"]), 30 fn_name) 31 return run_multicore(fn, items, config, parallel["cores"]) 32 return run_parallel 33 34 def zeromq_aware_logging(f): 35 """Ensure multiprocessing logging uses ZeroMQ queues. 36 37 ZeroMQ and local stdout/stderr do not behave nicely when intertwined. This 38 ensures the local logging uses existing ZeroMQ logging queues. 39 """ 40 @functools.wraps(f) 41 def wrapper(*args, **kwargs): 42 config = None 43 for arg in args: 44 if ipython.is_std_config_arg(arg): 45 config = arg 46 break 47 elif ipython.is_nested_config_arg(arg): 48 config = arg["config"] 49 break 50 assert config, "Could not find config dictionary in function arguments." 51 if config.get("parallel", {}).get("log_queue"): 52 handler = setup_local_logging(config, config["parallel"]) 53 else: 54 handler = None 55 try: 56 out = f(*args, **kwargs) 57 finally: 58 if handler and hasattr(handler, "close"): 59 handler.close() 60 return out 61 return wrapper 62 63 def run_multicore(fn, items, config, cores=None): 64 """Run the function using multiple cores on the given items to process. 65 """ 66 if cores is None: 67 cores = config["algorithm"].get("num_cores", 1) 68 parallel = {"type": "local", "cores": cores} 69 sysinfo = system.get_info({}, parallel) 70 jobr = ipython.find_job_resources([fn], parallel, items, sysinfo, config, 71 parallel.get("multiplier", 1), 72 max_multicore=int(sysinfo["cores"])) 73 items = [ipython.add_cores_to_config(x, jobr.cores_per_job) for x in items] 74 if joblib is None: 75 raise ImportError("Need joblib for multiprocessing parallelization") 76 out = [] 77 for data in joblib.Parallel(jobr.num_jobs)(joblib.delayed(fn)(x) for x in items): 78 if data: 79 out.extend(data) 80 return out
23 - refactor: no-else-return 17 - warning: unused-argument 44 - refactor: no-else-break
1 import copy 2 3 # Setup: 4 s = "s" 5 states = ["s", "!s"] 6 actions = ["N", "M"] 7 Xt = {"A1": 1.0, "A2": 1.0} 8 R = {"s": 2.0, "!s": 3.0} 9 y = 0.5 10 11 def E(c, R): 12 E = c * max(R.values()) 13 return E 14 15 def max_key(dictionary): 16 return list(Xt.keys())[list(Xt.values()).index(max(Xt.values()))] 17 18 def value_iteration(states, Xt, y): 19 iterations = 0 20 best = 0 21 U = [0] * len(states) 22 U_ = [0] * len(states) 23 A = [""] * len(states) 24 25 while (best < E((1 - y), R) / y and iterations < 1000): 26 U = copy.deepcopy(U_) 27 best = 0 28 for i, state in enumerate(states): 29 30 # VELGER UANSETT DEN MEST SANNSYNLIGE TRANSITION... DET ER JO IKKE NOE BRA POLICY... 31 32 best_action = max_key(Xt) 33 U_[i] = R[state] + y * max([a * U[i] for a in Xt.values()]) 34 35 if abs(U_[i] - U[i]) > best: 36 best = abs(U_[i] - U[i]) 37 38 iterations += 1 39 # y = y * 0.99 40 41 print("Found optimal policy after %d iteration(s)" % iterations) 42 print("Best policy: ", str(A)) 43 44 45 value_iteration(states, Xt, y)
11 - warning: redefined-outer-name 12 - warning: redefined-outer-name 15 - warning: unused-argument 18 - warning: redefined-outer-name 18 - warning: redefined-outer-name 18 - warning: redefined-outer-name 33 - refactor: consider-using-generator 35 - refactor: consider-using-max-builtin 32 - warning: unused-variable
1 import random 2 import sys 3 actions = ["LEFT", "RIGHT", "UP", "DOWN"] 4 5 def perform_action(x, y, action): 6 if action == "LEFT" and x != 0: return x-1, y 7 if action == "RIGHT" and x != 3: return x+1, y 8 if action == "UP" and y != 0: return x, y-1 9 if action == "DOWN" and y != 2: return x, y+1 10 return x, y 11 12 def transition_model(x, y, action): 13 preferred = [ 14 ["RIGHT", "RIGHT", "RIGHT", "LEFT"], 15 ["UP", "DOWN", "UP", "UP" ], 16 ["UP", "LEFT", "UP", "LEFT"], 17 ][y][x] 18 return 1 if action == preferred else 0.0 19 20 def policy_evaluation(policy, utilities, states, discount): 21 for x, y in states: 22 transitions = [transition_model(x, y, policy[y][x]) * utilities[yy][xx] for xx, yy in all_possibles(x, y)] 23 utilities[y][x] = reward[y][x] + discount * sum(transitions) 24 return utilities 25 26 27 def best_action(state, u): 28 best_action = (None, -sys.maxsize) 29 for a in actions: 30 score = aciton_score(state, a, u) 31 if score > best_action[1]: 32 best_action = (a, score) 33 return best_action 34 35 all_possibles = lambda x, y: [perform_action(x, y, action) for action in actions] 36 aciton_score = lambda s, a, u: sum([transition_model(x, y, a) * u[y][x] for x, y in all_possibles(*s)]) 37 38 39 reward = [ 40 [-0.04, -0.04, -0.04, +1], 41 [-0.04, -100, -0.04, -1], 42 [-0.04, -0.04, -0.04, -0.04], 43 ] 44 states = [(x, y) for x in range(4) for y in range(3)] 45 random_initial_policy = [random.sample(actions, 4)]*3 46 47 def policy_iteration(mdp, policy, discount): 48 49 unchanged = False 50 u = [[0]*4]*3 51 i = 0 52 while not unchanged: 53 # Evaluate policy using bellman equation 54 u = policy_evaluation(policy, u, states, discount) 55 unchanged = True 56 57 for state in mdp: 58 x, y = state 59 # Compare with action in policy with all others to see if best: 60 if best_action(state, u)[1] > aciton_score(state, policy[y][x], u): 61 policy[y][x] = best_action(state, u)[0] 62 63 # Mark as changed to loop one more time. 64 unchanged = False 65 if i == 100: break 66 i += 1 67 return policy 68 69 print(policy_iteration(states, random_initial_policy, 0.9))
20 - warning: redefined-outer-name 28 - warning: redefined-outer-name 36 - refactor: consider-using-generator
1 # %% 2 import numpy as np 3 4 # Transition model for state_t (Answer to to PART A, 1) 5 Xt = np.array([[0.7, 0.3], [0.3, 0.7]]) 6 7 # Sensor model for state_t (Answer to PART A, 2) 8 O1 = np.array([[0.9, .0], [.0, 0.2]]) 9 O3 = np.array([[0.1, .0], [.0, 0.8]]) 10 11 12 init = np.array([0.5, 0.5]) 13 14 15 def forward(f, Xt, OT, OF, E, k): 16 t = Xt.transpose().dot(f) # Transition 17 u = (OT if E[k] else OF).dot(t) # Update 18 delta = u / np.sum(u) # Normalize 19 20 # Day 0 (base case)? 21 if not k: 22 return delta 23 return forward(delta, Xt, OT, OF, E, k-1) 24 25 def backward(Xt, OT, OF, E, k): 26 e = (OT if E[k] else OF) 27 if k < len(E)-1: 28 res = Xt.dot(e).dot(backward(Xt, OT, OF, E, k+1)) 29 else: 30 res = Xt.dot(e).dot(np.array([1, 1])) 31 32 return res / np.sum(res) 33 34 E = [True, True] 35 rain_day_2 = forward(init, Xt, O1, O3, E, len(E)-1) 36 print("Probability of rain on day 2 using forward: ", rain_day_2) 37 38 E = np.array([True, True, False, True, True]) 39 print("Probability of rain on day 5 using forward: ", forward(init, Xt, O1, O3, E, len(E)-1)) 40 print("Probability of rain on day 2 using backward: ", backward(Xt, O1, O3, E, 0)) 41
15 - refactor: too-many-arguments 15 - refactor: too-many-positional-arguments 15 - warning: redefined-outer-name 15 - warning: redefined-outer-name 25 - warning: redefined-outer-name 25 - warning: redefined-outer-name
1 import pandas as pd 2 from math import log2 3 4 _TRAINING_FILE = "/Users/magnus/Downloads/data/training.csv" 5 _TESTING_FILE = "/Users/magnus/Downloads/data/test.csv" 6 7 def entropy(V): 8 """ ENTROPY SHOWS HOW MUCH OF THE TOTAL DECSISION SPACE AN ATTRIBUTE TAKES UP """ 9 return - sum(vk * log2(vk) for vk in V if vk > 0) 10 11 def remainder(attribute, examples): 12 """ REMAINDER EXPLAINS HOW MUCH IS UNDECIDED AFTER AN ATTRIBUTE IS SET """ 13 remain = 0 14 p, n = len(examples[examples['CLASS'] == 1]), len(examples[examples['CLASS'] == 2]) 15 for k in examples[attribute].unique(): 16 ex = examples[[attribute, 'CLASS']][examples[attribute] == k] 17 pk, nk = len(ex[ex['CLASS'] == 1]), len(ex[ex['CLASS'] == 2]) 18 remain += ((pk + nk) / (p + n)) * entropy([pk / (pk + nk), nk / (pk + nk)]) 19 return remain 20 21 def importance(attribute, examples): 22 """ INFORMATION GAIN FORMULA """ 23 p = len(examples[attribute][examples['CLASS'] == 1]) 24 n = len(examples[attribute][examples['CLASS'] == 2]) 25 return entropy([p/(p+n), n/(p+n)]) - remainder(attribute, examples) 26 27 def plurality(examples): 28 return 1 if len(examples['CLASS'][examples['CLASS'] == 1]) > len(examples['CLASS']) / 2 else 2 29 30 def decision_tree(examples, attributes, parent_examples): 31 """ CREATES A DECISION TREE BASED ON A SET OF EXAMPLES AND ATTRIBUTES. """ 32 if examples.empty: return plurality(parent_examples) 33 elif (examples['CLASS'] == 1).all(): return 1 34 elif (examples['CLASS'] == 2).all(): return 2 35 elif attributes.empty: return plurality(examples) 36 37 rating = [importance(a, examples) for a in attributes] 38 A = attributes[rating.index(max(rating))] 39 node = {A: {}} 40 for k in examples[A].unique(): 41 node[A][k] = decision_tree(examples[examples[A] == k], attributes.drop(A), examples) 42 return node 43 44 def classify(tree, example): 45 attr = list(tree.keys())[0] 46 res = tree[attr][example[attr]] 47 if isinstance(res, dict): 48 return classify(res, example) 49 else: 50 return res 51 52 53 if __name__ == "__main__": 54 # Load datasets: 55 training = pd.read_csv(_TRAINING_FILE, header=0) 56 testing = pd.read_csv(_TESTING_FILE, header=0) 57 58 # Build tree: 59 tree = decision_tree(training, training.columns[:-1], None) 60 61 # Test by classifying each dataset: 62 for name, data in {"train":training, "test": testing}.items(): 63 correct = 0 64 for _, example in data.iterrows(): 65 classification = example['CLASS'] 66 result = classify(tree, example.drop('CLASS')) 67 correct += 1 if result == classification else 0 68 print("Accuracy on", name, "set:\t", correct / len(data))
32 - refactor: no-else-return 44 - warning: redefined-outer-name 44 - warning: redefined-outer-name 47 - refactor: no-else-return
1 from django.urls import path 2 from django.conf import settings 3 from django.conf.urls.static import static 4 5 from map.views import MapView 6 from map.api import SpotsApi, SpotApi, RatingsApi, VotesApi 7 8 app_name = 'map' 9 urlpatterns = [ 10 path('', MapView.as_view(), name='index'), 11 12 path('spots/', SpotsApi.as_view()), 13 path('spots/<int:spot_id>/', SpotApi.as_view()), 14 path('spots/<int:spot_id>/ratings/', RatingsApi.as_view()), 15 path('spots/<int:spot_id>/votes/', VotesApi.as_view()), 16 ] 17 18 if settings.DEBUG is True: 19 urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
Clean Code: No Issues Detected
1 # Generated by Django 2.0.1 on 2018-03-06 21:19 2 3 from django.db import migrations 4 5 6 class Migration(migrations.Migration): 7 8 dependencies = [ 9 ('map', '0009_auto_20180305_2215'), 10 ] 11 12 operations = [ 13 migrations.RenameField( 14 model_name='rating', 15 old_name='rating', 16 new_name='rating_type', 17 ), 18 ]
6 - refactor: too-few-public-methods
1 # Generated by Django 2.0.1 on 2018-03-05 22:11 2 3 from django.db import migrations, models 4 5 6 class Migration(migrations.Migration): 7 8 dependencies = [ 9 ('map', '0007_auto_20180305_2139'), 10 ] 11 12 operations = [ 13 migrations.RenameField( 14 model_name='rating', 15 old_name='rating_type', 16 new_name='rating', 17 ), 18 migrations.AddField( 19 model_name='rating', 20 name='score', 21 field=models.IntegerField(default=0), 22 ), 23 ]
6 - refactor: too-few-public-methods
1 from django.db import models 2 from django.core.validators import MaxValueValidator, MinValueValidator 3 4 5 class Spot(models.Model): 6 7 name = models.CharField(max_length=50) 8 description = models.CharField(max_length=500) 9 latitude = models.DecimalField(max_digits=10, decimal_places=7) 10 longitude = models.DecimalField(max_digits=10, decimal_places=7) 11 created = models.DateTimeField(auto_now_add=True) 12 updated = models.DateTimeField(auto_now=True) 13 14 def __str__(self): 15 spot = "Spot %s - %s: %s" % (self.id, self.name, self.description) 16 return spot 17 18 def get_score(self): 19 votes = Vote.objects.filter(spot=self.id) 20 21 score = 0 22 for vote in votes: 23 score += 1 if vote.positive else -1 24 25 return score 26 27 def get_ratings_dict(self): 28 ratings = Rating.objects.filter(spot=self.id) 29 30 ratings_dict = {} 31 for rating in ratings: 32 if rating.rating_type.name in ratings_dict: 33 ratings_dict[rating.rating_type.name] += rating.score 34 else: 35 ratings_dict[rating.rating_type.name] = rating.score 36 37 for rating_type, score in ratings_dict.items(): 38 ratings_dict[rating_type] = round((score / ratings.count()), 2) 39 40 return ratings_dict 41 42 class RatingType(models.Model): 43 44 name = models.CharField(max_length=50) 45 46 def __str__(self): 47 rating_type = self.name 48 return rating_type 49 50 class Rating(models.Model): 51 52 spot = models.ForeignKey(Spot, on_delete=models.CASCADE) 53 rating_type = models.ForeignKey(RatingType, on_delete=models.CASCADE) 54 score = models.IntegerField( 55 validators=[ 56 MaxValueValidator(10), 57 MinValueValidator(1) 58 ] 59 ) 60 61 class Vote(models.Model): 62 63 spot = models.ForeignKey(Spot, on_delete=models.CASCADE) 64 positive = models.BooleanField()
42 - refactor: too-few-public-methods 50 - refactor: too-few-public-methods 61 - refactor: too-few-public-methods
1 # Generated by Django 2.0.1 on 2018-03-05 22:15 2 3 from django.db import migrations, models 4 import django.db.models.deletion 5 6 7 class Migration(migrations.Migration): 8 9 dependencies = [ 10 ('map', '0008_auto_20180305_2211'), 11 ] 12 13 operations = [ 14 migrations.CreateModel( 15 name='Vote', 16 fields=[ 17 ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), 18 ('positive', models.BooleanField()), 19 ('spot', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='map.Spot')), 20 ], 21 ), 22 migrations.AlterField( 23 model_name='rating', 24 name='score', 25 field=models.IntegerField(), 26 ), 27 ]
7 - refactor: too-few-public-methods
1 from django.shortcuts import render 2 from django.views import View 3 4 class MapView(View): 5 def get(self, request): 6 return render(request, 'map/index.html')
4 - refactor: too-few-public-methods
1 from django import forms 2 from django.forms import ModelForm, Textarea 3 4 from map.models import Spot, Rating, Vote 5 6 class SpotForm(ModelForm): 7 class Meta: 8 model = Spot 9 fields = ['name', 'description', 'latitude', 'longitude'] 10 widgets = { 11 'latitude': forms.HiddenInput(), 12 'longitude': forms.HiddenInput(), 13 } 14 15 class RatingForm(ModelForm): 16 class Meta: 17 model = Rating 18 fields = ['spot', 'rating_type', 'score'] 19 widgets = { 20 'spot': forms.HiddenInput(), 21 'rating_type': forms.HiddenInput(), 22 } 23 24 class VoteForm(ModelForm): 25 class Meta: 26 model = Vote 27 fields = ['positive'] 28 widgets = { 29 'positive': forms.HiddenInput(), 30 }
7 - refactor: too-few-public-methods 6 - refactor: too-few-public-methods 16 - refactor: too-few-public-methods 15 - refactor: too-few-public-methods 25 - refactor: too-few-public-methods 24 - refactor: too-few-public-methods 2 - warning: unused-import
1 from abc import ABC, ABCMeta, abstractmethod 2 from django.forms.models import model_to_dict 3 from django.http import HttpResponse, JsonResponse 4 from django.shortcuts import get_object_or_404 5 from django.views import View 6 from django.views.decorators.csrf import csrf_exempt 7 from django.utils.decorators import method_decorator 8 from map.models import Spot 9 from map.models import Vote 10 from map.forms import SpotForm, VoteForm 11 12 class BaseApi(View): 13 __metaclass__ = ABCMeta 14 15 def _response(self, body): 16 response = {'data': body} 17 return JsonResponse(response) 18 19 def _error_response(self, status, error): 20 response = {'error': error} 21 return JsonResponse(response, status=status) 22 23 24 class BaseSpotsApi(BaseApi): 25 __metaclass__ = ABCMeta 26 27 def _spot_to_dict(self, spot): 28 spot_dict = model_to_dict(spot) 29 spot_dict['score'] = spot.get_score() 30 31 return spot_dict 32 33 # @method_decorator(csrf_exempt, name='dispatch') 34 class SpotsApi(BaseSpotsApi): 35 def get(self, request): 36 # TODO: only retrieve nearest spots and make them dynamically load as the map moves 37 nearby_spots = Spot.objects.all() 38 nearby_spots = list(map(self._spot_to_dict, nearby_spots)) 39 40 return self._response(nearby_spots) 41 42 def post(self, request): 43 form = SpotForm(request.POST) 44 45 if form.is_valid(): 46 new_spot = Spot( 47 name=request.POST['name'], 48 description=request.POST['description'], 49 latitude=request.POST['latitude'], 50 longitude=request.POST['longitude'] 51 ) 52 new_spot.save() 53 54 return self._response(self._spot_to_dict(new_spot)) 55 56 return self._error_response(422, 'Invalid input.') 57 58 class SpotApi(BaseSpotsApi): 59 def get(self, request, spot_id): 60 spot = get_object_or_404(Spot, pk=spot_id) 61 62 return self._response(self._spot_to_dict(spot)) 63 64 # @method_decorator(csrf_exempt, name='dispatch') 65 class RatingsApi(BaseApi): 66 def get(self, request, spot_id): 67 spot = get_object_or_404(Spot, pk=spot_id) 68 69 ratings = Rating.objects.filter(spot=spot_id, rating_type=rating_type.id) 70 71 pass 72 73 def post(self, request, spot_id): 74 spot = get_object_or_404(Spot, pk=spot_id) 75 76 pass 77 78 # @method_decorator(csrf_exempt, name='dispatch') 79 class VotesApi(BaseApi): 80 def get(self, request, spot_id): 81 spot = get_object_or_404(Spot, pk=spot_id) 82 83 return self._response(spot.get_score()) 84 85 def post(self, request, spot_id): 86 spot = get_object_or_404(Spot, pk=spot_id) 87 form = VoteForm(request.POST) 88 89 if form.is_valid(): 90 new_vote = Vote(spot=spot, positive=request.POST['positive']) 91 new_vote.save() 92 93 return self._response(model_to_dict(new_vote)) 94 95 return self._error_response(422, 'Invalid input.')
36 - warning: fixme 12 - refactor: too-few-public-methods 24 - refactor: too-few-public-methods 35 - warning: unused-argument 59 - warning: unused-argument 58 - refactor: too-few-public-methods 69 - error: undefined-variable 69 - error: undefined-variable 71 - warning: unnecessary-pass 66 - warning: unused-argument 67 - warning: unused-variable 69 - warning: unused-variable 76 - warning: unnecessary-pass 73 - warning: unused-argument 74 - warning: unused-variable 80 - warning: unused-argument 1 - warning: unused-import 1 - warning: unused-import 3 - warning: unused-import 6 - warning: unused-import 7 - warning: unused-import
1 # Generated by Django 2.0.1 on 2018-03-05 21:39 2 3 from django.db import migrations 4 5 6 class Migration(migrations.Migration): 7 8 dependencies = [ 9 ('map', '0006_rating'), 10 ] 11 12 operations = [ 13 migrations.RenameField( 14 model_name='rating', 15 old_name='rating_type_id', 16 new_name='rating_type', 17 ), 18 migrations.RenameField( 19 model_name='rating', 20 old_name='spot_id', 21 new_name='spot', 22 ), 23 ]
6 - refactor: too-few-public-methods
1 # Generated by Django 2.0.1 on 2018-03-05 21:31 2 3 from django.db import migrations, models 4 5 6 class Migration(migrations.Migration): 7 8 dependencies = [ 9 ('map', '0004_ratingtype'), 10 ] 11 12 operations = [ 13 migrations.AlterField( 14 model_name='spot', 15 name='latitude', 16 field=models.DecimalField(decimal_places=7, max_digits=10), 17 ), 18 migrations.AlterField( 19 model_name='spot', 20 name='longitude', 21 field=models.DecimalField(decimal_places=7, max_digits=10), 22 ), 23 ]
6 - refactor: too-few-public-methods
1 # Generated by Django 2.0 on 2017-12-17 18:04 2 3 from django.db import migrations, models 4 5 6 class Migration(migrations.Migration): 7 8 initial = True 9 10 dependencies = [ 11 ] 12 13 operations = [ 14 migrations.CreateModel( 15 name='Spot', 16 fields=[ 17 ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), 18 ('name', models.CharField(max_length=50)), 19 ('description', models.CharField(max_length=500)), 20 ('latitude', models.DecimalField(decimal_places=6, max_digits=9)), 21 ('longitude', models.DecimalField(decimal_places=6, max_digits=9)), 22 ], 23 ), 24 ]
6 - refactor: too-few-public-methods
1 """ 2 Heart attack detection in colour images using convolutional neural networks 3 4 This code make a neural network to detect infarcts 5 Written by Gabriel Rojas - 2019 6 Copyright (c) 2019 G0 S.A.S. 7 Licensed under the MIT License (see LICENSE for details) 8 """ 9 10 11 from os import scandir 12 import numpy as np 13 from keras.models import load_model 14 from keras.preprocessing.image import load_img, img_to_array 15 from keras.preprocessing.image import ImageDataGenerator 16 17 # === Configuration vars === 18 # Path of image folder 19 INPUT_PATH_TEST = "./dataset/test/" 20 MODEL_PATH = "./model/" + "model.h5" # Full path of model 21 22 # Test configurations 23 WIDTH, HEIGHT = 256, 256 # Size images to train 24 CLASS_COUNTING = True # Test class per class and show details each 25 BATCH_SIZE = 32 # How many images at the same time, change depending on your GPU 26 CLASSES = ['00None', '01Infarct'] # Classes to detect. they most be in same position with output vector 27 # === ===== ===== ===== === 28 29 print("Loading model from:", MODEL_PATH) 30 NET = load_model(MODEL_PATH) 31 NET.summary() 32 33 def predict(file): 34 """ 35 Returns values predicted 36 """ 37 x = load_img(file, target_size=(WIDTH, HEIGHT)) 38 x = img_to_array(x) 39 x = np.expand_dims(x, axis=0) 40 array = NET.predict(x) 41 result = array[0] 42 answer = np.argmax(result) 43 return CLASSES[answer], result 44 45 print("\n======= ======== ========") 46 47 if CLASS_COUNTING: 48 folders = [arch.name for arch in scandir(INPUT_PATH_TEST) if arch.is_file() == False] 49 50 generalSuccess = 0 51 generalCases = 0 52 for f in folders: 53 files = [arch.name for arch in scandir(INPUT_PATH_TEST + f) if arch.is_file()] 54 clase = f.replace(INPUT_PATH_TEST, '') 55 print("Class: ", clase) 56 indivSuccess = 0 57 indivCases = 0 58 for a in files: 59 p, r = predict(INPUT_PATH_TEST + f + "/" + a) 60 if p == clase: 61 indivSuccess = indivSuccess + 1 62 #elif p == '00None': 63 # print(f + "/" + a) 64 indivCases = indivCases + 1 65 66 print("\tCases", indivCases, "Success", indivSuccess, "Rate", indivSuccess/indivCases) 67 68 generalSuccess = generalSuccess + indivSuccess 69 generalCases = generalCases + indivCases 70 71 print("Totals: ") 72 print("\tCases", generalCases, "Success", generalSuccess, "Rate", generalSuccess/generalCases) 73 else: 74 test_datagen = ImageDataGenerator() 75 test_gen = test_datagen.flow_from_directory( 76 INPUT_PATH_TEST, 77 target_size=(HEIGHT, WIDTH), 78 batch_size=BATCH_SIZE, 79 class_mode='categorical') 80 scoreSeg = NET.evaluate_generator(test_gen, 100) 81 progress = 'loss: {}, acc: {}, mse: {}'.format( 82 round(float(scoreSeg[0]), 4), 83 round(float(scoreSeg[1]), 4), 84 round(float(scoreSeg[2]), 4) 85 ) 86 print(progress) 87 88 print("======= ======== ========")
Clean Code: No Issues Detected
1 """ 2 Heart attack detection in colour images using convolutional neural networks 3 4 This code make a neural network to detect infarcts 5 Written by Gabriel Rojas - 2019 6 Copyright (c) 2019 G0 S.A.S. 7 Licensed under the MIT License (see LICENSE for details) 8 """ 9 10 import os 11 import sys 12 from time import time 13 import tensorflow 14 import keras 15 from keras import backend as K 16 from keras.models import Sequential 17 from keras.optimizers import SGD 18 from keras.preprocessing.image import ImageDataGenerator 19 from keras.layers import Dropout, Flatten, Dense, Activation 20 from keras.layers import Convolution2D, MaxPooling2D, ZeroPadding2D 21 22 # === Configuration vars === 23 # Path of image folder (use slash at the end) 24 INPUT_PATH_TRAIN = "./dataset/train/" 25 INPUT_PATH_VAL = "./dataset/val/" 26 INPUT_PATH_TEST = "./dataset/test/" 27 OUTPUT_DIR = "./model/" 28 29 # Checkpoints 30 EPOCH_CHECK_POINT = 2 # How many epoch til save next checkpoint 31 NUM_CHECK_POINT = 10 # How many epoch will be saved 32 KEEP_ONLY_LATEST = False# Keeping only the last checkpoint 33 34 # Train configurations 35 WIDTH, HEIGHT = 256, 256# Size images to train 36 STEPS = 500 # How many steps per epoch 37 VALIDATION_STEPS = 100 # How many steps per next validation 38 BATCH_SIZE = 48 # How many images at the same time, change depending on your GPU 39 LR = 0.003 # Learning rate 40 CLASSES = 2 # Don't chage, 0=Infarct, 1=Normal 41 # === ===== ===== ===== === 42 43 if not os.path.exists(OUTPUT_DIR): 44 os.mkdir(OUTPUT_DIR) 45 46 K.clear_session() 47 48 train_datagen = ImageDataGenerator() 49 val_datagen = ImageDataGenerator() 50 test_datagen = ImageDataGenerator() 51 52 train_gen = train_datagen.flow_from_directory( 53 INPUT_PATH_TRAIN, 54 target_size=(HEIGHT, WIDTH), 55 batch_size=BATCH_SIZE, 56 class_mode='categorical') 57 val_gen = val_datagen.flow_from_directory( 58 INPUT_PATH_VAL, 59 target_size=(HEIGHT, WIDTH), 60 batch_size=BATCH_SIZE, 61 class_mode='categorical') 62 test_gen = test_datagen.flow_from_directory( 63 INPUT_PATH_TEST, 64 target_size=(HEIGHT, WIDTH), 65 batch_size=BATCH_SIZE, 66 class_mode='categorical') 67 68 NET = Sequential() 69 NET.add(Convolution2D(64, kernel_size=(3 ,3), padding ="same", input_shape=(256, 256, 3), activation='relu')) 70 NET.add(MaxPooling2D((3,3), strides=(3,3))) 71 NET.add(Convolution2D(128, kernel_size=(3, 3), activation='relu')) 72 NET.add(MaxPooling2D((3,3), strides=(3,3))) 73 NET.add(Convolution2D(256, kernel_size=(3, 3), activation='relu')) 74 NET.add(MaxPooling2D((2,2), strides=(2,2))) 75 NET.add(Convolution2D(512, kernel_size=(3, 3), activation='relu')) 76 NET.add(MaxPooling2D((2,2), strides=(2,2))) 77 NET.add(Convolution2D(1024, kernel_size=(3, 3), activation='relu')) 78 NET.add(MaxPooling2D((2,2), strides=(2,2))) 79 NET.add(Dropout(0.3)) 80 NET.add(Flatten()) 81 82 for _ in range(5): 83 NET.add(Dense(128, activation='relu')) 84 NET.add(Dropout(0.5)) 85 86 for _ in range(5): 87 NET.add(Dense(128, activation='relu')) 88 NET.add(Dropout(0.5)) 89 90 for _ in range(5): 91 NET.add(Dense(128, activation='relu')) 92 NET.add(Dropout(0.5)) 93 94 NET.add(Dense(CLASSES, activation='softmax')) 95 96 sgd = SGD(lr=LR, decay=1e-4, momentum=0.9, nesterov=True) 97 98 NET.compile(optimizer=sgd, 99 loss='binary_crossentropy', 100 metrics=['acc', 'mse']) 101 102 NET.summary() 103 104 for i in range(NUM_CHECK_POINT): 105 NET.fit_generator( 106 train_gen, 107 steps_per_epoch=STEPS, 108 epochs=EPOCH_CHECK_POINT, 109 validation_data=val_gen, 110 validation_steps=VALIDATION_STEPS, 111 verbose=1 112 ) 113 114 print('Saving model: {:02}.'.format(i)) 115 NET.save(OUTPUT_DIR + "{:02}_model.h5".format(i))
11 - warning: unused-import 12 - warning: unused-import 13 - warning: unused-import 14 - warning: unused-import 19 - warning: unused-import 20 - warning: unused-import
1 from flask import Flask, render_template, request 2 from flask_sqlalchemy import SQLAlchemy 3 4 import pymysql 5 pymysql.install_as_MySQLdb() 6 7 app = Flask(__name__) 8 app.config['SQLALCHEMY_DATABASE_URI']="mysql://root:horsin@123@localhost:3306/flask" 9 app.config['SQLALCHEMY_COMMIT_ON_TEARDOWN'] = True 10 11 db = SQLAlchemy(app) 12 13 class loginUser(db.Model): 14 __tablename__ = "loginUser" 15 id = db.Column(db.Integer, primary_key=True, autoincrement=True) 16 username = db.Column(db.String(30), unique=True) 17 passwd = db.Column(db.String(120)) 18 19 def __init__(self, username, passwd): 20 self.username = username 21 self.passwd = passwd 22 23 def __repr__(self): 24 return "<loginUser: %r>" % self.username 25 26 db.create_all() 27 28 @app.route('/login') 29 def login_views(): 30 return render_template('06-login.html') 31 32 @app.route('/server', methods=['POST']) 33 def server_views(): 34 username = request.form['username'] 35 user = loginUser.query.filter_by(username=username).first() 36 if user: 37 return "找到用户名为 %s 的账户" % user.username 38 else: 39 return "找不到该用户!" 40 41 if __name__ == '__main__': 42 app.run(debug=True)
13 - refactor: too-few-public-methods 36 - refactor: no-else-return
1 from flask import Flask, render_template 2 from flask_sqlalchemy import SQLAlchemy 3 import json 4 5 import pymysql 6 pymysql.install_as_MySQLdb() 7 8 app = Flask(__name__) 9 app.config["SQLALCHEMY_DATABASE_URI"]="mysql://root:horsin@123@localhost:3306/flask" 10 app.config['SQLALCHEMY_COMMIT_ON_TEARDOWN'] = True 11 12 db = SQLAlchemy(app) 13 14 class Users(db.Model): 15 __tablename__ = "users" 16 id = db.Column(db.Integer,primary_key=True) 17 uname = db.Column(db.String(50)) 18 upwd = db.Column(db.String(50)) 19 realname = db.Column(db.String(30)) 20 21 # 将当前对象中的所有属性封装到一个字典中 22 def to_dict(self): 23 dic = { 24 "id" : self.id, 25 "uname" : self.uname, 26 "upwd" : self.upwd, 27 "realname" : self.realname 28 } 29 return dic 30 31 def __init__(self,uname,upwd,realname): 32 self.uname = uname 33 self.upwd = upwd 34 self.realname = realname 35 36 def __repr__(self): 37 return "<Users : %r>" % self.uname 38 39 @app.route('/json') 40 def json_views(): 41 # list = ["Fan Bingbing","Li Chen","Cui Yongyuan"] 42 dic = { 43 'name' : 'Bingbing Fan', 44 'age' : 40, 45 'gender' : "female" 46 } 47 uList = [ 48 { 49 'name' : 'Bingbing Fan', 50 'age' : 40, 51 'gender' : "female" 52 }, 53 { 54 'name' : 'Li Chen', 55 "age" : 40, 56 "gender" : 'male' 57 } 58 ] 59 # jsonStr = json.dumps(list) 60 jsonStr = json.dumps(dic) 61 return jsonStr 62 63 @app.route('/page') 64 def page_views(): 65 return render_template('01-page.html') 66 67 @app.route('/json_users') 68 def json_users(): 69 # user = Users.query.filter_by(id=1).first() 70 # print(user) 71 # return json.dumps(user.to_dict()) 72 users = Users.query.filter_by(id=1).all() 73 print(users) 74 list = [] 75 for user in users: 76 list.append(user.to_dict()) 77 return json.dumps(list) 78 79 @app.route('/show_info') 80 def show_views(): 81 return render_template('02-user.html') 82 83 @app.route('/server') 84 def server_views(): 85 users = Users.query.filter().all() 86 list = [] 87 for user in users: 88 list.append(user.to_dict()) 89 return json.dumps(list) 90 91 @app.route('/load') 92 def load_views(): 93 return render_template('04-load.html') 94 95 @app.route('/load_server') 96 def load_server(): 97 return "这是使用jquery的load方法发送的请求" 98 99 if __name__ == "__main__": 100 app.run(debug=True)
47 - warning: unused-variable 74 - warning: redefined-builtin 86 - warning: redefined-builtin
1 from flask import Flask, render_template, request 2 from flask_sqlalchemy import SQLAlchemy 3 import json 4 5 import pymysql 6 pymysql.install_as_MySQLdb() 7 8 app = Flask(__name__) 9 app.config['SQLALCHEMY_DATABASE_URI']="mysql://root:horsin@123@localhost:3306/flask" 10 app.config['SQLALCHEMY_COMMIT_ON_TEARDOWN']=True 11 12 db = SQLAlchemy(app) 13 14 class Users(db.Model): 15 __tablename__ = "loginUser" 16 id = db.Column(db.Integer, primary_key=True, autoincrement=True) 17 username = db.Column(db.String(30), unique=True) 18 passwd = db.Column(db.String(120)) 19 20 def __init__(self, username): 21 self.username = username 22 23 def to_dict(self): 24 dic = { 25 "username" : self.username, 26 "passwd" : self.passwd 27 } 28 return dic 29 30 def __repr__(self): 31 return "<Users : %r>" % self.username 32 33 class Province(db.Model): 34 __tablename__="province" 35 id = db.Column(db.Integer, primary_key=True, autoincrement=True) 36 proname = db.Column(db.String(30)) 37 cities = db.relationship("City", backref="province", lazy="dynamic") 38 39 def __init__(self, proname): 40 self.proname = proname 41 42 def __repr__(self): 43 return "<Province : %r>" % self.proname 44 45 def to_dict(self): 46 dic = { 47 "id" : self.id, 48 "proname" : self.proname 49 } 50 return dic 51 52 class City(db.Model): 53 __tablename__="city" 54 id = db.Column(db.Integer, primary_key=True, autoincrement=True) 55 cityname = db.Column(db.String(30)) 56 pro_id = db.Column(db.Integer, db.ForeignKey("province.id")) 57 58 def __init__(self, cityname, pro_id): 59 self.cityname = cityname 60 self.pro_id = pro_id 61 62 def __repr__(self): 63 return "<City : %r>" % self.cityname 64 65 def to_dict(self): 66 dic = { 67 "id" : self.id, 68 "cityname" : self.cityname, 69 "pro_id" : self.pro_id 70 } 71 return dic 72 73 @app.route('/01-ajax') 74 def ajax_views(): 75 return render_template('01-ajax.html') 76 77 @app.route('/01-server') 78 def server_01(): 79 uname = request.args.get("username") 80 print(uname) 81 user = Users.query.filter_by(username=uname).first() 82 if user: 83 return json.dumps(user.to_dict()) 84 else: 85 dic = { 86 'status' : '0', 87 'msg' : '没有查到任何信息!' 88 } 89 return dic 90 91 @app.route('/02-province') 92 def province_views(): 93 return render_template('03-province.html') 94 95 @app.route('/loadPro') 96 def loadPro_views(): 97 provinces = Province.query.all() 98 list = [] 99 for province in provinces: 100 list.append(province.to_dict()) 101 return json.dumps(list) 102 103 @app.route('/loadCity') 104 def loadCity_views(): 105 pid = request.args.get("pid") 106 cities = City.query.filter_by(pro_id=pid).all() 107 list = [] 108 for city in cities: 109 list.append(city.to_dict()) 110 return json.dumps(list) 111 112 @app.route('/crossdomain') 113 def crossdomain_views(): 114 return render_template('04-crossdomain.html') 115 116 @app.route('/02-server') 117 def server_02(): 118 return "show('这是server_02响应回来的数据')" 119 120 if __name__ == '__main__': 121 app.run(debug=True) 122 123 124 125 126
82 - refactor: no-else-return 98 - warning: redefined-builtin 107 - warning: redefined-builtin
1 from flask import Flask, render_template, request 2 from flask_sqlalchemy import SQLAlchemy 3 import json 4 5 import pymysql 6 pymysql.install_as_MySQLdb() 7 8 app = Flask(__name__) 9 app.config["SQLALCHEMY_DATABASE_URI"]="mysql://root:horsin@123@localhost:3306/flask" 10 app.config['SQLALCHEMY_COMMIT_ON_TEARDOWN'] = True 11 12 db = SQLAlchemy(app) 13 14 class Province(db.Model): 15 __tablename__ = "province" 16 id = db.Column(db.Integer, primary_key=True, autoincrement=True) 17 proname = db.Column(db.String(30), nullable=False) 18 cities = db.relationship("City", backref="province", lazy="dynamic") 19 20 def __init__(self, proname): 21 self.proname = proname 22 23 def to_dict(self): 24 dic = { 25 'id' : self.id, 26 'proname' : self.proname 27 } 28 return dic 29 30 def __repr__(self): 31 return "<Province : %r>" % self.proname 32 33 class City(db.Model): 34 __tablename__ = "city" 35 id = db.Column(db.Integer, primary_key=True, autoincrement=True) 36 cityname = db.Column(db.String(30), nullable=False) 37 pro_id = db.Column(db.Integer, db.ForeignKey("province.id")) 38 39 def __init__(self, cityname, pro_id): 40 self.cityname = cityname 41 self.pro_id = pro_id 42 43 def to_dict(self): 44 dic = { 45 'id' : self.id, 46 'cityname' : self.cityname, 47 'pro_id' : self.pro_id 48 } 49 return dic 50 51 def __repr__(self): 52 return "<City : %r>" % self.cityname 53 54 db.create_all() 55 56 @app.route('/province') 57 def province_views(): 58 return render_template('03-province.html') 59 60 @app.route('/loadPro') 61 def loadPro_views(): 62 provinces = Province.query.all() 63 list = [] 64 for pro in provinces: 65 list.append(pro.to_dict()) 66 return json.dumps(list) 67 68 @app.route('/loadCity') 69 def loadCity_view(): 70 pid = request.args.get('pid') 71 cities = City.query.filter_by(pro_id=pid).all() 72 list = [] 73 for city in cities: 74 list.append(city.to_dict()) 75 return list 76 77 if __name__ == "__main__": 78 app.run(debug=True)
63 - warning: redefined-builtin 72 - warning: redefined-builtin
1 from flask import Flask, render_template, request 2 3 app = Flask(__name__) 4 5 @app.route('/01-getxhr') 6 def getxhr(): 7 return render_template('01-getxhr.html') 8 9 @app.route('/02-get') 10 def get_views(): 11 return render_template('02-get.html') 12 13 @app.route('/03-get') 14 def get03_view(): 15 return render_template('03-get.html') 16 17 @app.route('/02-server') 18 def server02_views(): 19 return "这是AJAX的请求" 20 21 @app.route('/03-server') 22 def server03_views(): 23 uname = request.args.get('uname') 24 return "欢迎: "+uname 25 26 @app.route('/04-post') 27 def post_views(): 28 return render_template('04-post.html') 29 30 @app.route('/04-server', methods=['POST']) 31 def server04_views(): 32 uname = request.form['uname'] 33 return uname 34 35 @app.route('/05-post') 36 def post05_views(): 37 return render_template('05-post.html') 38 39 if __name__ == '__main__': 40 app.run(debug=True)
Clean Code: No Issues Detected
1 import cv2 2 import numpy as np 3 4 # minDist = 120 5 # param1 = 50 6 # param2 = 30 7 # minRadius = 5 8 # maxRadius = 0 9 10 def circleScan(frame, camX, camY): 11 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) 12 blurred = cv2.GaussianBlur(gray,(11,11),0) 13 circles = cv2.HoughCircles(blurred, cv2.HOUGH_GRADIENT, 1,120, param1=220, param2=30, minRadius=50, maxRadius=300) 14 15 # circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, minDist, param1=param1, param2=param2, minRadius=minRadius, maxRadius=maxRadius) 16 if circles is not None: 17 circles = np.round(circles[0, :]).astype("int") 18 for (x, y, r) in circles: 19 cv2.circle(frame, (x, y), r, (0, 255, 0), 4) 20 cv2.rectangle(frame, (x - 5, y - 5), 21 (x + 5, y + 5), (0, 128, 255), -1) 22 x = x - camX/2 23 y = (y - camY/2) * -1 24 return [x,y] 25 26 27 28 # circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1.2, 100)
10 - refactor: inconsistent-return-statements
1 import RPi.GPIO as GPIO 2 import time 3 import os 4 5 GPIO.setmode(GPIO.BCM) 6 GPIO.setup("1",GPIO.IN) 7 GPIO.setup("2",GPIO.IN) 8 9 input = GPIO.input("1") 10 input = GPIO.input("2") 11 12 13 while True: 14 inputValue = GPIO.input("1") 15 if (inputValue == False): 16 print("1. Görev") 17 os.system('..\\daire\\main.py') # Daha verimli 18 # if keyboard.is_pressed("2"): 19 # os.system('..\\dikdörtgen\\main.py') # Daha verimli 20 # if keyboard.is_pressed("3"): 21 # print("3. Görev") 22 # # os.startfile('..\\daire\\main.py')
14 - warning: bad-indentation 15 - warning: bad-indentation 16 - warning: bad-indentation 17 - warning: bad-indentation 9 - warning: redefined-builtin 1 - refactor: consider-using-from-import 2 - warning: unused-import
1 import keyboard 2 import os 3 4 while True: 5 if keyboard.is_pressed("1"): 6 print("1. Görev") 7 os.system('..\\daire\\main.py') 8 if keyboard.is_pressed("2"): 9 os.system('..\\dikdörtgen\\main.py') 10 if keyboard.is_pressed("3"): 11 print("3. Görev")
Clean Code: No Issues Detected
1 import cv2 2 from daire import circleScan 3 import keyboard 4 import os 5 6 cameraX = 800 7 cameraY = 600 8 9 cap = cv2.VideoCapture(0) 10 # Cemberin merkezinin ekranın orta noktaya uzaklıgını x ve y cinsinden uzaklıgı 11 while True: 12 if keyboard.is_pressed("2"): 13 print("2. Görev") 14 cap.release() 15 cv2.destroyAllWindows() 16 os.system('..\\dikdörtgen\\main.py') # Daha verimli 17 break 18 if keyboard.is_pressed("3"): 19 cap.release() 20 cv2.destroyAllWindows() 21 print("3. Görev") 22 break 23 24 ret, frame = cap.read() 25 frame = cv2.resize(frame, (cameraX, cameraY)) 26 data = circleScan(frame, cameraX, cameraY) 27 if data is not None: 28 print("X : " ,data[0] , " Y : " , data[1]) 29 30 cv2.imshow("output", frame) 31 32 if cv2.waitKey(1) & 0xFF == ord('q'): 33 break 34 cap.release() 35 cv2.destroyAllWindows()
Clean Code: No Issues Detected
1 import cv2 2 # import numpy as np 3 import keyboard 4 import os 5 6 cameraX = 800 7 cameraY = 600 8 9 cap = cv2.VideoCapture(0) 10 11 while(True): 12 if keyboard.is_pressed("1"): 13 print("1. Görev Dikdortgende") 14 cap.release() 15 cv2.destroyAllWindows() 16 os.system('..\\daire\\main.py') # Daha verimli 17 break 18 if keyboard.is_pressed("3"): 19 print("3. Görev Dikdortgende") 20 break 21 22 ret, image = cap.read() 23 image = cv2.resize(image, (cameraX, cameraY)) 24 original = image.copy() 25 cv2.rectangle(original, (395, 295), 26 (405, 305), (0, 128, 50), -1) 27 blurred = cv2.medianBlur(image, 3) 28 # blurred = cv2.GaussianBlur(hsv,(3,3),0) 29 30 hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV) 31 mask = cv2.inRange(hsv,(15,0,0), (29, 255, 255)) 32 cnts,_ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) 33 34 minArea = [] 35 minC = [] 36 for c in cnts: 37 area = cv2.contourArea(c) 38 if area > 400: 39 approx = cv2.approxPolyDP(c, 0.125 * cv2.arcLength(c, True), True) 40 if(len(approx) == 4): 41 minArea.append(area) 42 minC.append([area, c]) 43 if minArea: 44 minArea.sort() 45 print(minArea) 46 mArea = minArea[0] 47 mC = [] 48 for x in minC: 49 if x[0] == mArea: 50 mC = x[1] 51 52 M = cv2.moments(mC) 53 cx = int(M['m10']/M['m00']) 54 cy = int(M['m01']/M['m00']) 55 56 x = cx - cameraX/2 57 y = (cy - cameraY/2) * -1 58 print(cx, cy , x , y) 59 cv2.rectangle(original, (cx - 5, cy - 5), 60 (cx + 5, cy + 5), (0, 128, 255), -1) 61 cv2.drawContours(original, [approx], 0, (0, 0, 255), 5) 62 63 cv2.imshow('mask', mask) 64 cv2.imshow('original', original) 65 66 if cv2.waitKey(1) & 0xFF == ord('q'): 67 cap.release() 68 break 69 70 cv2.destroyAllWindows()
Clean Code: No Issues Detected
1 import cv2 as cv 2 import numpy as np 3 import sys 4 from matplotlib import pyplot as plt 5 6 def main(): 7 square = cv.imread('./img/square.png') 8 ball = cv.imread('./img/ball.png') 9 mask = cv.imread('./img/mask2.png') 10 11 square_gray = cv.cvtColor(square, cv.COLOR_BGR2GRAY) 12 ball_gray = cv.cvtColor(ball, cv.COLOR_BGR2GRAY) 13 14 args = sys.argv 15 if (len(args) > 1): 16 if (args[1] == 'add'): 17 title = 'Sum' 18 image = add(square, ball) 19 elif (args[1] == 'sub'): 20 title = 'Subtraction' 21 image = sub(square, ball) 22 elif (args[1] == 'mult'): 23 title = 'Multiplication' 24 image = mult(square, ball) 25 elif (args[1] == 'div'): 26 title = 'Division' 27 image = div(square, ball) 28 elif (args[1] == 'and'): 29 title = 'And operation' 30 image = andF(square, ball) 31 elif (args[1] == 'or'): 32 title = 'Or operation' 33 image = orF(square, ball) 34 elif (args[1] == 'xor'): 35 title = 'Xor operation' 36 image = xorF(square, ball) 37 elif (args[1] == 'not'): 38 title = 'Not operation' 39 image = notF(square, ball) 40 elif (args[1] == 'blur'): 41 title = 'Blur' 42 image = blur(mask) 43 elif (args[1] == 'box'): 44 title = 'Box filter' 45 image = box(mask) 46 elif (args[1] == 'median'): 47 title = 'Median filter' 48 image = median(mask) 49 elif (args[1] == 'dd'): 50 title = '2D filter' 51 image = dd(mask) 52 elif (args[1] == 'gaussian'): 53 title = 'Gaussian filter' 54 image = gaussian(mask) 55 elif (args[1] == 'bilateral'): 56 title = 'Bilateral filter' 57 image = bilateral(mask) 58 else: 59 print('(!) -- Error - no operation called') 60 exit(0) 61 62 if (len(args) > 2 and args[2] == 'special'): 63 original = mask if args[1] == 'blur' or args[1] == 'box' or args[1] == 'median' or args[1] == 'dd' or args[1] == 'gaussian' or args[1] == 'bilateral' else square 64 plt.subplot(121),plt.imshow(original),plt.title('Original') 65 plt.xticks([]), plt.yticks([]) 66 plt.subplot(122),plt.imshow(image),plt.title(title) 67 plt.xticks([]), plt.yticks([]) 68 plt.show() 69 else: 70 cv.imshow(title, image) 71 cv.waitKey(15000) 72 cv.destroyAllWindows() 73 else: 74 print('(!) -- Error - no operation called') 75 exit(0) 76 77 def add(image1, image2): 78 # return cv.add(image1, image2, 0) 79 return cv.addWeighted(image1, 0.7, image2, 0.3, 0) 80 81 def sub(image1, image2): 82 return cv.subtract(image1, image2, 0) 83 84 def mult(image1, image2): 85 return cv.multiply(image1, image2) 86 87 def div(image1, image2): 88 return cv.divide(image1, image2) 89 90 def andF(image1, image2): 91 return cv.bitwise_and(image1, image2) 92 93 def orF(image1, image2): 94 return cv.bitwise_or(image1, image2) 95 96 def xorF(image1, image2): 97 return cv.bitwise_xor(image1, image2) 98 99 def notF(image1, image2): 100 return cv.bitwise_not(image1) 101 102 def blur(image1): 103 return cv.blur(image1, (5, 5)) 104 105 def box(image1): 106 return cv.boxFilter(image1, 50, (5, 5), False) 107 108 def median(image1): 109 return cv.medianBlur(image1, 5) 110 111 def dd(image1): 112 kernel = np.ones((5,5),np.float32)/25 113 return cv.filter2D(image1, -1, kernel) 114 115 def gaussian(image1): 116 return cv.GaussianBlur(image1, (5, 5), 0) 117 118 def bilateral(image1): 119 return cv.bilateralFilter(image1, 9, 75, 75) 120 121 if __name__ == '__main__': 122 main()
60 - refactor: consider-using-sys-exit 64 - warning: expression-not-assigned 65 - warning: expression-not-assigned 66 - warning: expression-not-assigned 67 - warning: expression-not-assigned 75 - refactor: consider-using-sys-exit 6 - refactor: too-many-branches 6 - refactor: too-many-statements 11 - warning: unused-variable 12 - warning: unused-variable 99 - warning: unused-argument
1 """ 2 Sudoku Solution Validator 3 http://www.codewars.com/kata/529bf0e9bdf7657179000008/train/python 4 """ 5 6 def validSolution(board): 7 test = range(1,10,1) 8 def tester(alist): 9 return set(test)==set(alist) 10 11 for i in range(len(board)): 12 tem = board[i] 13 if not tester(tem): 14 return False 15 16 17 for i in range(len(board[0])): 18 if not tester([alist[i] for alist in board]): 19 return False 20 21 22 for i in range(3): 23 for j in range(3): 24 if not tester(sum([alist[j*3:j*3+3] for alist in board[i*3:i*3+3]] , [])): 25 return False 26 27 return True 28 29 30 boardOne = [[5, 3, 4, 6, 7, 8, 9, 1, 2], 31 [6, 7, 2, 1, 9, 0, 3, 4, 8], 32 [1, 0, 0, 3, 4, 2, 5, 6, 0], 33 [8, 5, 9, 7, 6, 1, 0, 2, 0], 34 [4, 2, 6, 8, 5, 3, 7, 9, 1], 35 [7, 1, 3, 9, 2, 4, 8, 5, 6], 36 [9, 0, 1, 5, 3, 7, 2, 1, 4], 37 [2, 8, 7, 4, 1, 9, 6, 3, 5], 38 [3, 0, 0, 4, 8, 1, 1, 7, 9]] 39 40 41 boardTwo =[[5, 3, 4, 6, 7, 8, 9, 1, 2], 42 [6, 7, 2, 1, 9, 5, 3, 4, 8], 43 [1, 9, 8, 3, 4, 2, 5, 6, 7], 44 [8, 5, 9, 7, 6, 1, 4, 2, 3], 45 [4, 2, 6, 8, 5, 3, 7, 9, 1], 46 [7, 1, 3, 9, 2, 4, 8, 5, 6], 47 [9, 6, 1, 5, 3, 7, 2, 8, 4], 48 [2, 8, 7, 4, 1, 9, 6, 3, 5], 49 [3, 4, 5, 2, 8, 6, 1, 7, 9]] 50 51 52 print validSolution(boardOne) 53 print validSolution(boardTwo)
52 - error: syntax-error
1 """ 2 Validate Sudoku with size `NxN` 3 http://www.codewars.com/kata/540afbe2dc9f615d5e000425/train/python 4 """ 5
Clean Code: No Issues Detected
1 """ 2 Vigenere Autokey Cipher Helper 3 http://www.codewars.com/kata/vigenere-autokey-cipher-helper 4 """ 5 6 class VigenereAutokeyCipher: 7 def __init__(self, key, alphabet): 8 self.key = key 9 self.alphabet = alphabet 10 11 def code(self, text, direction): 12 13 toText = list(text) 14 result = [] 15 newKey = filter(lambda x: (x in self.alphabet) == True, list(self.key)) #+ filter(lambda x: (x in self.alphabet) == True, toEncode) 16 17 #print 'new' ,newKey 18 j = 0 19 for i in range(len(toText)): 20 #print i ,self.key[i%(len(self.key))] 21 if toText[i] in self.alphabet: 22 if direction: 23 newKey.append(toText[i]) 24 result.append(self.alphabet[(self.alphabet.index(toText[i]) + self.alphabet.index(newKey[j]))%len(self.alphabet)]) 25 else: 26 result.append(self.alphabet[(self.alphabet.index(toText[i]) - self.alphabet.index(newKey[j]))%len(self.alphabet)]) 27 newKey.append(result[-1]) 28 j += 1 29 else: 30 result.append(toText[i]) 31 return ''.join(result) 32 33 34 def encode(self, toEncode): 35 return self.code(toEncode,1) 36 37 38 39 def decode(self, toDecode): 40 return self.code(toDecode, 0) 41 42 43 def main(): 44 alphabet = 'abcdefghijklmnopqrstuvwxyz' 45 #alphabet = 'abcdefgh' 46 key = 'password' 47 tester = VigenereAutokeyCipher(key,alphabet) 48 49 print tester.encode('codewars') 50 print tester.encode('amazingly few discotheques provide jukeboxes') 51 print 'pmsrebxoy rev lvynmylatcwu dkvzyxi bjbswwaib' 52 53 print tester.decode('pmsrebxoy rev lvynmylatcwu dkvzyxi bjbswwaib') 54 print 'amazingly few discotheques provide jukeboxes' 55 56 if __name__ == '__main__': 57 main()
49 - error: syntax-error
1 ''' 2 3 http://www.codewars.com/kata/53d3173cf4eb7605c10001a8/train/python 4 5 Write a function that returns all of the sublists of a list or Array. 6 Your function should be pure; it cannot modify its input. 7 8 Example: 9 power([1,2,3]) 10 # => [[], [1], [2], [1, 2], [3], [1, 3], [2, 3], [1, 2, 3]] 11 ''' 12 13 def power(s): 14 """Computes all of the sublists of s""" 15 length = len(s) 16 count = 2**length 17 result = [] 18 for i in range(count): 19 st = str(bin(i)[2:]).zfill(length) 20 temp = [] 21 for j in range(length): 22 if st[length - 1 - j] == str(1): 23 temp.append(s[j]) 24 result.append(temp) 25 return result 26 27 def powersetlist(s): 28 r = [[]] 29 for e in s: 30 # print "r: %-55r e: %r" % (r,e) 31 r += [x+[e] for x in r] 32 return r 33 34 35 #print "\npowersetlist(%r) =\n %r" % (s, powersetlist(s)) 36 37 38 #print power([0,1,2,3]) 39 if __name__ == '__main__': 40 print power([0,1,2,3]) 41
40 - error: syntax-error
1 """ 2 Create the function prefill that returns an array of n elements that all have the same value v. See if you can do this without using a loop. 3 4 You have to validate input: 5 6 v can be anything (primitive or otherwise) 7 if v is ommited, fill the array with undefined 8 if n is 0, return an empty array 9 if n is anything other than an integer or integer-formatted string (e.g. '123') that is >=0, throw a TypeError 10 When throwing a TypeError, the message should be n is invalid, where you replace n for the actual value passed to the function. 11 12 see: http://www.codewars.com/kata/54129112fb7c188740000162/train/python 13 14 """ 15 16 def prefill(n,v=None): 17 #your code here 18 try: 19 if isNumber(n): 20 if v is None: 21 return ['undefined'] * int(n) 22 return [v]*int(n) 23 raise TypeError 24 except TypeError: 25 return str(n) + " is invalid." 26 27 28 def isNumber(n): 29 if isinstance( n, int ): 30 return True 31 elif isinstance( n , str) and n.isdigit(): 32 if int(n): 33 return True 34 return False 35 36 37 38 39 print prefill(5,) 40 print prefill(5,prefill(3,'abc')) 41 print prefill(3,5) 42 43 print isNumber(5.3) 44
39 - error: syntax-error
1 ''' 2 Where my anagrams at? 3 http://www.codewars.com/kata/523a86aa4230ebb5420001e1/train/python 4 Also could construct prime list, assign each character from word to a prime number. multiply them 5 then divid prime number from word in words. 6 ''' 7 8 def anagrams(word, words): 9 #your code here 10 11 return filter(lambda x: sorted(x) == sorted(word) , words) 12 13 14 15 print anagrams("thisis" , ["thisis", "isthis", "thisisis"]) 16 print anagrams('racer', ['crazer', 'carer', 'racar', 'caers', 'racer']) 17 print anagrams('laser', ['lazing', 'lazy', 'lacer'])
15 - error: syntax-error
1 def sierpinski(n): 2 result = [] 3 for i in range(0,n+1): 4 if i == 0: 5 result.append('"') 6 else: 7 for j in range(2**(i-1),2**i): 8 result.append(addSpace(j,i,result)) 9 r = result[0] 10 for line in result[1:]: 11 r= r+'\n'+line 12 return r 13 14 def addSpace(l,n,string_list): 15 result = string_list[l-2**(n-1)] 16 space = len(range(0,2*2**(n-1)-l)) * 2 - 1 17 for i in range(0,space): 18 result = ' ' +result 19 return string_list[l-2**(n-1)]+result 20 21 22 23 #print sierpinski(1) 24 print sierpinski(6)
24 - error: syntax-error
1 """ 2 The Millionth Fibonacci Kata 3 http://www.codewars.com/kata/53d40c1e2f13e331fc000c26/train/python 4 """ 5 import math 6 import sys 7 import time 8 from collections import defaultdict 9 10 # following not working , took too much time to compute. 11 12 def fib(n , i): 13 14 15 dic = defaultdict(list) 16 17 def find_dim(k): 18 if k == 0: 19 return [] 20 if k == 1: 21 return [0] 22 else: 23 return [int(math.log(k,2))] + find_dim(k - 2**(int(math.log(k,2)))) 24 25 def matrix_multi(a, b): 26 return [a[0]*b[0]+a[1]*b[2], 27 a[0]*b[1]+a[1]*b[3], 28 a[2]*b[0]+a[3]*b[2], 29 a[2]*b[1]+a[3]*b[3]] 30 31 32 def matrix_power(pow): 33 a = [1,1,1,0] 34 if pow in dic: 35 return dic[pow] 36 else: 37 if pow == 0: 38 return a 39 else: 40 for i in range(1,pow+1): 41 if i not in dic: 42 a = matrix_multi(a , a) 43 dic[i] = a 44 45 else: 46 a = dic[i] 47 return a 48 #print matrix_power([1,1,1,0]) 49 50 def matrix_fib(t): 51 if t == 0 or t == 1: 52 return t 53 else: 54 result = [1,0,0,1] 55 alist = find_dim(t-1) 56 for i in alist: 57 result = matrix_multi(result,matrix_power(i)) 58 return result 59 60 def dynamic_fib(n): 61 a = 0 62 b = 1 63 if n == 0: 64 return (a , b) 65 66 for i in range(n): 67 temp = a + b 68 a = b 69 b = temp 70 return (a , b ) 71 72 73 74 def double_fast(n): 75 #really fast 76 if n == 0: 77 return (0 , 1) 78 else: 79 a, b = double_fast(n/2) 80 c = a * (2* b -a ) 81 d = b **2 + a**2 82 if n%2 == 0: 83 return (c , d) 84 else: 85 return (d , d+c) 86 87 def compute_fib(n ,i ): 88 func = {0: matrix_fib, 89 1: double_fast, 90 2: dynamic_fib } 91 92 93 return func[i](n)[0] if n >= 0 else (-1)**(n%2+1) * func[i](-n)[0] 94 95 96 97 98 99 return compute_fib(n , i) 100 101 def size_base10(n): 102 size = 0 103 while n /10 != 0: 104 size += 1 105 n = n/10 106 107 return size 108 109 110 def main(): 111 ''' 112 func = {0: matrix_fib, 113 1: double_fast, 114 2: dynamic_fib } 115 ''' 116 try: 117 #var = int(raw_input("Please enter the n-th Fib number you want:")) 118 var = 200000 119 start = time.time() 120 i = 1 121 result = fib(var , i) 122 123 end = time.time() 124 125 #print "Lenght of %dth fib number is %d" %(var , size_base10(result)) 126 print "Time is %s seconds." % (end - start) 127 #print result 128 #print "The %dth fib number is %d"%(var , result) 129 except: 130 pass 131 132 133 if __name__ == '__main__': 134 main() 135 136 137
20 - error: syntax-error
1 """ 2 Square into Squares. Protect trees! 3 http://www.codewars.com/kata/square-into-squares-protect-trees 4 """ 5 import math 6 7 def decompose(n): 8 # your code 9 def sub_decompose(s,i): 10 if s < 0 : 11 return None 12 if s == 0: 13 return [] 14 for j in xrange(i-1, 0 ,-1): 15 #print s,s - j**2 ,j 16 sub = sub_decompose(s - j**2, j) 17 #print j,sub 18 if sub != None: 19 # print s,j,sub 20 return sub + [j] 21 return sub_decompose(n**2,n) 22 23 if __name__ == "__main__": 24 print decompose(11)
24 - error: syntax-error
1 """ 2 Going to zero or to infinity? 3 http://www.codewars.com/kata/55a29405bc7d2efaff00007c/train/python 4 """ 5 6 import math 7 def going(n): 8 result = 0 9 for i in range(n): 10 result = 1.0*result/(i+1) + 1 11 return math.floor(result * (10**6))/(10**6) 12 13 14 15 16 if __name__ == "__main__": 17 for i in range(10): 18 print i, going(i)
18 - error: syntax-error
1 def solution(n): 2 # TODO convert int to roman string 3 result = "" 4 5 6 remainder = n 7 if n == 0: 8 return "" 9 for i in range(0,len(roman_number)): 10 time = 1.0*remainder/roman_number[i][0] 11 if str(roman_number[i][0])[0] == '1': 12 if time < 4 and time >=1: 13 temp = remainder % roman_number[i][0] 14 div = remainder / roman_number[i][0] 15 remainder = temp 16 result += div * roman_number[i][1] 17 if time < 1 and time >= 0.9: 18 result += (roman_number[i+2][1]+roman_number[i][1]) 19 remainder = remainder % roman_number[i+2][0] 20 else: 21 if time < 1 and time >= 0.8: 22 result += (roman_number[i+1][1]+roman_number[i][1]) 23 remainder = remainder % roman_number[i+1][0] 24 if time >= 1 and time < 1.8: 25 div = (remainder - roman_number[i][0]) / roman_number[i+1][0] 26 result += roman_number[i][1] + div * roman_number[i+1][1] 27 remainder = remainder % roman_number[i+1][0] 28 if time >= 1.8: 29 result += roman_number[i+1][1]+roman_number[i-1][1] 30 remainder = remainder % roman_number[i+1][0] 31 return result 32 33 roman_number = [(1000, 'M'), (500, 'D'), (100, 'C'), (50, 'L'), (10, 'X'), (5, 'V'), (1, 'I')] 34 35 #print solution(4) 36 #print solution(6) 37 print solution(3991)
23 - error: syntax-error
1 ''' 2 A poor miner is trapped in a mine and you have to help him to get out ! 3 4 Only, the mine is all dark so you have to tell him where to go. 5 6 In this kata, you will have to implement a method solve(map, miner, exit) that has to return the path the miner must take to reach the exit as an array of moves, such as : ['up', 'down', 'right', 'left']. There are 4 possible moves, up, down, left and right, no diagonal. 7 8 map is a 2-dimensional array of boolean values, representing squares. false for walls, true for open squares (where the miner can walk). It will never be larger than 5 x 5. It is laid out as an array of columns. All columns will always be the same size, though not necessarily the same size as rows (in other words, maps can be rectangular). The map will never contain any loop, so there will always be only one possible path. The map may contain dead-ends though. 9 10 miner is the position of the miner at the start, as an object made of two zero-based integer properties, x and y. For example {x:0, y:0} would be the top-left corner. 11 12 exit is the position of the exit, in the same format as miner. 13 14 Note that the miner can't go outside the map, as it is a tunnel. 15 16 Let's take a pretty basic example : 17 18 map = [[True, False], 19 [True, True]]; 20 21 solve(map, {'x':0,'y':0}, {'x':1,'y':1}) 22 // Should return ['right', 'down'] 23 24 http://www.codewars.com/kata/5326ef17b7320ee2e00001df/train/python 25 26 ''' 27 28 def solve(map, miner, exit): 29 #your code here 30 dirc = { 'right': [1,0], 31 'left': [-1,0], 32 'down': [0,1], 33 'up': [0,-1] } 34 35 36 matrix = [[ int(map[i][j]) for i in range(len(map)) ] for j in range(len(map[0]))] 37 38 start = [ value for key , value in miner.itemiters() ] 39 end = [ value for key , value in exit.itemiters() ] 40 41 print start
41 - error: syntax-error
1 #!/usr/bin/python 2 from collections import defaultdict 3 4 def sum_for_list(lst): 5 6 7 aDict = defaultdict(lambda : 0) 8 9 10 def primes(n): 11 12 d = 2 13 aN = n 14 n = abs(n) 15 while d*d <= n: 16 aBool = True 17 while (n % d) == 0: 18 #primfac.add(d) # supposing you want multiple factors repeated 19 if aBool: 20 aDict[d] += aN 21 aBool = False 22 n /= d 23 d += 1 24 if n > 1: 25 aDict[n] += aN 26 return aDict 27 for i in lst: 28 primes(i) 29 #primes(i) 30 31 32 result = [ [k,v] for k,v in aDict.iteritems()] 33 result.sort(key = lambda x:x[0]) 34 return result 35 36 a = [12,15] 37 b = [15, 30, -45] 38 c = [15, 21, 24, 30, 45] 39 test = sum_for_list(b) 40 41 42 #print test 43 #print sum_for_list(a) 44 d = sum_for_list(c) 45 print d 46 d.sort(key = lambda x: x[0] ,reverse =True) 47 print d 48
45 - error: syntax-error
1 #!/usr/bin/python 2 ''' 3 An Arithmetic Progression is defined as one in which there is a constant difference between the consecutive terms of a given series of numbers. You are provided with consecutive elements of an Arithmetic Progression. There is however one hitch: Exactly one term from the original series is missing from the set of numbers which have been given to you. The rest of the given series is the same as the original AP. Find the missing term. 4 5 You have to write the function findMissing (list) , list will always be atleast 3 numbers. 6 7 http://www.codewars.com/kata/52de553ebb55d1fca3000371/train/python 8 9 ''' 10 11 12 def find_missing(sequence): 13 should = 1.0 * (sequence[0] + sequence[-1])* (len(sequence)+1) / 2 14 actual = reduce(lambda x, y: x+y, sequence) 15 #print actual 16 return int(should - actual) 17 18 19 if __name__ == "__main__": 20 21 22 a = [1, 2, 3, 4, 6, 7, 8, 9] 23 print find_missing(a)
23 - error: syntax-error
1 """ 2 You have to create a function that takes a positive integer number and returns the next bigger number formed by the same digits: 3 4 5 http://www.codewars.com/kata/55983863da40caa2c900004e/train/python 6 7 """ 8 9 def next_bigger(n): 10 #your code here 11
11 - error: syntax-error
1 """ 2 Decimal to any Rational or Irrational Base Converter 3 http://www.codewars.com/kata/5509609d1dbf20a324000714/train/python 4 5 wiki_page : https://en.wikipedia.org/wiki/Non-integer_representation 6 7 """ 8 import math 9 from math import pi , log 10 ''' 11 def converter(n, decimals=0, base=pi): 12 """takes n in base 10 and returns it in any base (default is pi 13 with optional x decimals""" 14 #your code here 15 alpha = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ' 16 m = 1 17 if n < 0: 18 n = -n 19 m = -m 20 21 times = 0 if n == 0 else int(math.floor(math.log(n, base))) 22 23 result = '' 24 25 while times >= -decimals : 26 if times == -1: 27 result += '.' 28 val = int(n / base**times) 29 30 result+=alpha[val] 31 #print "base time " ,n/(base**times) 32 n -= int(n / base**times) * base**times 33 34 #print result,n , times 35 36 times-=1 37 if m == -1: 38 result = '-'+result 39 result = str(result) 40 if decimals != 0: 41 loc = result.index('.') 42 last = len(result)-1 43 if decimals > last - loc: 44 result+='0'* (decimals-(last - loc)) 45 return result 46 47 ''' 48 49 50 def converter(n , decimals = 0 , base = pi): 51 alpha = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ' 52 if n == 0 : return '0' if not decimals else '0.' + '0'*decimals 53 54 result = '' if n > 0 else '-' 55 56 n = abs(n) 57 58 for i in range(int(log(n, base)) , -decimals -1, -1 ): 59 if i == -1: 60 result += '.' 61 result += alpha[int(n / base**i)] 62 n %= base**i 63 return result 64 65 def main(): 66 print converter(0,4,26) 67 print converter(-15.5,2,23) 68 print converter(13,0,10) 69 print converter(5.5, 1,10) 70 if __name__ == '__main__': 71 main() 72
66 - error: syntax-error
1 l = [1, 5, 12, 2, 15, 6] 2 i = 0 3 s = 0 4 for i in l: 5 s += i 6 print(s) 7 8 i = 0 9 s = 0 10 while i<len(l): 11 s += l[i] 12 i += 1 13 print(s)
Clean Code: No Issues Detected
1 import datetime as dt 2 today = dt.datetime.today() 3 yesterday = today - dt.timedelta(days=1) 4 tomorrow = today + dt.timedelta(days=1) 5 6 print("Yesterday", yesterday) 7 print("Today", today) 8 print("Tomorrow", tomorrow)
Clean Code: No Issues Detected
1 #Write a python program to find the longest word in a file. 2 f = open("demo.txt", "r") 3 line = f.readline() 4 longestWord = "" 5 while line: 6 words = line.split(" ") 7 lineLongestWord = max(words, key=len) 8 if len(lineLongestWord) > len(longestWord): 9 longestWord = lineLongestWord 10 11 line = f.readline() 12 13 print("Longest word") 14 print(longestWord)
2 - warning: unspecified-encoding 2 - refactor: consider-using-with
1 # 0 1 1 2 3 5 8 2 def fib(n): 3 a = 0 4 b = 1 5 print(a, end=" ") 6 print(b, end=" ") 7 for i in range(2, n): 8 c = a + b 9 print(c, end=" ") 10 a = b 11 b = c 12 13 n = int(input("Enter the number\n")) 14 fib(n)
2 - warning: redefined-outer-name 7 - warning: unused-variable
1 import datetime as dt 2 today = dt.datetime.today() 3 print("Current date and time", dt.datetime.now()) 4 print("Current Time in 12 Hours Format", today.strftime("%I:%M:%S %p")) 5 print("Current year", today.year) 6 print("Month of the year", today.strftime("%B")) 7 print("Week number of the year", today.strftime("%W")) 8 print("Week day of the week", today.strftime("%A")) 9 print("Day of the year", today.strftime("%j")) 10 print("Day of the month", today.strftime("%d")) 11 print("Day of the week", today.strftime("%w"))
Clean Code: No Issues Detected
1 x = input("Enter a string \n") 2 d = l = 0 3 4 for c in x: 5 if c.isalpha(): 6 l += 1 7 8 if c.isdigit(): 9 d += 1; 10 11 print("Letters %d" % (l)) 12 print("Digits %d" % (d))
9 - warning: unnecessary-semicolon
1 x = 65 2 for i in range(5): 3 for j in range(i+1): 4 print(chr(x+j), end=" ") 5 6 print()
Clean Code: No Issues Detected
1 import datetime as dt 2 today = dt.datetime.today() 3 for i in range(1, 6): 4 nextday = today + dt.timedelta(days=i) 5 print(nextday)
Clean Code: No Issues Detected
1 class Student: 2 def __init__(self, name, roll_no): 3 self.name = name 4 self.roll_no = roll_no 5 self.age = 0 6 self.marks = 0 7 8 def display(self): 9 print("Name", self.name) 10 print("Roll No", self.roll_no) 11 print("Age", self.age) 12 print("Marks", self.marks) 13 14 def setAge(self, age): 15 self.age = age 16 17 def setMarks(self, marks): 18 self.marks = marks 19 20 s1 = Student("Sahil", 12) 21 s1.setAge(20) 22 s1.setMarks(90) 23 s1.display() 24 25 s2 = Student("Rohit", 20) 26 s2.display()
Clean Code: No Issues Detected
1 x = int(input("Enter a number\n")) 2 for i in range(x): 3 print(i ** 2)
Clean Code: No Issues Detected
1 p = 3 2 n = 1 3 for i in range(4): 4 for j in range(7): 5 if j >= p and j <= p+n-1: 6 print("X", end=" ") 7 else: 8 print(" ", end=" ") 9 10 print() 11 p -= 1 12 n += 2 13 14 print("The python string multiplication way") 15 p = 3 16 n = 1 17 for i in range(4): 18 print(" " * p, end="") 19 print("X " * n, end="") 20 print() 21 p -= 1 22 n += 2
5 - refactor: chained-comparison
1 # Given the participants' score sheet for your University Sports Day, 2 # you are required to find the runner-up score. You are given n scores. 3 # Store them in a list and find the score of the runner-up. 4 5 score_str = input("Enter scores\n") 6 score_list = score_str.split(" ") 7 highestScore = 0; 8 rupnnerUp = 0 9 for score in score_list: 10 score = int(score) 11 if score > highestScore: 12 highestScore = score 13 14 for score in score_list: 15 score = int(score) 16 if score > rupnnerUp and score < highestScore: 17 rupnnerUp = score 18 19 print(rupnnerUp)
7 - warning: unnecessary-semicolon 11 - refactor: consider-using-max-builtin 16 - refactor: chained-comparison
1 samples = (1, 2, 3, 4, 12, 5, 20, 11, 21) 2 e = o = 0 3 for s in samples: 4 if s % 2 == 0: 5 e += 1 6 else: 7 o += 1 8 9 print("Number of even numbers : %d" % (e)) 10 print("Number of odd numbers : %d" % (o))
Clean Code: No Issues Detected
1 # Consider that vowels in the alphabet are a, e, i, o, u and y. 2 # Function score_words takes a list of lowercase words as an 3 # argument and returns a score as follows: 4 # The score of a single word is 2 if the word contains an even number 5 # of vowels. Otherwise, the score of this word is 1 . The score for the 6 # whole list of words is the sum of scores of all words in the list. 7 # Debug the given function score_words such that it returns a correct 8 # score. 9 10 # Rules: 11 # even number of vowels then score is 2 12 # odd number of vowels then score is 1 13 14 vowels = ["a", "e", "i", "o", "u"] 15 16 def score_word(word): 17 v = 0 18 for c in word: 19 if c in vowels: 20 v += 1 21 22 if v % 2 == 0: 23 return 2 24 else: 25 return 1 26 27 def score_words(words): 28 score = 0; 29 for word in words: 30 score += score_word(word) 31 return score 32 33 sentance = input("Enter a sentance\n") 34 words = sentance.split(" ") 35 print(score_words(words))
28 - warning: unnecessary-semicolon 22 - refactor: no-else-return 27 - warning: redefined-outer-name
1 # GUI Programing 2 # Tkinter 3 4 import tkinter as tk 5 from tkinter import messagebox 6 7 # 1. Intialize Root Window 8 root = tk.Tk() 9 root.title("Login Application") 10 root.geometry("200x200") 11 12 # 2. Application Logic 13 14 # 3. Intialize widgets 15 16 # 4. Placement of widgets (pack, grid, place) 17 18 19 # 5. Running the main looper 20 root.mainloop()
5 - warning: unused-import
1 x = int(input("Enter the value of X\n")) 2 if x%2 != 0: 3 print("Weird") 4 elif x >= 2 and x <= 5: 5 print("Not Weird") 6 elif x >= 6 and x<= 20: 7 print("Weird") 8 elif x > 20: 9 print("Not Weird")
4 - refactor: chained-comparison 6 - refactor: chained-comparison
1 # Make a two-player Rock-Paper-Scissors game. (Hint: Ask for player 2 # plays (using input), compare them, print out a message of 3 # congratulations to the winner, and ask if the players want to start a 4 # new game) 5 6 def is_play_valid(play): 7 if play != 'rock' and play != 'paper' and play != 'scissors': 8 return False 9 else: 10 return True 11 12 def play_game(): 13 p1 = input("Player 1, what are you playing?\n") 14 while not is_play_valid(p1): 15 p1 = input("Wrong play, please play again.\n") 16 17 p2 = input("Player 2, what are you playing?\n") 18 while not is_play_valid(p2): 19 p2 = input("Wrong play, please play again.\n") 20 21 # Game Logic 22 if p1 == p2: 23 print("Its a tie!") 24 elif p1 == "rock": 25 if p2 == 'scissors': 26 print("Player 1 wins") 27 else: 28 print("Player 2 wins") 29 elif p1 == "paper": 30 if p2 == "rock": 31 print("Player 1 wins") 32 else: 33 print("Player 2 wins") 34 else: 35 if p2 == 'paper': 36 print("Player 1 wins") 37 else: 38 print("Player 2 wins") 39 40 ans = input("Do you want to start a new game?\n") 41 if ans == 'yes': 42 print("Starting a new game") 43 play_game() 44 45 play_game()
7 - refactor: no-else-return 7 - refactor: consider-using-in
1 def add(a, b): 2 return a + b 3 4 def sub(a, b): 5 return a - b 6 7 def pow(a,b): 8 return a ** b 9 10 if __name__ != "__main__": 11 print("Basic Module Imported")
7 - warning: redefined-builtin
1 w = input("Enter a word") 2 r = ""; 3 for a in w: 4 r = a + r 5 6 print(r)
2 - warning: unnecessary-semicolon
1 def checkPrime(x): 2 for i in range(2, x): 3 if x % i == 0: 4 print("Not a prime number") 5 break; 6 else: 7 print("Print number") 8 9 x = int(input("Enter any number\n")) 10 checkPrime(x)
5 - warning: unnecessary-semicolon 1 - warning: redefined-outer-name
1 # Generate a random number between 1 and 9 (including 1 and 9). 2 # Ask the user to guess the number, then tell them whether they 3 # guessed too low, too high, or exactly right. 4 5 import random as r 6 a = r.randint(1, 9) 7 8 def ask_user(): 9 u = int(input("Guess the number?\n")) 10 11 if a == u: 12 print("Exactly") 13 elif a > u: 14 print("Too low") 15 ask_user() 16 else: 17 print("Too high") 18 ask_user() 19 20 ask_user()
Clean Code: No Issues Detected
1 for i in range(5): 2 for j in range(i+1): 3 print(i+1, end=" ") 4 5 print() 6 7 print("The python way...") 8 for i in range(5): 9 print(str(str(i+1) + " ") * int(i+1))
Clean Code: No Issues Detected
1 # GUI Programing 2 # Tkinter 3 4 import tkinter as tk 5 from tkinter import messagebox 6 7 ## Welcome Window 8 def show_welcome(): 9 welcome = tk.Tk() 10 welcome.title("Welcome ADMIN") 11 welcome.geometry("200x200") 12 welcome.mainloop() 13 14 15 ## Login Window 16 # 1. Intialize Root Window 17 root = tk.Tk() 18 root.title("Login Application") 19 root.geometry("200x200") 20 21 # 2. Application Logic 22 def button1Click(): 23 username = entry1.get() 24 password = entry2.get() 25 if username == 'admin' and password == 'admin': 26 messagebox.showinfo("Login Application", "Login Successfull!") 27 root.destroy() 28 show_welcome() 29 else: 30 messagebox.showerror("Login Application", "Login Failed!") 31 32 def button2Click(): 33 if messagebox.askokcancel("Login Application", "Do you want to quit?"): 34 root.destroy() 35 36 # 3. Intialize widgets 37 label1 = tk.Label(root, text="Username") 38 label2 = tk.Label(root, text="Password") 39 entry1 = tk.Entry(root) 40 entry2 = tk.Entry(root) 41 button1 = tk.Button(root, text="Login", command=button1Click) 42 button2 = tk.Button(root, text="Quit", command=button2Click) 43 44 # 4. Placement of widgets (pack, grid, place) 45 label1.grid(row=1, column=1, pady=10) 46 label2.grid(row=2, column=1, pady=10) 47 entry1.grid(row=1, column=2) 48 entry2.grid(row=2, column=2) 49 button1.grid(row=3, column=2) 50 button2.grid(row=3, column=1) 51 52 # 5. Running the main looper 53 root.mainloop() 54 print("END")
Clean Code: No Issues Detected
1 # Password generator 2 import random as r 3 lenth = int(input("Enter the length of password\n")) 4 password = "" 5 for i in range(lenth): 6 password += chr(r.randint(33, 123)) 7 8 print(password)
Clean Code: No Issues Detected
1 # GUI Calculator Program 2 import tkinter as tk 3 4 # Intialize window 5 window = tk.Tk() 6 window.title("Calculator") 7 8 # Application Logic 9 result = tk.StringVar() 10 def add(value): 11 result.set(result.get() + value) 12 def peform(): 13 result.set(eval(result.get())) 14 def clear(): 15 result.set("") 16 17 # Initialize Widgets 18 label1 = tk.Label(window, textvariable=result) 19 button1 = tk.Button(window, text="1", padx=10, pady=10, bg="white", fg="black", command=lambda : add("1")) 20 button2 = tk.Button(window, text="2", padx=10, pady=10, bg="white", fg="black",command=lambda : add("2")) 21 button3 = tk.Button(window, text="3", padx=10, pady=10, bg="white", fg="black",command=lambda : add("3")) 22 23 button4 = tk.Button(window, text="4", padx=10, pady=10, bg="white", fg="black",command=lambda : add("4")) 24 button5 = tk.Button(window, text="5", padx=10, pady=10, bg="white", fg="black",command=lambda : add("5")) 25 button6 = tk.Button(window, text="6", padx=10, pady=10, bg="white", fg="black",command=lambda : add("6")) 26 27 button7 = tk.Button(window, text="7", padx=10, pady=10, bg="white", fg="black",command=lambda : add("7")) 28 button8 = tk.Button(window, text="8", padx=10, pady=10, bg="white", fg="black",command=lambda : add("8")) 29 button9 = tk.Button(window, text="9", padx=10, pady=10, bg="white", fg="black",command=lambda : add("9")) 30 31 button0 = tk.Button(window, text="0", padx=10, pady=10, bg="white", fg="black",command=lambda : add("0")) 32 button_dot = tk.Button(window, text=".", padx=10, pady=10, bg="#eee", fg="black",command=lambda : add(".")) 33 button_equal = tk.Button(window, text="=", padx=10, pady=10, bg="green", fg="white",command=peform) 34 button_clear = tk.Button(window, text="C", padx=10, pady=10, bg="white", fg="black",command=clear) 35 36 button_multiply = tk.Button(window, text="*", padx=10, pady=10, bg="#eee", fg="black",command=lambda : add("*")) 37 button_minus = tk.Button(window, text="-", padx=10, pady=10, bg="#eee", fg="black",command=lambda : add("-")) 38 button_add = tk.Button(window, text="+", padx=10, pady=10, bg="#eee", fg="black",command=lambda : add("+")) 39 # Placement of Widgets 40 # Row0 41 label1.grid(row=0, column=0, columnspan=3, sticky="W") 42 # Row1 43 button7.grid(row=1, column=0) 44 button8.grid(row=1, column=1) 45 button9.grid(row=1, column=2) 46 button_multiply.grid(row=1, column=3) 47 # Row2 48 button4.grid(row=2, column=0) 49 button5.grid(row=2, column=1) 50 button6.grid(row=2, column=2) 51 button_minus.grid(row=2, column=3) 52 # Row3 53 button1.grid(row=3, column=0) 54 button2.grid(row=3, column=1) 55 button3.grid(row=3, column=2) 56 button_add.grid(row=3, column=3) 57 # Row4 58 button_clear.grid(row=4, column=0) 59 button0.grid(row= 4, column=1) 60 button_dot.grid(row= 4, column=2) 61 button_equal.grid(row= 4, column=3) 62 # Main Loop 63 window.mainloop()
13 - warning: eval-used