code
stringlengths
20
13.2k
label
stringlengths
21
6.26k
1 #!usr/bin/env python3 2 # _ 3 # _ __ ___ ___ | | ___ ___ 4 # | '_ ` _ \ / _ \| |/ _ \/ __| 5 # | | | | | | (_) | | __/ (__ 6 # |_| |_| |_|\___/|_|\___|\___| - Molecular Dynamics Framework 7 # 8 # Copyright (C) 2016 Carlo Del Don (deldonc@student.ethz.ch) 9 # Michel Breyer (mbreyer@student.ethz.ch) 10 # Florian Frei (flofrei@student.ethz.ch) 11 # Fabian Thuring (thfabian@student.ethz.ch) 12 # 13 # This file is distributed under the MIT Open Source License. 14 # See LICENSE.txt for details. 15 16 from pymolec import * 17 18 import numpy as np 19 import matplotlib.pyplot as plt 20 import seaborn as sns 21 22 # seaborn formatting 23 sns.set_context("notebook", font_scale=1.1) 24 sns.set_style("darkgrid") 25 sns.set_palette('deep') 26 deep = ["#4C72B0", "#55A868", "#C44E52", "#8172B2", "#CCB974", "#64B5CD"] 27 28 def main(): 29 30 periodics = ['ref', 'c4'] 31 N = np.array([1000, 2000, 3000, 4000, 5000, 6000, 7000, 10000]) 32 33 flops = 2 * N # mod plus addition 34 35 fig = plt.figure() 36 ax = fig.add_subplot(1,1,1); 37 38 for periodic in periodics: 39 p = pymolec(N=N, periodic=periodic ) 40 output = p.run() 41 42 perf = flops / output['periodic'] 43 ax.plot(N, perf, 'o-') 44 45 46 ax.set_xlim([np.min(N)-100, np.max(N)+100]) 47 ax.set_ylim([0,2]) 48 49 ax.set_xlabel('Number of particles') 50 ax.set_ylabel('Performance [Flops/Cycle]', 51 rotation=0, 52 horizontalalignment = 'left') 53 ax.yaxis.set_label_coords(-0.055, 1.05) 54 55 plt.legend(periodics) 56 57 filename = 'periodic.pdf' 58 print("saving '%s'" % filename ) 59 plt.savefig(filename) 60 61 62 if __name__ == '__main__': 63 main()
36 - warning: unnecessary-semicolon 16 - warning: wildcard-import 39 - error: undefined-variable
1 #!usr/bin/env python3 2 # _ 3 # _ __ ___ ___ | | ___ ___ 4 # | '_ ` _ \ / _ \| |/ _ \/ __| 5 # | | | | | | (_) | | __/ (__ 6 # |_| |_| |_|\___/|_|\___|\___| - Molecular Dynamics Framework 7 # 8 # Copyright (C) 2016 Carlo Del Don (deldonc@student.ethz.ch) 9 # Michel Breyer (mbreyer@student.ethz.ch) 10 # Florian Frei (flofrei@student.ethz.ch) 11 # Fabian Thuring (thfabian@student.ethz.ch) 12 # 13 # This file is distributed under the MIT Open Source License. 14 # See LICENSE.txt for details. 15 16 from pymolec import * 17 18 import numpy as np 19 import matplotlib.pyplot as plt 20 import seaborn as sns 21 import os.path 22 23 24 25 # seaborn formatting 26 sns.set_context("notebook", font_scale=1.1) 27 sns.set_style("darkgrid") 28 sns.set_palette('deep') 29 deep = ["#4C72B0", "#55A868", "#C44E52", "#8172B2", "#CCB974", "#64B5CD"] 30 31 def measure_performance(): 32 33 forces = ['q']; 34 35 N = np.logspace(4,7,8).astype(np.int32) 36 steps = np.array([100, 100, 90, 80, 65, 50, 35, 20]) 37 rhos = np.array([0.5, 1., 2., 4., 6.,8.,10.]) 38 39 40 rc = 2.5 41 42 if os.path.isfile("performances-grid-forces-density.npy"): 43 print("Loading data from <performances-grid-forces-density.npy") 44 performances = np.load("performances-grid-forces-density.npy") 45 return performances, N, rhos 46 else: 47 48 performances = np.zeros((len(rhos), len(N))) 49 50 for rho_idx, rho in enumerate(rhos): 51 flops = N * rc**3 * rho * (18 * np.pi + 283.5) 52 53 p = pymolec(N=N, rho=rho, force=forces, steps=steps, integrator='lf8', periodic='c4') 54 output = p.run() 55 56 perf = flops / output['force'] 57 performances[len(rhos)-1-rho_idx, :] = perf 58 59 print("Saving performance data to <performances-grid-forces-density.npy>") 60 np.save("performances-grid-forces-density", performances) 61 62 return performances, N, rhos 63 64 def plot_performance(performances, N, rhos): 65 fig = plt.figure() 66 ax = fig.add_subplot(1,1,1); 67 68 # Generate a custom diverging colormap 69 cmap = sns.diverging_palette(10, 133, n = 256, as_cmap=True) 70 71 ax = sns.heatmap(performances, linewidths=1, 72 yticklabels=rhos[::-1], xticklabels=N, 73 vmax=0.2*np.round(np.max(np.max(performances))*5), 74 vmin=0.2*np.round(np.min(np.min(performances))*5), 75 cmap=cmap, annot=False 76 ) 77 78 79 cax = plt.gcf().axes[-1] 80 pos_old = cax.get_position() 81 pos_new = [pos_old.x0 - 0.01, pos_old.y0 + 0, pos_old.width, pos_old.height*((len(rhos)-1)*1./len(rhos))] 82 cax.set_position(pos_new) 83 cax.tick_params(labelleft=False, labelright=True) 84 cax.set_yticklabels(['Low', '', '', '', 'High']) 85 86 ax.text(len(N)+0.35, len(rhos), 'Performance\n[flops/cycle]', ha='left', va='top') 87 88 89 rho_labels_short = ['%.2f' % a for a in rhos] 90 ax.set_yticklabels(rho_labels_short) 91 92 N_labels_short = ['10$^{%1.2f}$' % a for a in np.array(np.log10(N))] 93 ax.set_xticklabels(N_labels_short) 94 95 ax.set_xlabel('Number of particles $N$') 96 ax.set_ylabel('Particle density', 97 rotation=0, horizontalalignment = 'left') 98 ax.yaxis.set_label_coords(0., 1.01) 99 plt.yticks(rotation=0) 100 101 filename = 'forces-grid.pdf' 102 print("saving '%s'" % filename ) 103 plt.savefig(filename) 104 105 106 if __name__ == '__main__': 107 perf, N, rhos = measure_performance() 108 plot_performance(perf, N, rhos)
33 - warning: unnecessary-semicolon 66 - warning: unnecessary-semicolon 16 - warning: wildcard-import 35 - warning: redefined-outer-name 37 - warning: redefined-outer-name 56 - warning: redefined-outer-name 42 - refactor: no-else-return 53 - error: undefined-variable 64 - warning: redefined-outer-name 64 - warning: redefined-outer-name
1 #!usr/bin/env python3 2 # _ 3 # _ __ ___ ___ | | ___ ___ 4 # | '_ ` _ \ / _ \| |/ _ \/ __| 5 # | | | | | | (_) | | __/ (__ 6 # |_| |_| |_|\___/|_|\___|\___| - Molecular Dynamics Framework 7 # 8 # Copyright (C) 2016 Carlo Del Don (deldonc@student.ethz.ch) 9 # Michel Breyer (mbreyer@student.ethz.ch) 10 # Florian Frei (flofrei@student.ethz.ch) 11 # Fabian Thuring (thfabian@student.ethz.ch) 12 # 13 # This file is distributed under the MIT Open Source License. 14 # See LICENSE.txt for details. 15 16 import numpy as np 17 import matplotlib.pyplot as plt 18 import seaborn as sns 19 import sys 20 import json 21 22 # seaborn formatting 23 sns.set_context("notebook", font_scale=1.1) 24 sns.set_style("darkgrid") 25 sns.set_palette('deep') 26 deep = ["#4C72B0", "#55A868", "#C44E52", "#8172B2", "#CCB974", "#64B5CD"] 27 28 try: 29 filename = sys.argv[1] 30 except IndexError as ie: 31 print('usage: plot results.txt') 32 sys.exit(1) 33 34 # load results from json object 35 with open(filename, 'r') as infile: 36 results = json.load(infile) 37 38 N = np.array(results['N']) 39 rho = np.array(results['rho']) 40 41 del results['N'] 42 del results['rho'] 43 44 #----- plot runtime ------ 45 46 fig = plt.figure() 47 ax = fig.add_subplot(1,1,1); 48 49 for k in sorted(results): 50 if 'cell_ref' in results: 51 ax.semilogx(N, np.array(results['cell_ref']) / np.array(results[k]), 'o-', label=k) 52 elif 'lf' in results: 53 ax.semilogx(N, np.array(results['lf']) / np.array(results[k]), 'o-', label=k) 54 55 56 ax.set_xlabel('Number of particles $N$') 57 ax.set_ylabel('Runtime Speedup', 58 rotation=0, 59 horizontalalignment = 'left') 60 ax.yaxis.set_label_coords(-0.055, 1.05) 61 62 ax.set_xlim([np.min(N)*0.9, np.max(N)*1.1]) 63 ax.set_ylim([0.0, 1.2 * ax.get_ylim()[1]]) 64 65 ax.legend(loc='upper right') 66 67 plt.savefig(filename[:filename.rfind('.')]+'-runtime.pdf') 68 69 #----- plot performance ----- 70 71 flops = dict() 72 flops['cell_ref'] = lambda N, rho : 301 * N * rho * 2.5**3 73 flops['q'] = lambda N, rho : 301 * N * rho * 2.5**3 74 flops['q_g'] = lambda N, rho : 180 * N * rho * 2.5**3 75 flops['q_g_avx'] = lambda N, rho : N * (205 * rho * 2.5**3 + 24) 76 flops['lf'] = lambda N, rho : 9 * N 77 flops['lf2'] = lambda N, rho : 9 * N 78 flops['lf4'] = lambda N, rho : 9 * N 79 flops['lf8'] = lambda N, rho : 9 * N 80 flops['lf_avx'] = lambda N, rho : 9 * N 81 82 fig = plt.figure() 83 ax = fig.add_subplot(1,1,1); 84 85 for k in sorted(results): 86 ax.semilogx(N, flops[k](N,rho) / np.array(results[k]), 'o-', label=k) 87 88 ax.set_xlabel('Number of particles $N$') 89 ax.set_ylabel('Performance [Flops/Cycles]', 90 rotation=0, 91 horizontalalignment = 'left') 92 ax.yaxis.set_label_coords(-0.055, 1.05) 93 94 ax.set_xlim([np.min(N)*0.9, np.max(N)*1.1]) 95 ax.set_ylim([-0.1, 1.4 * ax.get_ylim()[1]]) 96 97 ax.legend(loc='upper right') 98 99 plt.savefig(filename[:filename.rfind('.')]+'-performance.pdf')
47 - warning: unnecessary-semicolon 83 - warning: unnecessary-semicolon 35 - warning: unspecified-encoding 71 - refactor: use-dict-literal
1 #!usr/bin/env python3 2 # _ 3 # _ __ ___ ___ | | ___ ___ 4 # | '_ ` _ \ / _ \| |/ _ \/ __| 5 # | | | | | | (_) | | __/ (__ 6 # |_| |_| |_|\___/|_|\___|\___| - Molecular Dynamics Framework 7 # 8 # Copyright (C) 2016 Carlo Del Don (deldonc@student.ethz.ch) 9 # Michel Breyer (mbreyer@student.ethz.ch) 10 # Florian Frei (flofrei@student.ethz.ch) 11 # Fabian Thuring (thfabian@student.ethz.ch) 12 # 13 # This file is distributed under the MIT Open Source License. 14 # See LICENSE.txt for details. 15 16 from pymolec import * 17 18 import numpy as np 19 import json 20 import sys 21 22 #------------------------------------------------------------------------------ 23 24 integrators = ['lf', 'lf2', 'lf4', 'lf8', 'lf_avx'] 25 26 N = np.logspace(2, 5, 12, base=10).astype(np.int32) 27 steps = np.array([25]) 28 29 rho = 1.0 30 rc = 2.5 31 32 #------------------------------------------------------------------------------ 33 34 filename = sys.argv[1] 35 36 results = {} 37 38 for integrator in integrators: 39 p = pymolec(N=N, rho=rho, steps=steps, force='q_g_avx', integrator=integrator) 40 output = p.run() 41 42 results['N'] = output['N'].tolist() 43 results['rho'] = output['rho'].tolist() 44 results[integrator] = output['integrator'].tolist() 45 46 print('Saving performance data to ' + filename) 47 48 with open(filename, 'w') as outfile: 49 json.dump(results, outfile, indent=4)
16 - warning: wildcard-import 39 - error: undefined-variable 48 - warning: unspecified-encoding
1 #!usr/bin/env python3 2 # _ 3 # _ __ ___ ___ | | ___ ___ 4 # | '_ ` _ \ / _ \| |/ _ \/ __| 5 # | | | | | | (_) | | __/ (__ 6 # |_| |_| |_|\___/|_|\___|\___| - Molecular Dynamics Framework 7 # 8 # Copyright (C) 2016 Carlo Del Don (deldonc@student.ethz.ch) 9 # Michel Breyer (mbreyer@student.ethz.ch) 10 # Florian Frei (flofrei@student.ethz.ch) 11 # Fabian Thuring (thfabian@student.ethz.ch) 12 # 13 # This file is distributed under the MIT Open Source License. 14 # See LICENSE.txt for details. 15 16 import numpy as np 17 import time, sys, os, subprocess 18 19 class pymolec: 20 21 def __init__(self, N=np.array([1000]), rho=1.25, steps=np.array([100]), 22 force="cell_ref", integrator="lf", periodic="ref"): 23 24 self.N = N 25 self.rho = rho 26 27 28 if hasattr(steps, "__len__"): 29 if len(N) != len(steps): 30 self.steps = np.full(len(N), steps[0], dtype=np.int) 31 else: 32 self.steps = steps 33 else: 34 self.steps = np.full(len(N), steps, dtype=np.int) 35 36 37 self.force = force 38 self.integrator = integrator 39 self.periodic = periodic 40 41 def run(self, path = None): 42 """ 43 runs a molec simulation for the given configurations and outputs a 44 dictionnary containing N, rho, force, integrator, periodic, simulation 45 """ 46 47 # Use default path 48 if not path: 49 script_path = os.path.join(os.path.dirname(os.path.abspath(__file__))) 50 if os.name == 'nt': 51 path = os.path.join(script_path, '..', 'build', 'molec.exe') 52 else: 53 path = os.path.join(script_path, '..', 'build', 'molec') 54 55 # Check if molec exists 56 if not os.path.exists(path): 57 raise IOError("no such file or directory: %s" % path) 58 59 times = np.zeros((4, len(self.N))) 60 61 print ("Running molec: %s" % path) 62 print ("rho = {0}, force = {1}, integrator = {2}, periodic = {3}".format( 63 self.rho, self.force, self.integrator, self.periodic)) 64 65 66 output = {} 67 68 output['N'] = np.zeros(len(self.N)) 69 output['rho'] = np.zeros(len(self.N)) 70 output['force'] = np.zeros(len(self.N)) 71 output['integrator'] = np.zeros(len(self.N)) 72 output['periodic'] = np.zeros(len(self.N)) 73 output['simulation'] = np.zeros(len(self.N)) 74 75 for i in range(len(self.N)): 76 cmd = [path] 77 cmd += ["--N=" + str(self.N[i])] 78 cmd += ["--rho=" + str(self.rho)] 79 cmd += ["--step=" + str(self.steps[i])] 80 cmd += ["--force=" + self.force] 81 cmd += ["--integrator=" + self.integrator] 82 cmd += ["--periodic=" + self.periodic] 83 cmd += ["--verbose=0"] 84 85 # Print status 86 start = time.time() 87 print(" - N = %9i ..." % self.N[i], end='') 88 sys.stdout.flush() 89 90 try: 91 out = subprocess.check_output(cmd).decode(encoding='utf-8').split('\t') 92 93 print(" %20f s" % (time.time() - start)) 94 95 output['N'][i] = int(out[0]) 96 output['rho'][i] = float(out[1]) 97 output['force'][i] = int(out[3]) 98 output['integrator'][i] = int(out[5]) 99 output['periodic'][i] = int(out[7]) 100 output['simulation'][i] = int(out[9]) 101 102 except subprocess.CalledProcessError as e: 103 print(e.output) 104 105 return output 106 107 def main(): 108 p = pymolec() 109 print(p.run()) 110 111 if __name__ == '__main__': 112 main()
21 - refactor: too-many-arguments 21 - refactor: too-many-positional-arguments 59 - warning: unused-variable 19 - refactor: too-few-public-methods
1 from selenium import webdriver 2 from selenium.common.exceptions import * 3 from selenium.webdriver.common.by import By 4 from selenium.webdriver.support.ui import WebDriverWait 5 from selenium.webdriver.support import expected_conditions as EC 6 from time import sleep 7 from getpass import getpass 8 import tkinter as tk 9 from tkinter import messagebox 10 11 class tanmay_bhat: 12 def __init__(self, username, password, channel_addr): 13 14 try: 15 #Check for Chrome webdriver in Windows 16 self.bot = webdriver.Chrome('driver/chromedriver.exe') 17 except WebDriverException: 18 try: 19 #Check for Chrome webdriver in Linux 20 self.bot = webdriver.Chrome('/usr/bin/chromedriver') 21 except WebDriverException: 22 print("Please set Chrome Webdriver path above") 23 exit() 24 25 self.username = username 26 self.password = password 27 self.channel_addr = channel_addr 28 29 def login(self): 30 bot = self.bot 31 print("\nStarting Login process!\n") 32 bot.get('https://stackoverflow.com/users/signup?ssrc=head&returnurl=%2fusers%2fstory%2fcurrent%27') 33 bot.implicitly_wait(10) 34 self.bot.find_element_by_xpath('//*[@id="openid-buttons"]/button[1]').click() 35 self.bot.find_element_by_xpath('//input[@type="email"]').send_keys(self.username) 36 self.bot.find_element_by_xpath('//*[@id="identifierNext"]').click() 37 sleep(3) 38 self.bot.find_element_by_xpath('//input[@type="password"]').send_keys(self.password) 39 self.bot.find_element_by_xpath('//*[@id="passwordNext"]').click() 40 WebDriverWait(self.bot, 900).until(EC.presence_of_element_located((By.XPATH, "/html/body/header/div/div[1]/a[2]/span"))) 41 print("\nLoggedin Successfully!\n") 42 sleep(2) 43 self.bot.get(self.channel_addr + "/videos") 44 45 def start_liking(self): 46 bot = self.bot 47 scroll_pause = 2 48 last_height = bot.execute_script("return document.documentElement.scrollHeight") 49 while True: 50 bot.execute_script("window.scrollTo(0, document.documentElement.scrollHeight);") 51 sleep(scroll_pause) 52 53 new_height = bot.execute_script("return document.documentElement.scrollHeight") 54 if new_height == last_height: 55 print("\nScrolling Finished!\n") 56 break 57 last_height = new_height 58 print("\nScrolling") 59 60 all_vids = bot.find_elements_by_id('thumbnail') 61 links = [elm.get_attribute('href') for elm in all_vids] 62 links.pop() 63 for i in range(len(links)): 64 bot.get(links[i]) 65 66 like_btn = bot.find_element_by_xpath('//*[@id="top-level-buttons"]/ytd-toggle-button-renderer[1]/a') 67 check_liked = bot.find_element_by_xpath('//*[@id="top-level-buttons"]/ytd-toggle-button-renderer[1]') 68 # Check if its already liked 69 if check_liked.get_attribute("class") == 'style-scope ytd-menu-renderer force-icon-button style-text': 70 like_btn.click() 71 print("Liked video! Bot Army Zindabad!!!\n") 72 sleep(0.5) 73 elif check_liked.get_attribute("class") == 'style-scope ytd-menu-renderer force-icon-button style-default-active': 74 print("Video already liked. You are a good Bot Army Member\n") 75 76 77 78 79 #************************************************** GUI AREA ********************************************** 80 81 def start(): 82 if email_entry.get() and password_entry.get() and url_entry.get(): 83 bot_army = tanmay_bhat(email_entry.get(), password_entry.get(), url_entry.get()) 84 root.destroy() 85 bot_army.login() 86 bot_army.start_liking() 87 else: 88 messagebox.showinfo('Notice', 'Please fill all the entries to proceed furthur') 89 90 def tanmay_url_inject(): 91 url_entry.delete(0, tk.END) 92 url_entry.insert(0, "https://www.youtube.com/c/TanmayBhatYouTube") 93 94 root = tk.Tk() 95 root.resizable(False, False) 96 root.geometry('%dx%d+%d+%d' % (760, 330, (root.winfo_screenwidth()/2) - (760/2), (root.winfo_screenheight()/2) - (330/2))) 97 98 frame = tk.Frame(root, height=330, width=760) 99 head_label = tk.Label(frame, text='Youtube Video Liker', font=('verdana', 25)) 100 email_label = tk.Label(frame, text='Email: ', font=('verdana', 15)) 101 password_label = tk.Label(frame, text='Password: ', font=('verdana', 15)) 102 email_entry = tk.Entry(frame, font=('verdana', 15)) 103 password_entry = tk.Entry(frame, font=('verdana', 15), show="*") 104 url_label = tk.Label(frame, text='Channel\nURL', font=('verdana', 15)) 105 url_entry = tk.Entry(frame, font=('verdana', 15)) 106 tanmay_button = tk.Button(frame, text='Tanmay\nBhatt', font=('verdana', 15), command=tanmay_url_inject) 107 start_button = tk.Button(frame, text='Start Liking', font=('verdana', 20), command=start) 108 109 frame.pack() 110 head_label.place(y=15, relx=0.32) 111 email_label.place(x=15, y=95, anchor='w') 112 password_label.place(x=15, y=130, anchor='w') 113 email_entry.place(x=140, y=78, width=600) 114 password_entry.place(x=140, y=115, width=600) 115 url_label.place(x=15, y=190, anchor='w') 116 url_entry.place(x=140, y=175, width=600) 117 tanmay_button.place(x=400, y=240) 118 start_button.place(x=550, y=250) 119 root.mainloop() 120 121 122 """ 123 Comment out the GUI area and uncomment the Console Area to use Console controls 124 ********************************************** Console Area ******************************************* 125 126 print("HI BOT ARMYYYYYYY! How you doing?\nToday is the time to make our PROVIDER (BOT LEADER) proud by liking all his videos!\n\nLet's make hime proud!!\n\n") 127 128 print("Enter the link of the channel or just hit [ENTER] key for default Tanmay's Channel") 129 channel_addr = str(input("Channel Link: ")) 130 131 username = str(input("\nEnter your YouTube/Google Email ID: ")) 132 password = str(getpass("Enter your password: ")) 133 134 if not channel_addr: 135 channel_addr = "https://www.youtube.com/c/TanmayBhatYouTube" 136 137 138 bot_army = tanmay_bhat(username, password, channel_addr) 139 bot_army.login() 140 bot_army.start_liking() 141 print("\n\nALL VIDEOS ARE LIKED!!! YOU CAN NOW OFFICIALLY CALL YOURSELF:\nA PROUD BOT ARMY MEMBERRRRR!!!!!!\n\n\nPress any key to end") 142 input() 143 """
2 - warning: wildcard-import 17 - error: undefined-variable 21 - error: undefined-variable 23 - refactor: consider-using-sys-exit 122 - warning: pointless-string-statement 7 - warning: unused-import
1 """ 2 Self_compare_dist.py 3 4 Usage: This program has a function called self_seg_compare(). 5 This function takes a track id (named as a parameter in the function), 6 compares every segment to every other segment, and 7 prints out the following information: 8 9 1. The number of segments that have one or more matches 10 2. The number of possible combinations that match 11 3. Saves a histogram that describes the combinations 12 4. Returns the adjacency list for the segments in the song 13 14 Takes the segments of a song, compares them using the Infinite Jukebox's 15 fields and weights, and gives a percentage of segments that have another 16 segment within 45 of itself. It also saves a histogram of these 17 distances. The histogram only shows distances <= 800, and up to 600 18 matches in each bin. 19 20 This program uses the weights and ideas on how to compare 21 segments. The following is a link to access the Infinite Jukebox: 22 http://labs.echonest.com/Uploader/index.html 23 24 Author: Chris Smith 25 26 Date: 03.11.2015 27 28 """ 29 30 import matplotlib 31 matplotlib.use("Agg") 32 import echonest.remix.audio as audio 33 import matplotlib.pyplot as plt 34 import scipy.spatial.distance as distance 35 import numpy as np 36 37 ''' 38 Method that uses a track id to compare every segment with 39 every other segment, supplies a histogram that shows 40 the distances between segments (tuples of segments), 41 and returns an adjacency list of segments in the song. 42 ''' 43 def self_seg_compare(): 44 #Defines the threshold for comparisons 45 thres = 45 46 adj_list = [] 47 sim_seg_count = 0 48 sim_count = 0 49 track_id = "TRAWRYX14B7663BAE0" 50 audiofile = audio.AudioAnalysis(track_id) 51 segments = audiofile.segments 52 #Get each segment's array of comparison data 53 segs = np.array(segments.pitches) 54 segs = np.c_[segs, np.array(segments.timbre)] 55 segs = np.c_[segs, np.array(segments.loudness_max)] 56 segs = np.c_[segs, np.array(segments.loudness_begin)] 57 segs = np.c_[segs, np.ones(len(segs))] 58 #Finish creating the adjacency list 59 for i in segments: 60 adj_list.append([]) 61 #Finish getting the comparison data 62 for i in range(len(segs)): 63 segs[i][26] = segments[i].duration 64 #Get the euclidean distance for the pitch vectors, then multiply by 10 65 distances = distance.cdist(segs[:,:12], segs[:,:12], 'euclidean') 66 for i in range(len(distances)): 67 for j in range(len(distances)): 68 distances[i][j] = 10 * distances[i][j] 69 #Get the euclidean distance for the timbre vectors, adding it to the 70 #pitch distance 71 distances = distances + distance.cdist(segs[:,12:24], segs[:,12:24], 'euclidean') 72 #Get the rest of the distance calculations, adding them to the previous 73 #calculations. 74 for i in range(len(distances)): 75 for j in range(len(distances)): 76 distances[i][j] = distances[i][j] + abs(segs[i][24] - segs[j][24]) 77 distances[i][j] = distances[i][j] + abs(segs[i][25] - segs[j][25]) + abs(segs[i][26] - segs[j][26]) * 100 78 i_point = 0 79 j_point = 0 80 #Use i_point and j_point for the indices in the 2D distances array 81 for i_point in range(len(distances)): 82 for j_point in range(len(distances)): 83 if i_point != j_point: 84 #Check to see if the distance between segment # i_point and 85 #segment # j_point is less than 45 86 if abs(distances[i_point][j_point]) <= thres: 87 #Add to the adjacency lists if not already there 88 if j_point not in adj_list[i_point]: 89 adj_list[i_point].append(j_point) 90 if i_point not in adj_list[j_point]: 91 adj_list[j_point].append(i_point) 92 j_point = j_point + 1 93 i_point = i_point + 1 94 j_point = 0 95 #Get the count of the similarities in the adjacency lists 96 for i in adj_list: 97 if len(i) > 0: 98 sim_count = sim_count + len(i); 99 sim_seg_count = sim_seg_count + 1 100 #print i, "\n" 101 print "Num of segments with at least 1 match: ", sim_seg_count, " out of", len(segments) 102 print "Percentage of segments with at least 1 match: ", (sim_seg_count / float(len(segments)) * 100), "%" 103 print "Num of similar tuples: ", sim_count, " out of ", len(segments) ** 2 - len(segments) 104 print "Percentage of possible tuples that are similar: ", sim_count / float(len(segments) ** 2 - len(segments)) * 100, "%" 105 print "Note:This takes out comparisons between a segment and itself." 106 #Get the number of bins. Calculated by taking the max range and dividing by 50 107 bins = int(np.amax(distances)) / thres 108 #Make the histogram with titles and axis labels. Plot the line x=thres for visual comparison. 109 plt.hist(distances.ravel(), bins = bins) 110 plt.title('Distances between Tuples of Segments') 111 plt.xlabel('Distances') 112 plt.ylabel('Number of occurrences') 113 plt.axvline(thres, color = 'r', linestyle = 'dashed') 114 #Make each tick on the x-axis correspond to the end of a bin. 115 plt.xticks(range(0, int(np.amax(distances) + 2 * thres), thres)) 116 #Make each tick on the y-axis correspond to each 25000th number up to the number of possible tuple combos / 2. 117 plt.yticks(range(0, (len(segments) ** 2 - len(segments))/2 + 25000, 25000)) 118 plt.gcf().savefig('sim_histogram.png') 119 return adj_list 120
101 - error: syntax-error
1 import numpy as np 2 from collections import Counter 3 4 def calculate(filename): 5 data = np.load(filename) 6 checked = data[1] 7 countClusters = Counter() 8 counter = Counter() 9 for i in checked: 10 countClusters[i] += 1 11 for i in countClusters.values(): 12 counter[i] += 1 13 val = counter.values() 14 key = counter.keys() 15 sum = 0 16 for i in range(len(key)): 17 sum += val[i] * key[i] ** 2 18 sum += (len(checked) * len(countClusters.values())) 19 print sum 20 fin = sum * (4376.4/4999950000) 21 print fin
19 - error: syntax-error
1 """ 2 h5_seg_to_array.py 3 4 Usage: In the functions following this, the parameters are described as follows: 5 6 dir: the directory to search 7 8 filename: the filename for saving/loading the results to/from 9 10 Program that parses all .h5 files in the passed in directory and subdirectories, 11 getting the segment arrays from each .h5 file and putting them into a 12 numpy array for later use. Each segment array is in the following format: 13 14 [12 values for segment pitch, 12 values for segment timbre, 1 value for loudness 15 max, 1 value for loudness start, and 1 value for the segment duration] 16 17 This program uses the hdf5_getters, which can be found here: 18 https://github.com/tbertinmahieux/MSongsDB/blob/master/PythonSrc/hdf5_getters.py 19 20 Author: Chris Smith 21 22 Date: 02.22.2015 23 """ 24 import os 25 import numpy as np 26 import hdf5_getters as getters 27 28 ''' 29 Method that takes a directory, searches that directory, as well as any 30 subdirectories, and returns a list of every .h5 file. 31 ''' 32 def get_h5_files(dir): 33 list = [] 34 for root, dirs, files in os.walk(dir): 35 for file in files: 36 name, extension = os.path.splitext(file) 37 if extension == ".h5": 38 list.append(os.path.realpath(os.path.join(root, file))) 39 for subdir in dirs: 40 get_h5_files(subdir) 41 return list 42 43 ''' 44 Method that takes a directory, gets every .h5 file in that directory (plus any 45 subdirectories), and then parses those files. The outcome is a Numpy array 46 that contains every segment in each file. Each row in the array of arrays 47 contains pitch, timbre, loudness max, loudness start, and the duration of each 48 segment. 49 ''' 50 def h5_files_to_np_array(dir, filename): 51 list = get_h5_files(dir) 52 num_done = 0 53 seg_array = [] 54 #Go through every file and get the desired information. 55 for file in list: 56 song = getters.open_h5_file_read(file) 57 seg_append = np.array(getters.get_segments_pitches(song)) 58 seg_append = np.c_[ seg_append, np.array(getters.get_segments_timbre(song))] 59 seg_append = np.c_[seg_append, np.array(getters.get_segments_loudness_max(song))] 60 seg_append = np.c_[seg_append, np.array(getters.get_segments_loudness_start(song))] 61 start = np.array(getters.get_segments_start(song)) 62 for i in range(0,len(start)-1): 63 if i != (len(start) - 1): 64 start[i] = start[i+1] - start[i] 65 start[len(start) - 1] = getters.get_duration(song) - start[len(start) - 1] 66 seg_append = np.c_[seg_append, start] 67 #Add the arrays to the bottom of the list 68 seg_array.extend(seg_append.tolist()) 69 song.close() 70 num_done = num_done + 1 71 #Gives a count for every 500 files completed 72 if num_done % 500 == 0: 73 print num_done," of ",len(list) 74 #Convert the list to a Numpy array 75 seg_array = np.array(seg_array) 76 #Save the array in a file 77 seg_array.dump(filename) 78 print len(seg_array)," number of segments in the set." 79 return seg_array 80 81 ''' 82 Method that opens the file with that filename. The file must contain a 83 Numpy array. This method returns the array. 84 ''' 85 def open(filename): 86 data = np.load(filename) 87 return data
73 - error: syntax-error
1 import numpy as np 2 3 def check(filename): 4 clusters = np.load(filename) 5 clusters = clusters[1] 6 truths = np.load("Results/groundtruths.npy") 7 error = 0 8 total = 0 9 for i in range(len(truths)): 10 for j in range(len(truths[i])): 11 if clusters[truths[i][j]] != clusters[i]: 12 error += 1 13 total += 1 14 print error 15 print total
14 - error: syntax-error
1 #!/usr/bin/env python 2 # encoding: utf=8 3 """ 4 one.py 5 6 Digest only the first beat of every bar. 7 8 By Ben Lacker, 2009-02-18. 9 10 """ 11 12 ''' 13 one_segment.py 14 15 Author: Chris Smith, 02-05-2015 16 17 Changes made to original one.py: 18 19 - Changes made to take the first segment out of every beat. 20 - Does not take the first beat from every bar anymore. 21 22 The original code is stored at this address: https://github.com/echonest/remix/blob/master/examples/one/one.py 23 ''' 24 import echonest.remix.audio as audio 25 26 usage = """ 27 Usage: 28 python one.py <input_filename> <output_filename> 29 30 Example: 31 python one.py EverythingIsOnTheOne.mp3 EverythingIsReallyOnTheOne.mp3 32 """ 33 34 def main(input_filename, output_filename): 35 audiofile = audio.LocalAudioFile(input_filename) 36 ''' 37 This line got the bars of the song in the previous version: 38 bars = audiofile.analysis.bars 39 40 Now, this line gets the beats in the song: 41 ''' 42 beats = audiofile.analysis.beats 43 collect = audio.AudioQuantumList() 44 ''' 45 This loop got the first beat in each bar and appended them to a list: 46 for bar in bars: 47 collect.append(bar.children()[0]) 48 49 Now, this loop gets the first segment in each beat and appends them to the list: 50 ''' 51 for b in beats: 52 collect.append(b.children()[0]) 53 out = audio.getpieces(audiofile, collect) 54 out.encode(output_filename) 55 56 if __name__ == '__main__': 57 import sys 58 try: 59 input_filename = sys.argv[1] 60 output_filename = sys.argv[2] 61 except: 62 print usage 63 sys.exit(-1) 64 main(input_filename, output_filename)
62 - error: syntax-error
1 import matplotlib 2 matplotlib.use("Agg") 3 import numpy as np 4 import matplotlib.pyplot as plt 5 import time 6 from collections import Counter 7 8 def truth_generator(filename): 9 data = np.load(filename) 10 data.resize(100000, 27) 11 truths = [] 12 for i in range(len(data)): 13 truths.append([]) 14 t0 = time.time() 15 for i in range(0,100000,10000): 16 a = data[i:i+10000,] 17 a[:,:12:] *= 10 18 a[:,26] *= 100 19 for j in range(i,100000,10000): 20 b = data[j:j+10000,] 21 b[:,:12:] *= 10 22 b[:,26] *= 100 23 c = seg_distances(a,b) 24 for k in range(len(c)): 25 for l in range(len(c)): 26 if c[k,l] <= 80: 27 truths[k+i].append(l+j) 28 print "Done. Onto the next one..." 29 print time.time() - t0 30 np.save("Results/groundtruths", truths) 31 32 def histo_generator(filename): 33 data = np.load(filename) 34 labels = data[1] 35 counter = Counter() 36 for i in labels: 37 counter[i] += 1 38 if np.amax(len(counter)) / 50 >= 5: 39 bins = np.amax(len(counter)) / 50 40 else: 41 bins = 5 42 plt.hist(counter.values(), bins = bins) 43 plt.title('Number of members per cluster') 44 plt.xlabel('Number of members') 45 plt.ylabel('Number of occurrences') 46 ticks = range(0, bins) 47 #plt.xticks(ticks[0::50]) 48 plt.gcf().savefig('Results/truthCountHistogram.png') 49 plt.close() 50 51 def seg_distances(u_, v_=None): 52 from scipy.spatial.distance import pdist, cdist, squareform 53 from numpy import diag, ones 54 if v_ is None: 55 d_ = pdist(u_[:, 0:12], 'euclidean') 56 d_ += pdist(u_[:, 12:24], 'euclidean') 57 d_ += pdist(u_[:, 24:], 'cityblock') 58 d_ = squareform(d_) + diag(float('NaN') * ones((u_.shape[0],))) 59 else: 60 d_ = cdist(u_[:, 0:12], v_[:, 0:12], 'euclidean') 61 d_ += cdist(u_[:, 12:24], v_[:, 12:24], 'euclidean') 62 d_ += cdist(u_[:, 24:], v_[:, 24:], 'cityblock') 63 64 return d_
28 - error: syntax-error
1 """ 2 dir_comp.py 3 4 Usage: In the functions following this, the parameters are described as follows: 5 6 dir: the directory to search 7 8 Program that parses all .mp3 files in the passed in directory, 9 gets the segment arrays from each .mp3 file and puts them into a 10 numpy array for later use. Each segment array is in the following format: 11 12 [12 values for segment pitch, 12 values for segment timbre, 1 value for loudness 13 max, 1 value for loudness start, and 1 value for the segment duration] 14 15 Author: Chris Smith 16 17 Date: 03.27.2015 18 """ 19 import matplotlib 20 matplotlib.use("Agg") 21 import echonest.remix.audio as audio 22 import matplotlib.pyplot as plt 23 import scipy.spatial.distance as distance 24 import os 25 import numpy as np 26 27 ''' 28 Method that takes a directory, searches that directory, and returns a list of every .mp3 file in it. 29 ''' 30 def get_mp3_files(dir): 31 list = [] 32 for root, dirs, files in os.walk(dir): 33 for file in files: 34 name, extension = os.path.splitext(file) 35 if extension == ".mp3": 36 list.append(os.path.realpath(os.path.join(root, file))) 37 return list 38 39 ''' 40 Method that takes two .mp3 files and compares every segment within song A to 41 every segment in song B and supplies a histogram that shows 42 the distances between segments (tuples of segments). Also supplies some data 43 about the songs that were parsed. 44 ''' 45 def two_song_comp(fileA, fileB): 46 #Defines the threshold for comparisons 47 thres = 45 48 nameA = os.path.basename(os.path.splitext(fileA)[0]) 49 nameB = os.path.basename(os.path.splitext(fileB)[0]) 50 adj_listA = [] 51 adj_listB = [] 52 sim_seg_countA = 0 53 sim_seg_countB = 0 54 sim_countA = 0 55 sim_countB = 0 56 audiofileA = audio.AudioAnalysis(fileA) 57 audiofileB = audio.AudioAnalysis(fileB) 58 segmentsA = audiofileA.segments 59 segmentsB = audiofileB.segments 60 #Get each segment's array of comparison data for song A 61 segsA = np.array(segmentsA.pitches) 62 segsA = np.c_[segsA, np.array(segmentsA.timbre)] 63 segsA = np.c_[segsA, np.array(segmentsA.loudness_max)] 64 segsA = np.c_[segsA, np.array(segmentsA.loudness_begin)] 65 segsA = np.c_[segsA, np.ones(len(segsA))] 66 #Get each segment's array of comparison data for song B 67 segsB = np.array(segmentsB.pitches) 68 segsB = np.c_[segsB, np.array(segmentsB.timbre)] 69 segsB = np.c_[segsB, np.array(segmentsB.loudness_max)] 70 segsB = np.c_[segsB, np.array(segmentsB.loudness_begin)] 71 segsB = np.c_[segsB, np.ones(len(segsB))] 72 73 #Finish creating the adjacency list 74 for i in segmentsA: 75 adj_listA.append([]) 76 for i in segmentsB: 77 adj_listB.append([]) 78 #Finish getting the comparison data 79 for i in range(len(segsA)): 80 segsA[i][26] = segmentsA[i].duration 81 for i in range(len(segsB)): 82 segsB[i][26] = segmentsB[i].duration 83 #Get the euclidean distance for the pitch vectors, then multiply by 10 84 distances = distance.cdist(segsA[:,:12], segsB[:,:12], 'euclidean') 85 for i in range(len(distances)): 86 for j in range(len(distances[i])): 87 distances[i][j] = 10 * distances[i][j] 88 #Get the euclidean distance for the timbre vectors, adding it to the 89 #pitch distance 90 distances = distances + distance.cdist(segsA[:,12:24], segsB[:,12:24], 'euclidean') 91 #Get the rest of the distance calculations, adding them to the previous 92 #calculations. 93 for i in range(len(distances)): 94 for j in range(len(distances[i])): 95 distances[i][j] = distances[i][j] + abs(segsA[i][24] - segsB[j][24]) 96 distances[i][j] = distances[i][j] + abs(segsA[i][25] - segsB[j][25]) + abs(segsA[i][26] - segsB[j][26]) * 100 97 i_point = 0 98 j_point = 0 99 #Use i_point and j_point for the indices in the 2D distances array 100 for i_point in range(len(distances)): 101 for j_point in range(len(distances[i])): 102 #Check to see if the distance between segment # i_point and 103 #segment # j_point is less than 45 104 if abs(distances[i_point][j_point]) <= thres: 105 #Add to the adjacency lists if not already there 106 if j_point not in adj_listA[i_point]: 107 adj_listA[i_point].append(j_point) 108 if i_point not in adj_listB[j_point]: 109 adj_listB[j_point].append(i_point) 110 j_point = j_point + 1 111 i_point = i_point + 1 112 j_point = 0 113 #Get the count of the similarities in the adjacency lists 114 for i in adj_listA: 115 if len(i) > 0: 116 sim_countA = sim_countA + len(i); 117 sim_seg_countA = sim_seg_countA + 1 118 for i in adj_listB: 119 if len(i) > 0: 120 sim_countB = sim_countB + len(i); 121 sim_seg_countB = sim_seg_countB + 1 122 123 #print i, "\n" 124 print "Num of segments with at least 1 match in song A: ", sim_seg_countA, " out of", len(segmentsA) 125 print "Percentage of segments with at least 1 match in song A: ", (sim_seg_countA / float(len(segmentsA)) * 100), "%" 126 print "Num of similar tuples: ", sim_countA, " out of ", len(segmentsA) *len(segmentsB) 127 print "Percentage of possible tuples that are similar: ", sim_countA / float(len(segmentsA) * len(segmentsB)) * 100, "%" 128 print "Num of segments with at least 1 match in song B: ", sim_seg_countB, " out of", len(segmentsB) 129 print "Percentage of segments with at least 1 match in song B: ", (sim_seg_countB / float(len(segmentsB)) * 100), "%" 130 #Get the number of bins. Calculated by taking the max range and dividing by 50 131 bins = int(np.amax(distances)) / thres 132 #Make the histogram with titles and axis labels. Plot the line x=thres for visual comparison. 133 plt.hist(distances.ravel(), bins = bins) 134 plt.title('Distances between Tuples of Segments' + nameA + nameB) 135 plt.xlabel('Distances') 136 plt.ylabel('Number of occurrences') 137 plt.axvline(thres, color = 'r', linestyle = 'dashed') 138 #Make each tick on the x-axis correspond to the end of a bin. 139 plt.xticks(range(0, int(np.amax(distances) + 2 * thres), thres)) 140 #Make each tick on the y-axis correspond to each 25000th number up to the number of possible tuple combos / 2. 141 plt.yticks(range(0, (len(segmentsA) * len(segmentsB))/2 + 25000, 25000)) 142 plt.gcf().savefig('Histograms/' + nameA + 'and' + nameB + '_histogram.png') 143 plt.close() 144 145 ''' 146 Method that runs the comparison on every pair of .mp3 files in a directory 147 ''' 148 def dir_comp(dir): 149 files = get_mp3_files(dir) 150 count = 0 151 total = sum(range(len(files) + 1)) 152 for f1 in files: 153 for f2 in files: 154 nameA = os.path.basename(os.path.splitext(f1)[0]) 155 nameB = os.path.basename(os.path.splitext(f2)[0]) 156 if not os.path.isfile('Histograms/' + nameA + 'and' + nameB + '_histogram.png') and not os.path.isfile('Histograms/' + nameB + 'and' + nameA + '_histogram.png'): 157 two_song_comp(f1, f2) 158 print "Comparison completed!" 159 count = count + 1 160 print count, " out of ", total 161 print "Finished."
124 - error: syntax-error
1 """ 2 seg_kmeans.py 3 4 This code performs K-Means clustering on a dataset passed in as a pickled 5 NumPy array. 6 7 There is a function (seg_kmeans) that performs K-Means on 8 the dataset not using another class's stuff. There is another function 9 (KMeans) that performs K-Means on the dataset by using Scikit-Learn's 10 K-Means class inside of the cluster package. 11 Both functions have the follwoing parameters: 12 13 1. filename: the file that contains the dataset (must be a pickled array) 14 2. clusters: the number of clusters to generate 15 3. iter: the max number of iterations to use 16 17 This also saves the results to an output in the Results folder. 18 19 Author: Chris Smith 20 21 Version: 4.19.2015 22 """ 23 import matplotlib 24 matplotlib.use("Agg") 25 import numpy as np 26 from numpy import random 27 import scipy.spatial.distance as distance 28 from sklearn import metrics 29 from sklearn import cluster 30 import matplotlib.pyplot as plt 31 import time 32 33 ''' 34 Figures out which cluster center that the segment x is closest to. 35 ''' 36 def classify(x, size, centroids): 37 list = np.zeros(size) 38 for i in range(size): 39 list[i] = np.sqrt(np.sum((centroids[i] - x) ** 2)) 40 return np.argmin(list) 41 ''' 42 Figures out the cluster member counts and the max distances from the centers in each cluster. 43 Also, histograms are generated. 44 ''' 45 def score(centers, centroids): 46 counts = np.zeros(len(centers)) 47 maxes = np.zeros(len(centers)) 48 index = 0 49 np.asarray(centers) 50 for i in range(len(centers)): 51 counts[index] = len(centers[index]) 52 index += 1 53 for i in range(len(centers)): 54 maxes[i] = distance.cdist(centers[i], np.asarray(centroids[i]).reshape((1,27)), 'euclidean').max() 55 if np.amax(counts)/50 >= 5: 56 bins = np.amax(counts) / 50 57 else: 58 bins = 5 59 plt.hist(counts.ravel(), bins = bins) 60 plt.title('Number of members per cluster') 61 plt.xlabel('Number of members') 62 plt.ylabel('Number of occurrences') 63 ticks = range(0, int(np.amax(counts))) 64 plt.xticks(ticks[0::50]) 65 plt.gcf().savefig('Results/countHistogram.png') 66 plt.close() 67 if np.amax(maxes)/50 >= 5: 68 bins = np.amax(maxes) / 50 69 else: 70 bins = 5 71 72 plt.hist(maxes.ravel(), bins = bins) 73 plt.title('Max distance in cluster') 74 plt.xlabel('Max distances') 75 plt.ylabel('Number of occurrences') 76 ticks = range(0, int(np.amax(maxes))) 77 plt.xticks(ticks[0::50]) 78 plt.gcf().savefig('Results/maxdistHistogram.png') 79 plt.close() 80 81 82 print "Counts of each cluster:" 83 print counts 84 print "------------------------------" 85 print "The max distance from each center to a cluster member:" 86 print maxes 87 print "------------------------------" 88 89 ''' 90 Performs K-Means clustering on a dataset of music segments without using a pre-made function. 91 Saves the results to a .npy file in the Results folder. 92 ''' 93 def seg_kmeans(filename, clusters, iter): 94 #Initialize everything 95 data = np.load(filename) 96 #Use the first 1 million segments 97 data.resize(1000000,27) 98 centroids = np.empty((clusters, 27)) 99 copyroids = np.empty((clusters, 27)) 100 for i in range(0, clusters): 101 sample = random.randint(0, len(data)) 102 centroids[i] = data[sample] 103 #Start the algorithm 104 stop = False 105 attempt = 1 106 numlist = [] 107 while not stop and attempt <= iter: 108 #Initialize the lists 109 numlist = [] 110 for i in range(clusters): 111 numlist.append([]) 112 print "Attempt Number: %d" % attempt 113 #Classify stuff 114 for row in range(len(data)): 115 closest = classify(data[row], clusters, centroids) 116 numlist[closest].append(data[row]) 117 if row % 10000 == 0: 118 print row 119 #Redo the centroids 120 copyroids = centroids.copy() 121 for i in range(clusters): 122 if len(numlist[i]) > 0: 123 centroids[i].put(range(27), np.average(numlist[i], axis=0).astype(np.int32)) 124 attempt += 1 125 if np.any(centroids-copyroids) == 0: 126 stop = True 127 score(numlist, centroids) 128 np.save("Results/clusterdata.npy", numlist) 129 130 ''' 131 Performs the K-Means clustering algorithm that Scikit-Learn's cluster package provides. 132 Saves the output into a file called clusterdata.npy. This file is located in the Results folder. 133 ''' 134 def KMeans(filename, clusters, iter): 135 data = np.load(filename) 136 data.resize(100000,27) 137 print "Loaded data" 138 t0 = time.time() 139 estimator = cluster.KMeans(n_clusters=clusters, n_init = 5, max_iter=iter, verbose=1, n_jobs=5) 140 estimator.fit(data) 141 print('%.2fs %i' 142 % ((time.time() - t0), estimator.inertia_)) 143 saveddata = [estimator.cluster_centers_, estimator.labels_, estimator.inertia_] 144 np.save("Results/clusterdata.npy", saveddata)
82 - error: syntax-error
1 """ 2 timing.py 3 4 Usage: In the functions following this, the parameters are described as follows: 5 6 filename: the file that contains segment data 7 8 This file must have been a NumPy array of segment data that was saved. It is loaded through NumPy's load function. 9 10 Each segment array is in the following format: 11 12 [12 values for segment pitch, 12 values for segment timbre, 1 value for loudness 13 max, 1 value for loudness start, and 1 value for the segment duration] 14 15 Author: Chris Smith 16 17 Date: 04.11.2015 18 """ 19 20 import time 21 import scipy.spatial.distance as distance 22 import numpy as np 23 24 ''' 25 Method that takes a file of segment data (a 2D NumPy array), and compares the first 850 segments to 1000, 10000, 100000, and 26 1000000 segments. The results are ignored, as this function times the comparisons. 27 ''' 28 def comp_time(filename): 29 seg_array = np.load(filename) 30 song = seg_array[:850:].copy() 31 t1 = time.time() 32 distance.cdist(song, seg_array[:1000:],'euclidean') 33 t2 = time.time() 34 distance.cdist(song, seg_array[:10000:],'euclidean') 35 t3 = time.time() 36 distance.cdist(song, seg_array[:100000:],'euclidean') 37 t4 = time.time() 38 distance.cdist(song, seg_array[:1000000:],'euclidean') 39 t5 = time.time() 40 print "Time for comparisons between a song and 1000 segments: " + str(t2-t1) 41 print "Time for comparisons between a song and 10000 segments: " + str(t3-t2) 42 print "Time for comparisons between a song and 100000 segments: " + str(t4-t3) 43 print "Time for comparisons between a song and 1000000 segments: " + str(t5-t4)
40 - error: syntax-error
1 2 # coding: utf-8 3 4 # In[2]: 5 6 import numpy as np 7 import tensorflow as tf 8 import requests 9 import urllib 10 from PIL import Image 11 import os 12 import matplotlib.pyplot as plt 13 import cv2 as cv2 14 15 get_ipython().magic('matplotlib inline') 16 17 18 # In[3]: 19 20 os.chdir("C:\\Users\\USER\\python studyspace\\Deep learning\\Project") 21 pic = Image.open("cat_test.jpg") 22 new_image = pic.resize((32,32)) 23 test1 = np.array(new_image) 24 test1 = test1.reshape(1,32,32,3) 25 print(test1.shape) 26 27 28 # In[5]: 29 30 plt.imshow(pic) 31 32 33 # In[6]: 34 35 sess = tf.Session() 36 37 saver = tf.train.import_meta_graph('save2.ckpt.meta') 38 39 saver.restore(sess, tf.train.latest_checkpoint('./')) 40 41 graph = tf.get_default_graph() 42 43 y_pred = graph.get_tensor_by_name("train_pred:0") 44 45 x = graph.get_tensor_by_name("train_dataset:0") 46 y_true = graph.get_tensor_by_name("train_label:0") 47 48 y_test_images = np.zeros((1,2)) 49 50 feed_dict_testing = {x: test1, y_true: y_test_images} 51 52 result=sess.run(y_pred, feed_dict=feed_dict_testing) 53 54 55 # In[7]: 56 57 print(result) 58 59 60 # In[ ]: 61 62 63
15 - error: undefined-variable 24 - error: too-many-function-args 8 - warning: unused-import 9 - warning: unused-import 13 - warning: unused-import
1 # -*- coding: utf-8 -*- 2 """ 3 Created on Sun May 10 23:34:29 2020 4 5 @author: HP USER 6 """ 7 8 9 import urllib.request, urllib.error, urllib.parse 10 import json 11 import sqlite3 12 import pandas as pd 13 from datetime import datetime 14 import matplotlib.pyplot as plt 15 import matplotlib 16 import numpy as np 17 18 #retrieve json file and decode it 19 jsonFile = urllib.request.urlopen('https://api.covid19india.org/data.json').read() 20 data = json.loads(jsonFile) 21 22 conn = sqlite3.connect('Covid19Data.sqlite') 23 cur = conn.cursor() 24 25 #create a table in database if the table does not exists 26 cur.executescript(''' 27 CREATE TABLE IF NOT EXISTS dailyCases( 28 dailyConfirmed INTEGER NOT NULL, 29 dailyDeceased INTEGER NOT NULL, 30 dailyRecovered INTEGER NOT NULL, 31 date TEXT NOT NULL UNIQUE, 32 totalConfirmed INTEGER NOT NULL, 33 totalDeceased INTEGER NOT NULL, 34 totalRecovered INTEGER NOT NULL 35 );''') 36 37 #%% 38 39 #update the data in database for each date 40 for daily in data['cases_time_series']: 41 dailyData = list(daily.values()) 42 cur.execute('''SELECT * FROM dailyCases WHERE date=?''', (dailyData[3], )) 43 result = cur.fetchone() 44 if result is None: 45 cur.execute(''' 46 INSERT INTO dailyCases (dailyConfirmed, dailyDeceased, dailyRecovered, date, 47 totalConfirmed, totalDeceased, totalRecovered) VALUES ( ?, ?, ?, ?, ?, ?, ?)''', 48 (int(dailyData[0]), int(dailyData[1]), int(dailyData[2]), dailyData[3], 49 int(dailyData[4]), int(dailyData[5]), int(dailyData[6]))) 50 elif result[4] < int(dailyData[4]): 51 cur.execute(''' 52 UPDATE dailyCases 53 SET totalConfirmed=? 54 WHERE date=?''', 55 (int(dailyData[4]), dailyData[3])) 56 conn.commit() 57 58 59 #%% 60 total = pd.read_sql('SELECT * FROM dailyCases', conn) 61 62 #convert date to python datetime type object 63 def fun(x): 64 return datetime.strptime(x+str((datetime.today().year)), '%d %B %Y') 65 total['date'] = total['date'].apply(fun) 66 67 #plot figure for total cases for each day 68 fig = plt.figure() 69 70 plt.gca().xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%d %b')) 71 plt.plot(total['date'], total['totalConfirmed'], '-o', ms=1) 72 plt.title('Total cases in India for each day') 73 plt.xlabel('Dates', fontsize=12) 74 plt.ylabel('Total cases', labelpad=0.1, fontsize=12) 75 76 def slide(event): 77 date = int(event.xdata) 78 print(event.xdata) 79 dateIndex = date - dateLoc[0]+2 80 date = total['date'].iloc[dateIndex] 81 strDate = date.strftime('%d %b') 82 #text for displaying the total cases for each day 83 str = 'Total cases on {} were {}'.format(strDate, total['totalConfirmed'].iloc[dateIndex]) 84 plt.cla() 85 plt.gca().xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%d %b')) 86 plt.plot(total['date'], total['totalConfirmed'], '-o', ms=1) 87 plt.text(x=dateLoc[0], y=50000, s=str) 88 plt.title('Total cases in India for each day') 89 plt.xlabel('Dates', fontsize=12) 90 plt.ylabel('Total cases', labelpad=0.1, fontsize=12) 91 plt.draw() 92 93 dateLoc = (plt.gca().xaxis.get_majorticklocs()) 94 dateLoc = dateLoc.astype(np.int64) 95 fig.canvas.mpl_connect('button_press_event', slide) 96 97 #plot the figure for new cases reported for each day 98 fig2 = plt.figure() 99 fig2.set_figheight(9) 100 fig2.set_figwidth(16) 101 fig2.gca().xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%d %b')) 102 plt.bar(total['date'], total['dailyConfirmed'], width=0.8, alpha=0.8) 103 plt.plot(total['date'], total['dailyConfirmed'], c='red', alpha=0.8) 104 plt.title('New cases reported in India for each day') 105 plt.xlabel('Dates', fontsize=12) 106 plt.ylabel('New cases reported', labelpad=10, fontsize=12) 107 108 def slide2(event): 109 date = int(round(event.xdata)) 110 print(event.xdata) 111 dateIndex = date - dateLoc[0]+2 112 date = total['date'].iloc[dateIndex] 113 strDate = date.strftime('%d %b') 114 # print(plt.gcf().texts()) 115 str = 'Total cases reported on {} were {}'.format(strDate, total['dailyConfirmed'].iloc[dateIndex]) 116 plt.cla() 117 plt.gca().xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%d %b')) 118 plt.bar(total['date'], total['dailyConfirmed'], alpha=0.8) 119 plt.plot(total['date'], total['dailyConfirmed'], c='red', alpha=0.8) 120 plt.annotate(xy=(event.xdata, total['dailyConfirmed'].iloc[dateIndex]), 121 xytext=(dateLoc[0], 4000), s=str, 122 arrowprops={'arrowstyle':'->'}) 123 plt.title('New cases reported in India for each day') 124 plt.xlabel('Dates', fontsize=12) 125 plt.ylabel('New cases reported', fontsize=12, labelpad=10) 126 plt.draw() 127 128 fig2.canvas.mpl_connect('button_press_event', slide2) 129 130 plt.show() 131 conn.close()
19 - refactor: consider-using-with 83 - warning: redefined-builtin 115 - warning: redefined-builtin
1 # IPython log file 2 3 import json 4 path = 'ch02/usagov_bitly_data2012-03-16-1331923249.txt' 5 records = [json.loads(line) for line in open(path)] 6 import json 7 path = 'ch2/usagov_bitly_data2012-03-16-1331923249.txt' 8 records = [json.loads(line) for line in open(path)] 9 import json 10 path = 'ch2/usagov_bitly_data2012-11-13-1352840290.txt' 11 records = [json.loads(line) for line in open(path)] 12 time_zones = [rec['tz'] for rec in records if 'tz' in rec] 13 get_ipython().magic(u'logstart') 14 ip_info = get_ipython().getoutput(u'ifconfig eth0 | grep "inet "') 15 ip_info[0].strip() 16 ip_info = get_ipython().getoutput(u'ifconfig en0 | grep "inet "') 17 ip_info[0].strip() 18 ip_info = get_ipython().getoutput(u'ifconfig en1 | grep "inet "') 19 ip_info[0].strip() 20 pdc 21 get_ipython().magic(u'debug') 22 def f(x, y, z=1): 23 tmp = x + y 24 return tmp / z 25 get_ipython().magic(u'debug (f, 1, 2, z = 3)') 26 get_ipython().magic(u'debug (f, 1, 2, z = 3)') 27 get_ipython().magic(u'debug (f, 1, 2, z = 3)') 28 def set_trace(): 29 from IPython.core.debugger import Pdb 30 Pdb(color_scheme='Linux').set_trace(sys._getframe().f_back) 31 32 def debug(f, *args, **kwargs): 33 from IPython.core.debugger import Pdb 34 pdb = Pdb(color_scheme='Linux') 35 return pdb.runcall(f, *args, **kwargs) 36 debug (f, 1, 2, z = 3) 37 set_trace() 38 class Message: 39 def __init__(self, msg): 40 self.msg = msg 41 class Message: 42 def __init__(self, msg): 43 self.msg = msg 44 def __repr__(self): 45 return 'Message: %s' % self.msg 46 x = Message('I have a secret') 47 x
5 - refactor: consider-using-with 5 - warning: unspecified-encoding 6 - warning: reimported 8 - refactor: consider-using-with 8 - warning: unspecified-encoding 9 - warning: reimported 11 - refactor: consider-using-with 11 - warning: unspecified-encoding 13 - error: undefined-variable 13 - warning: redundant-u-string-prefix 14 - error: undefined-variable 14 - warning: redundant-u-string-prefix 16 - error: undefined-variable 16 - warning: redundant-u-string-prefix 18 - error: undefined-variable 18 - warning: redundant-u-string-prefix 20 - warning: pointless-statement 20 - error: undefined-variable 21 - error: undefined-variable 21 - warning: redundant-u-string-prefix 22 - warning: redefined-outer-name 25 - error: undefined-variable 25 - warning: redundant-u-string-prefix 26 - error: undefined-variable 26 - warning: redundant-u-string-prefix 27 - error: undefined-variable 27 - warning: redundant-u-string-prefix 30 - warning: protected-access 30 - error: undefined-variable 32 - warning: redefined-outer-name 38 - refactor: too-few-public-methods 41 - error: function-redefined 41 - refactor: too-few-public-methods 47 - warning: pointless-statement
1 import random 2 3 def lottery_sim(my_picks, num_tickets): 4 ticket = 1 5 winners = {3:0,4:0,5:0,6:0} 6 for i in range(num_tickets): 7 ticket+=1 8 drawing = random.sample(range(1, 53), 6) 9 correct = 0 10 for i in my_picks: 11 if i in drawing: 12 correct+=1 13 if correct == 3: 14 winners[3]+=1 15 16 elif correct == 4: 17 winners[4]+=1 18 19 elif correct == 5: 20 winners[5]+=1 21 22 elif correct == 6: 23 winners[6]+=1 24 25 return winners 26 27 lottery_sim([17,3,44,22,15,37], 100000)
Clean Code: No Issues Detected
1 #!/usr/bin/python3 2 3 import argparse 4 import subprocess 5 import re 6 7 8 HEIGHT_OFFSET = 60 9 10 class Rectangle: 11 def __init__(self, x, y, w, h): 12 self.x = int(x) # origin x 13 self.y = int(y) # origin y 14 self.w = int(w) # width 15 self.h = int(h) # height 16 17 def __str__(self): 18 return str(self.x) + ',' + str(self.y) + ',' \ 19 + str(self.w) + ',' + str(self.h) 20 21 def __repr__(self): 22 return "position: (" + str(self.x) + \ 23 "," + str(self.y) + ')'\ 24 ", size: " + str(self.w) + \ 25 "," + str(self.h) + ')' 26 27 28 # example ['1366x768+1024+373', '1024x768+0+0'] 29 def get_displays(): 30 out = str(execute('xrandr')) 31 32 # remove occurrences of 'primary' substring 33 out = out.replace("primary ", "") 34 35 # we won't match displays that are disabled (no resolution) 36 out = out.replace("connected (", "") 37 38 start_flag = " connected " 39 end_flag = " (" 40 resolutions = [] 41 for m in re.finditer(start_flag, out): 42 # start substring in the end of the start_flag 43 start = m.end() 44 # end substring before the end_flag 45 end = start + out[start:].find(end_flag) 46 47 resolutions.append(out[start:end]) 48 49 displays = [] 50 for r in resolutions: 51 width = r.split('x')[0] 52 height, x, y = r.split('x')[1].split('+') 53 displays.append(Rectangle(x, y, width, int(height)-HEIGHT_OFFSET)) 54 55 return displays 56 57 58 def parse_arguments(): 59 parser = argparse.ArgumentParser(description='Tile tool') 60 parser.add_argument('-t', '--tile', dest='tile', 61 choices=['left', 'right', 'top', 'bottom'], 62 help='tile relatively to display') 63 parser.add_argument('-w', '--tile-window', dest='tile_w', 64 choices=['left', 'right', 'top', 'bottom'], 65 help='tile relatively to window itself') 66 parser.add_argument('-s', '--switch-display', dest='switch_display', 67 action='store_true', 68 help='move window to next display') 69 parser.add_argument('-c', '--change-to-display', dest='display', 70 type=int, help='move window to specified display') 71 parser.add_argument('-m', '--maximize', dest='maximize', 72 action='store_true', help='maximize window') 73 return parser.parse_args() 74 75 76 def execute(cmd): 77 print('$ ' + cmd) 78 return subprocess.check_output(['bash', '-c', cmd]) 79 80 81 def get_active_window(): 82 cmd = 'xdotool getactivewindow getwindowgeometry' 83 flag_pos_start = "Position: " 84 flag_pos_end = " (screen:" 85 flag_geom_start = "Geometry: " 86 flag_geom_end = "\\n" 87 88 r = str(execute(cmd)) 89 90 str_pos = r[r.find(flag_pos_start) + len(flag_pos_start) \ 91 : r.find(flag_pos_end)] 92 str_geom = r[r.find(flag_geom_start) + len(flag_geom_start) \ 93 : r.rfind(flag_geom_end)] 94 95 pos = str_pos.split(',') 96 geom = str_geom.split('x') 97 98 return Rectangle(pos[0], pos[1], geom[0], geom[1]) 99 100 101 def window_is_in_display(w, d): 102 return (d.x <= w.x <= d.x+d.w) and (d.y <= w.y <= d.y+d.h) 103 104 105 def get_display(displays, active): 106 w = get_active_window() 107 for d in displays: 108 if window_is_in_display(w, d): 109 if active: 110 return d 111 else: 112 if not active: 113 return d 114 115 116 def get_active_display(displays): 117 return get_display(displays, True) 118 119 120 def get_inactive_display(displays): 121 return get_display(displays, False) 122 123 124 def set_window(x, y, w, h): 125 cmd_header = 'wmctrl -r ":ACTIVE:" -e 0,' 126 127 cmd = cmd_header + str(x) + ',' + str(y) + ',' + str(w) + ',' + str(h) 128 execute(cmd) 129 130 131 def tile(direction, basis, display): 132 x = basis.x 133 y = basis.y 134 w = basis.w 135 h = basis.h 136 137 if direction == 'left': 138 w = int(display.w/2) 139 x = display.x 140 elif direction == 'right': 141 w = int(display.w/2) 142 x = display.x + w 143 elif direction == 'top': 144 h = int(display.h/2) 145 y = display.y 146 elif direction == 'bottom': 147 h = int(display.h/2) 148 y = display.y + h 149 150 set_window(x, y, w, h) 151 152 153 def main(): 154 args = parse_arguments() 155 displays = get_displays() 156 157 if args.tile: 158 display = get_active_display(displays) 159 tile(args.tile, display, display) 160 161 if args.tile_w: 162 display = get_active_display(displays) 163 window = get_active_window() 164 # the get is 2 pixels more than the real value 165 window.x -= 2 166 tile(args.tile_w, window, display) 167 168 if args.display is not None: 169 d = displays[args.display] 170 set_window(d.x, d.y, d.w, d.h) 171 172 if args.switch_display: 173 d = get_inactive_display(displays) 174 set_window(d.x, d.y, d.w, d.h) 175 176 if args.maximize: 177 d = get_active_display(displays) 178 set_window(d.x, d.y, d.w, d.h) 179 180 181 if __name__ == "__main__": 182 main()
102 - warning: bad-indentation 105 - refactor: inconsistent-return-statements
1 import requests 2 import sqlite3 3 from sqlite3 import Error 4 from bs4 import BeautifulSoup 5 6 # Create the Cumulative database 7 CTeamStats = sqlite3.connect('CumulativeTeamStats.db') 8 9 # This vector will be used to collect every team from 2012 to 2019 10 yearList = ['2012', '2013', '2014', '2015', '2016', '2017', '2018', '2019'] 11 12 #Function to create the tables from 2012-2019 13 def cumulative_team_stats_table(): 14 #cts -> cumulative team stats 15 cts = CTeamStats.cursor() 16 table_values = '(Team_Name TEXT, Wins INTEGER, Runs INTEGER, Run_Differential INTEGER, WAR INTEGER, WPA INTEGER, Dollars REAL, Batter TEXT, AVG REAL, OBP REAL, SLG REAL, OPS REAL, wOBA REAL, wRCplus REAL, BBperc TEXT, Kperc TEXT, Spd REAL, Def REAL, BWAR REAL, BWPA REAL, BDollars TEXT, Pitcher TEXT, ERA REAL, ERAminus REAL, WHIP REAL, FIPx REAL, FIPxminus REAL, Kper9 REAL, Kper9plus REAL, HRper9 REAL, GBperc REAL, PWAR REAL, PWPA REAL, PDollars TEXT)' 17 #concatenate the string 18 cts.execute('CREATE TABLE IF NOT EXISTS Cumulative_Team_Stats' + table_values) 19 cts.close() 20 21 #Fucntion used to enter the data of a team into the cts database 22 def data_entry(year, team_name, wins, runs, rd, war, wpa, dollar, batter, avg, obp, slg, ops, woba, wrc, bb, k, spd, defense, bwar, bwpa, bdollar, pitcher, era, eramin, whip, fipx, fipxmin, kper9, kper9plus, hrper9, gbperc, pwar, pwpa, pdollar): 23 cts = CTeamStats.cursor() 24 insertStatement = "INSERT INTO Cumulative_Team_Stats (Team_Name, Wins, Runs, Run_Differential, WAR, WPA, Dollars, Batter, AVG, OBP, SLG, OPS, wOBA, wRCplus, BBperc, Kperc, Spd, Def, BWAR, BWPA, BDollars, Pitcher, ERA, ERAminus, WHIP, FIPx, FIPxminus, Kper9, Kper9plus, HRper9, GBperc, PWAR, PWPA, PDollars) VALUES(?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)" 25 statTuple = (year + team_name, wins, runs, rd, war, wpa, dollar, batter, avg, obp, slg, ops, woba, wrc, bb, k, spd, defense, bwar, bwpa, bdollar, pitcher, era, eramin, whip, fipx, fipxmin, kper9, kper9plus, hrper9, gbperc, pwar, pwpa, pdollar) 26 cts.execute(insertStatement, statTuple) 27 CTeamStats.commit() 28 cts.close() 29 30 #Function used to scrape fangraphs to get all of the desired team statistics 31 def web_scrape(teamList, year): 32 #adds all the pitcher stats from the teams 33 source = requests.get('https://www.fangraphs.com/leaders.aspx?pos=all&stats=pit&lg=all&qual=0&type=c,6,117,62,119,36,301,40,48,63,60,4,59,32,17,42&season=' + year + '&month=0&season1=' + year + '&ind=0&team=0,ts&rost=0&age=0&filter=&players=0&startdate=2019-01-01&enddate=2019-12-31&sort=1,a').text 34 soup = BeautifulSoup(source, "html.parser") 35 #use the identifier class to scrape the right table 36 table = soup.find('table', class_ = 'rgMasterTable') 37 table_rows = table.find_all('tr') 38 #Scrape all the data from the table 39 for tr in table_rows: 40 td = tr.find_all('td') 41 row = [i.text for i in td] 42 del row[:1] 43 #Simple conditional checks to make sure all the data looks the same 44 if len(row) != 0: 45 row[8] = row[8][:-1] 46 if row[10] == '($1.9)': 47 row = '$1.9' 48 row[10] = row[10][1:] 49 teamList.append(row) 50 #adds all the batter stats to the teams 51 source = requests.get('https://www.fangraphs.com/leaders.aspx?pos=all&stats=bat&lg=all&qual=0&type=c,12,34,35,23,37,38,50,61,199,58,62,59,60,13,39&season=' + year + '&month=0&season1=' + year + '&ind=0&team=0,ts&rost=0&age=0&filter=&players=0&startdate=2019-01-01&enddate=2019-12-31&sort=1,a').text 52 soup = BeautifulSoup(source, "html.parser") 53 table = soup.find('table', class_ = 'rgMasterTable') 54 table_rows = table.find_all('tr') 55 #Scrape all the data from the table 56 for tr in table_rows: 57 td = tr.find_all('td') 58 row = [i.text for i in td] 59 del row[:2] 60 if len(row) != 0: 61 row[1] = row[1][:-1] 62 row[2] = row[2][:-1] 63 if row[11] == '($20.6)': 64 row[11] = '$20.6' 65 if row[11] == '($19.0)': 66 row[11] = '$19.0' 67 row[11] = row[11][1:] 68 teamList.append(row) 69 #Check to make the correct data is being added 70 71 #Main Program 72 def main(): 73 cumulative_team_stats_table() 74 #for every year in the vector yearList 75 for i in range(len(yearList)): 76 teamList = [] 77 #Scrape the table for the entire year 78 web_scrape(teamList, yearList[i]) 79 #Enter the data for all 30 major league teams 80 for j in range(30): 81 data_entry(yearList[i], teamList[j][0], teamList[j][11], int(teamList[j][13]), int(teamList[j+30][13]) - int(teamList[j][14]), round(float(teamList[j][12]) + float(teamList[j+30][9]), 3), round(float(teamList[j][9]) + float(teamList[j+30][10]), 3), round(float(teamList[j][10]) + float(teamList[j+30][11]), 3), '-', float(teamList[j+30][3]), float(teamList[j+30][4]), float(teamList[j+30][5]), float(teamList[j+30][14]), float(teamList[j+30][6]), int(teamList[j+30][7]), float(teamList[j+30][1]), float(teamList[j+30][2]), float(teamList[j+30][12]), float(teamList[j+30][8]), float(teamList[j+30][9]), float(teamList[j+30][10]), float(teamList[j+30][11]), '-', float(teamList[j][1]), int(teamList[j][2]), float(teamList[j][15]), float(teamList[j][3]), float(teamList[j][4]), float(teamList[j][5]), float(teamList[j][6]), float(teamList[j][7]), float(teamList[j][8]), float(teamList[j][12]), float(teamList[j][9]), float(teamList[j][10])) 82 83 if __name__ == "__main__": 84 main()
22 - refactor: too-many-arguments 22 - refactor: too-many-positional-arguments 22 - refactor: too-many-locals 33 - warning: missing-timeout 51 - warning: missing-timeout 3 - warning: unused-import
1 import requests 2 import sqlite3 3 from sqlite3 import Error 4 from bs4 import BeautifulSoup 5 6 # Create the batter pool database 7 BatterPool = sqlite3.connect('TeamBatterPool.db') 8 9 positionList = ['c', '1b', '2b', 'ss', '3b', 'rf', 'cf', 'lf', 'dh'] 10 yearList = ['2010', '2011', '2012', '2013', '2014', '2015', '2016', '2017', '2018', '2019'] 11 teamList = ["Los_Angeles_Angels", "Baltimore_Orioles", "Boston_Red_Sox", "White_Sox", "Cleveland_Indians", "Detroit_Tigers", "Kansas_City_Royals", "Minnesota_Twins", "New_York_Yankees", "Oakland_Athletics", "Seattle_Mariners", "Tamba_Bay_Rays", "Texas_Rangers", "Toronto_Blue_Jays", "Arizona_Diamondbacks", "Atlanta_Braves", "Chicago_Cubs", "Cincinatti_Reds", "Colarado_Rockies", "Miami_Marlins", "Houston_Astros", "Los_Angeles_Dodgers", "Milwaukee_Brewers", "Washingon_Nationals", "New_York_Mets", "Philadelphia_Phillies", "Pittsburgh_Pirates", "St_Louis_Cardinals", "San_Diego_Padres", "San_Francisco_Giants"] 12 source = "https://www.baseball-reference.com/players/t/troutmi01.shtml" 13 14 def batter_pool_table(team_name, year): 15 bp = BatterPool.cursor() 16 #concanate the string 17 table_values = '(Player_Name TEXT, Age INTEGER, Position TEXT, WAR REAL, WPA REAL, wRCplus REAL, PA INTEGER, AVG REAL, OBP REAL, SLG REAL, OPS REAL, BABIP REAL, wOBA REAL, BBperc REAL, Kperc REAL, SPD REAL, DEF REAL, Worth TEXT)' 18 bp.execute('CREATE TABLE IF NOT EXISTS _' + year + team_name + table_values) 19 bp.close() 20 21 def data_entry(team_name, year, player_name, age, position, war, wpa, rcplus, pa, avg, obp, slg, ops, babip, oba, bbpec, kperc, speed, defense, worth): 22 bp = BatterPool.cursor() 23 insertStatement = "INSERT INTO _" + year + team_name + " (Player_Name, Age, Position, WAR, WPA, wRCplus, PA, AVG, OBP, SLG, OPS, BABIP, wOBA, BBperc, Kperc, SPD, DEF, Worth) VALUES(?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)" 24 statTuple = (player_name, age, position, war, wpa, rcplus, pa, avg, obp, slg, ops, babip, oba, bbpec, kperc, speed, defense, worth) 25 bp.execute(insertStatement, statTuple) 26 BatterPool.commit() 27 bp.close() 28 29 def web_scrape(playerList): 30 source = requests.get("https://www.baseball-reference.com/players/g/guerrvl01.shtml#all_br-salaries").text 31 soup = BeautifulSoup(source, "html.parser") 32 table = soup.find('table', id = 'batting_value') 33 table_rows = table.find_all('tr') 34 #Scrape all the data from the table 35 for tr in table_rows: 36 td = tr.find_all('td') 37 #th = tr.find('th') 38 row = [i.text for i in td] 39 #row.append(th.text) 40 playerList.append(row) 41 ''' 42 table = soup.find('table', id = 'batting_standard') 43 table_rows = table.find_all('tr') 44 #Scrape all the data from the table 45 for tr in table_rows: 46 td = tr.find_all('td') 47 th = tr.find('th') 48 row = [i.text for i in td] 49 row.append(th.text) 50 playerList.append(row) 51 ''' 52 53 playerList = [] 54 web_scrape(playerList) 55 print(playerList)
21 - refactor: too-many-arguments 21 - refactor: too-many-positional-arguments 21 - refactor: too-many-locals 29 - warning: redefined-outer-name 30 - warning: redefined-outer-name 30 - warning: missing-timeout 41 - warning: pointless-string-statement 3 - warning: unused-import
1 import requests 2 import sqlite3 3 from sqlite3 import Error 4 from bs4 import BeautifulSoup 5 6 # Create the top 100 database 7 Top100 = sqlite3.connect('Top100Prospects.db') 8 9 #Year list for the top 100 prospects 10 yearList = ['2012', '2013', '2014', '2015', '2016', '2017', '2018', '2019'] 11 12 #Function to create the tables from 2012-2019 13 def top_100_table(year): 14 tp = Top100.cursor() 15 #concatenate the string 16 table_values = '(Rank INTEGER, Player_Name TEXT, Team TEXT, Organization_Rank TEXT, Age INTEGER, Position TEXT, MLB_Est TEXT)' 17 tp.execute('CREATE TABLE IF NOT EXISTS _' + year + 'Top100Prospects' + table_values) 18 tp.close() 19 20 #Function to enter the data into the respective SQLite table 21 def data_entry(year, rank, player_name, team, organization_rank, age, position, mlb_est): 22 tp = Top100.cursor() 23 insertStatement = "INSERT INTO _" + year + "Top100Prospects (Rank, Player_Name, Team, Organization_Rank, Age, Position, MLB_Est) VALUES(?, ?, ?, ?, ?, ?, ?)" 24 statTuple = (rank, player_name, team, organization_rank, age, position, mlb_est) 25 tp.execute(insertStatement, statTuple) 26 Top100.commit() 27 tp.close() 28 29 #Function to web scrape The Baseball Cube for the top 100 prospects 30 def web_scrape(playerList, year): 31 source = requests.get('http://www.thebaseballcube.com/prospects/years/byYear.asp?Y=' + year + '&Src=ba').text 32 soup = BeautifulSoup(source, "html.parser") 33 table = soup.find('table', id = 'grid2') 34 table_rows = table.find_all('tr') 35 for tr in table_rows: 36 td = tr.find_all('td') 37 row = [i.text for i in td] 38 #Manipulates the data that is not needed 39 if len(row) > 9: 40 row[9] = row[9][:4] 41 row[13] = row[13][:4] 42 del row[-2:] 43 del row[10:13] 44 del row[5:9] 45 playerList.append(row) 46 #removes the table labels that are not needed 47 del playerList[:2] 48 del playerList[25] 49 del playerList[50] 50 del playerList[75] 51 del playerList[100] 52 53 54 def main(): 55 #create the database for every top 100 prospect from 2012-2019 56 for i in range(len(yearList)): 57 #call the method to create 8 tables 58 top_100_table(yearList[i]) 59 #stores the data of all available free agent 60 playerList = [] 61 #call web_scrape method 62 web_scrape(playerList, yearList[i]) 63 for j in range(len(playerList)): 64 #insert the top100prospect data 65 data_entry(yearList[i], int(playerList[j][0]), playerList[j][1], playerList[j][2], playerList[j][3], int(yearList[i]) - int(playerList[j][5]) + 1, playerList[j][4], playerList[j][6]) 66 67 if __name__ == "__main__": 68 main()
21 - refactor: too-many-arguments 21 - refactor: too-many-positional-arguments 31 - warning: missing-timeout 3 - warning: unused-import
1 import requests 2 import sqlite3 3 from sqlite3 import Error 4 from bs4 import BeautifulSoup 5 6 # Create the free agency database 7 FreeAgency = sqlite3.connect('FreeAgency.db') 8 9 10 # List to gather every year from 2012 to 2019 11 yearList = ['2012', '2013', '2014', '2015', '2016', '2017', '2018', '2019'] 12 13 #Create the Free Agency Pool from 2012-2019 14 def free_agency_table(year): 15 fa = FreeAgency.cursor() 16 #concatenate the string 17 table_values = '(Player_Name TEXT, Age INTEGER, Position TEXT, FA_Type TEXT, Rank INTEGER, Years INTEGER, Amount TEXT)' 18 fa.execute('CREATE TABLE IF NOT EXISTS _' + year + 'FA_Class' + table_values) 19 fa.close() 20 21 #Enter the data of a player into the respective table 22 def data_entry(year, player_name, age, position, fa_type, rank, years, amount): 23 fa = FreeAgency.cursor() 24 insertStatement = "INSERT INTO _" + year + "FA_Class (Player_Name, Age, Position, FA_Type, Rank, Years, Amount) VALUES(?, ?, ?, ?, ?, ?, ?)" 25 statTuple = (player_name, age, position, fa_type, rank, years, amount) 26 fa.execute(insertStatement, statTuple) 27 FreeAgency.commit() 28 fa.close() 29 30 #Scrapes ESPN for all of the Free Agents for a given year 31 def web_scrape(playerList, year): 32 source = requests.get('http://www.espn.com/mlb/freeagents/_/year/' + year).text 33 soup = BeautifulSoup(source, "html.parser") 34 table = soup.find('table') 35 table_rows = table.find_all('tr') 36 #Scrape all the data from the table 37 for tr in table_rows: 38 td = tr.find_all('td') 39 row = [i.text for i in td] 40 #Check to make the correct data is being added 41 if row[0] != 'PLAYER' and row[0] != 'Free Agents': 42 playerList.append(row) 43 #Remove 2011 team and new team 44 for i in range(len(playerList)): 45 del playerList[i][4:6] 46 47 #Function to modify the player list since some of the data from ESPN is not ideal for sorting purposes 48 def modifyPlayerList(playerList, i, j): 49 if playerList[j][3] == 'Signed (A)': 50 playerList[j][3] = 'A' 51 elif playerList[j][3] == 'Signed (B)': 52 playerList[j][3] = 'B' 53 else: 54 playerList[j][3] = 'None' 55 #set the age to the correct number 56 playerList[j][2] = int(playerList[j][2]) 57 playerList[j][2] -= (2020 - int(yearList[i])) 58 #set the rank of the players, 51 is a place holder 59 if playerList[j][5] == 'NR': 60 playerList[j][5] = 51 61 else: 62 playerList[j][5] = int(playerList[j][5]) 63 playerList[j][5] = 51 if playerList[j][5] == 'NR' else int(playerList[j][5]) 64 #correct dollar amount FA 65 if playerList[j][6] == '--' or playerList[j][6] == 'Minor Lg': 66 playerList[j][4] = '0' 67 if playerList[j][6] == '--': 68 playerList[j][6] = 'Not Signed' 69 70 #Main function to create the free agent database which contains every free agent from 2012 to 2019 71 def main(): 72 #create the database for every freeagent from 2011-2020 73 for i in range(len(yearList)): 74 #call the method to create 10 tables 75 free_agency_table(yearList[i]) 76 #stores the data of all available free agent 77 playerList = [] 78 #call web_scrape method 79 web_scrape(playerList, yearList[i]) 80 print(playerList) 81 for j in range(len(playerList)): 82 #modify list method 83 modifyPlayerList(playerList, i, j) 84 #insert the free agent data 85 data_entry(yearList[i], playerList[j][0], int(playerList[j][2]), playerList[j][1], playerList[j][3], playerList[j][5], int(playerList[j][4]), playerList[j][6]) 86 87 if __name__ == "__main__": 88 main()
22 - refactor: too-many-arguments 22 - refactor: too-many-positional-arguments 32 - warning: missing-timeout 3 - warning: unused-import
1 import requests 2 import sqlite3 3 from sqlite3 import Error 4 from bs4 import BeautifulSoup 5 6 # Create the pitcher pool database 7 PitcherPool = sqlite3.connect('TeamPitcherPool1.db') 8 9 yearList = ['2012', '2013', '2014', '2015', '2016', '2017', '2018', '2019'] 10 teamList = ["Los_Angeles_Angels", "Baltimore_Orioles", "Boston_Red_Sox", "White_Sox", "Cleveland_Indians", "Detroit_Tigers", "Kansas_City_Royals", "Minnesota_Twins", "New_York_Yankees", "Oakland_Athletics", "Seattle_Mariners", "Tamba_Bay_Rays", "Texas_Rangers", "Toronto_Blue_Jays", "Arizona_Diamondbacks", "Atlanta_Braves", "Chicago_Cubs", "Cincinatti_Reds", "Colarado_Rockies", "Miami_Marlins", "Houston_Astros", "Los_Angeles_Dodgers", "Milwaukee_Brewers", "Washingon_Nationals", "New_York_Mets", "Philadelphia_Phillies", "Pittsburgh_Pirates", "St_Louis_Cardinals", "San_Diego_Padres", "San_Francisco_Giants"] 11 source = "https://www.fangraphs.com/leaders.aspx?pos=all&stats=pit&lg=all&qual=0&type=c,3,59,45,118,6,117,42,7,13,36,40,48,60,63&season=2011&month=0&season1=2011&ind=0&team=1&rost=0&age=0&filter=&players=0&startdate=2011-01-01&enddate=2011-12-31" 12 13 #Function to create the tables from 2012-2019 14 def pitcher_pool_table(year, team_name): 15 pp = PitcherPool.cursor() 16 #concatenate the string 17 table_values = '(Player_Name TEXT, Age INTEGER, IP REAL, WAR REAL, WPA REAL, FIPx REAL, FIPXminus REAL, ERA REAL, ERAminus REAL, WHIP REAL, Kper9 REAL, HRper9 REAL, GBperc REAL, Worth TEXT)' 18 pp.execute('CREATE TABLE IF NOT EXISTS _' + year + team_name + table_values) 19 pp.close() 20 21 #Function to enter the data into the respective SQLite table 22 def data_entry(team_name, year, player_name, age, innings_pitched, war, wpa, fipx, fipx_minus, era, era_minus, whip, kPer9, hrPer9, gb_percentage, worth): 23 pp = PitcherPool.cursor() 24 insertStatement = "INSERT INTO _" + year + team_name + " (Player_Name, Age, IP, WAR, WPA, FIPx, FIPXminus, ERA, ERAminus, WHIP, Kper9, HRper9, GBperc, Worth) VALUES(?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)" 25 statTuple = (player_name, age, innings_pitched, war, wpa, fipx, fipx_minus, era, era_minus, whip, kPer9, hrPer9, gb_percentage, worth) 26 pp.execute(insertStatement, statTuple) 27 PitcherPool.commit() 28 pp.close() 29 30 #Function to web scrape FanGraphs for every the pitcher on every team 31 def web_scrape(playerList, year, team): 32 source = requests.get("https://www.fangraphs.com/leaders.aspx?pos=all&stats=pit&lg=all&qual=0&type=c,3,59,45,118,6,117,42,7,13,36,40,48,60,63&season=" + year + "&month=0&season1=" + year + "&ind=0&team=" + str(team + 1) + "&rost=0&age=0&filter=&players=0&startdate=2011-01-01&enddate=2011-12-31").text 33 soup = BeautifulSoup(source, "html.parser") 34 table = soup.find('table', class_ = 'rgMasterTable') 35 table_rows = table.find_all('tr') 36 #Scrape all the data from the table 37 for tr in table_rows: 38 td = tr.find_all('td') 39 row = [i.text for i in td] 40 if len(row) == 16: 41 playerList.append(row) 42 43 #main function to add the desired pitcher stats for every team from 2012 to 2019 44 def main(): 45 counter = 0 46 #iterate through every year 47 for h in range(len(yearList)): 48 #iterate through every team 49 for i in range(30): 50 pitcher_pool_table(yearList[h], teamList[i]) 51 playerList = [] 52 web_scrape(playerList, yearList[h], i) 53 #iterate through every player 54 for k in range(len(playerList)): 55 counter += 1 56 data_entry(teamList[i], yearList[h], playerList[k][1], playerList[k][2], playerList[k][10], playerList[k][3], playerList[k][15], playerList[k][4], playerList[k][5], playerList[k][6], playerList[k][7], playerList[k][8], playerList[k][11], playerList[k][12], playerList[k][13], playerList[k][14]) 57 print(counter) 58 59 if __name__ == "__main__": 60 main()
22 - refactor: too-many-arguments 22 - refactor: too-many-positional-arguments 22 - refactor: too-many-locals 32 - warning: redefined-outer-name 32 - warning: missing-timeout 3 - warning: unused-import
1 import requests 2 import sqlite3 3 from sqlite3 import Error 4 from bs4 import BeautifulSoup 5 6 # Create the free agency database 7 International = sqlite3.connect('InternationalProspects.db') 8 9 10 # List for the Free Agency Pool 11 yearList = ['2015', '2016', '2017', '2018', '2019'] 12 13 #Create the International Table from 2015-2019 14 def international_table(year): 15 ip = International.cursor() 16 #concanate the string 17 table_values = '(Rank INTEGER, Player_Name TEXT, Position TEXT, Age INTEGER, Projected_Team TEXT, Future_Value TEXT)' 18 ip.execute('CREATE TABLE IF NOT EXISTS _' + year + 'TopInternationalClass' + table_values) 19 ip.close() 20 21 #Enter the data of a player into the respective table 22 def data_entry(year, rank, player_name, position, age, proj_team, fut_val): 23 ip = International.cursor() 24 #need the underscore because a table can't start with a number 25 insertStatement = "INSERT INTO _" + year + "International_Prospects (Rank, Player_Name, Team, Organization_Rank, Age, Position, MLB_Est) VALUES(?, ?, ?, ?, ?, ?, ?)" 26 statTuple = (rank, player_name, position, age, proj_team, fut_val) 27 ip.execute(insertStatement, statTuple) 28 International.commit() 29 ip.close() 30 31 #Scrapes ESPN for all of the Free Agents for a given year 32 def web_scrape(playerList, year): 33 #URL changes based on the year 34 source = requests.get('https://www.fangraphs.com/prospects/the-board/' + year + '-international/summary?sort=-1,1&type=0&pageitems=200&pg=0').text 35 soup = BeautifulSoup(source, "html.parser") 36 table = soup.find_all('table') 37 for table_rows in table: 38 table_row = table_rows.find_all('tr') 39 #Scrape all the data from the table 40 for tr in table_row: 41 td = tr.find_all('td') 42 row = [i.text for i in td] 43 playerList.append(row) 44 45 #main function to create the database of all the top international free agents from 2015-2019 46 def main(): 47 #5 tables will be created in sqLite with all available international free agents from fangraphs 48 for i in range(len(yearList)): 49 international_table(yearList[i]) 50 51 if __name__ == "__main__": 52 main()
22 - refactor: too-many-arguments 22 - refactor: too-many-positional-arguments 34 - warning: missing-timeout 3 - warning: unused-import
1 import requests 2 import sqlite3 3 from sqlite3 import Error 4 from bs4 import BeautifulSoup 5 6 #Creates the player draft database 7 PlayerDraft = sqlite3.connect('PlayerDraft.db') 8 9 yearList = ['2012', '2013', '2014', '2015', '2016', '2017', '2018', '2019'] 10 11 #Function to create the player draft tables 12 def player_draft_table(year): 13 pd = PlayerDraft.cursor() 14 #concanate the string 15 table_values = '(Player_Name TEXT, Rank INTEGER, Position TEXT, School TEXT)' 16 pd.execute('CREATE TABLE IF NOT EXISTS _' + year + 'Draft_Class' + table_values) 17 pd.close() 18 19 #Inserts the data into the table 20 def data_entry(year, player_name, rank, position, school): 21 pd = PlayerDraft.cursor() 22 insertStatement = "INSERT INTO _" + year + "Draft_Class (Player_Name, Rank, Position, School) VALUES(?, ?, ?, ?)" 23 statTuple = (player_name, rank, position, school) 24 pd.execute(insertStatement, statTuple) 25 PlayerDraft.commit() 26 pd.close() 27 28 #Scrapes the internet from Baseball Almanac 29 def web_scrape(draftList, year): 30 source = requests.get('https://www.baseball-almanac.com/draft/baseball-draft.php?yr=' + year).text 31 soup = BeautifulSoup(source, "html.parser") 32 table = soup.find('table') 33 table_rows = table.find_all('tr') 34 #Scrape all the data from the table 35 for tr in table_rows: 36 td = tr.find_all('td') 37 row = [i.text for i in td] 38 #Adds the top 200 prospects for every year 39 if len(draftList) > 201: 40 break 41 draftList.append(row) 42 43 #main function to create a database for the top prospects from 2012-2019 44 def main(): 45 for i in range(len(yearList)): 46 player_draft_table(yearList[i]) 47 draftList = [] 48 web_scrape(draftList, yearList[i]) 49 #removes the heading of the table due to the structure on Baseball Almanac 50 draftList.pop(0) 51 draftList.pop(0) 52 for j in range(len(draftList)): 53 data_entry(yearList[i], draftList[j][3], draftList[j][1], draftList[j][5], draftList[j][6]) 54 55 if __name__ == "__main__": 56 main()
30 - warning: missing-timeout 3 - warning: unused-import
1 # def test_no_cors_enabled(): 2 # assert False
Clean Code: No Issues Detected
1 from flask import Response 2 from flask.testing import FlaskClient 3 4 5 # def test_with_origin(client: FlaskClient): 6 # response: Response = client.options('/some-request', headers={ 7 # 'Access-Control-Request-Method': 'POST', 8 # 'Access-Control-Request-Headers': 'Content-Type, X-Custom', 9 # 'Origin': 'https://test.org' 10 # }) 11 # assert response.status_code == 404 12 # assert 'Access-Control-Max-Age' in response.headers 13 # assert response.headers.get('Access-Control-Allow-Origin') == 'https://test.org' 14 15 16 def test_with_origin(client: FlaskClient): 17 response: Response = client.options('/some-request', headers={ 18 'Origin': 'https://test.org' 19 }) 20 assert response.status_code == 404 21 assert 'Access-Control-Allow-Origin'.lower() in response.headers 22 assert 'Access-Control-Max-Age'.lower() in response.headers 23 assert response.headers.get('Access-Control-Allow-Origin') is not None 24 assert response.headers.get('Access-Control-Allow-Origin') == 'https://test.org' 25 assert response.headers.get('Access-Control-Max-Age') is not None 26 assert response.headers.get('Access-Control-Max-Age') != '' 27 28 29 def test_without_origin(client: FlaskClient): 30 response: Response = client.options('/some-request', headers={ 31 }) 32 assert response.status_code == 404 33 assert 'Access-Control-Allow-Origin'.lower() not in response.headers 34 assert 'Access-Control-Max-Age'.lower() not in response.headers 35 assert 'Access-Control-Allow-Methods'.lower() not in response.headers 36 assert 'Access-Control-Allow-Headers'.lower() not in response.headers 37 38 39 def test_allow_method(client: FlaskClient): 40 response: Response = client.options('/some-request', headers={ 41 'Access-Control-Request-Method': 'POST', 42 'Origin': 'https://test.org' 43 }) 44 assert response.status_code == 404 45 assert 'Access-Control-Allow-Methods'.lower() in response.headers 46 assert 'POST' in response.headers.get('Access-Control-Allow-Methods') 47 assert 'Access-Control-Max-Age'.lower() in response.headers 48 assert response.headers.get('Access-Control-Allow-Origin') == 'https://test.org' 49 assert 'Access-Control-Allow-Headers'.lower() not in response.headers 50 51 52 def test_dont_allow_method(client: FlaskClient): 53 response: Response = client.options('/some-request', headers={ 54 'Access-Control-Request-Method': 'PATCH', 55 'Origin': 'https://test.org' 56 }) 57 assert response.status_code == 404 58 assert 'Access-Control-Allow-Methods'.lower() not in response.headers 59 assert 'Access-Control-Max-Age'.lower() in response.headers 60 assert response.headers.get('Access-Control-Allow-Origin') == 'https://test.org' 61 assert 'Access-Control-Allow-Headers'.lower() not in response.headers 62 63 64 def test_allow_headers(client: FlaskClient): 65 response: Response = client.options('/some-request', headers={ 66 'Access-Control-Request-Headers': 'Content-Type, X-Test-Header', 67 'Origin': 'https://test.org' 68 }) 69 assert response.status_code == 404 70 assert 'Access-Control-Allow-Headers'.lower() in response.headers 71 assert 'Content-Type' in response.headers.get('Access-Control-Allow-Headers') 72 assert 'X-Test-Header' in response.headers.get('Access-Control-Allow-Headers') 73 assert 'Access-Control-Max-Age'.lower() in response.headers 74 assert response.headers.get('Access-Control-Allow-Origin') == 'https://test.org' 75 assert 'Access-Control-Allow-Methods'.lower() not in response.headers 76 77 78 def test_dont_allow_headers(client: FlaskClient): 79 response: Response = client.options('/some-request', headers={ 80 'Access-Control-Request-Headers': 'Content-Type, X-Test-Header, X-Not-Allowed', 81 'Origin': 'https://test.org' 82 }) 83 assert response.status_code == 404 84 assert 'Access-Control-Allow-Headers'.lower() not in response.headers 85 assert 'Access-Control-Max-Age'.lower() in response.headers 86 assert response.headers.get('Access-Control-Allow-Origin') == 'https://test.org' 87 assert 'Access-Control-Allow-Methods'.lower() not in response.headers
Clean Code: No Issues Detected
1 import pytest 2 from flask import Flask 3 4 from yafcorse import Yafcorse 5 6 7 @pytest.fixture() 8 def app(): 9 app = Flask(__name__) 10 11 cors = Yafcorse({ 12 'origins': '*', 13 'allowed_methods': ['GET', 'POST', 'PUT'], 14 'allowed_headers': ['Content-Type', 'X-Test-Header'], 15 'allow_credentials': True, 16 'cache_max_age': str(60 * 5) 17 }) 18 cors.init_app(app) 19 20 return app 21 22 23 @pytest.fixture() 24 def client(app: Flask): 25 return app.test_client()
9 - warning: redefined-outer-name 24 - warning: redefined-outer-name
1 from flask import Flask, Response 2 from flask.testing import FlaskClient 3 4 5 def test_simple_request(client: FlaskClient): 6 response: Response = client.get('/some-request', headers={ 7 'Origin': 'https://test.org' 8 }) 9 assert response.status_code == 404 10 assert 'Access-Control-Allow-Origin'.lower() in response.headers 11 assert 'Access-Control-Max-Age'.lower() not in response.headers 12 assert response.headers.get('Access-Control-Allow-Origin') is not None 13 assert response.headers.get('Access-Control-Allow-Origin') == 'https://test.org'
1 - warning: unused-import
1 from flask.app import Flask 2 3 from yafcorse import Yafcorse 4 5 6 def test_extension(app: Flask): 7 assert app.extensions.get('yafcorse') is not None 8 assert isinstance(app.extensions.get('yafcorse'), Yafcorse)
Clean Code: No Issues Detected
1 import re 2 from typing import Callable, Iterable 3 from flask import Flask, Response, request 4 5 # Yet Another Flask CORS Extension 6 # -------------------------------- 7 # Based on https://developer.mozilla.org/de/docs/Web/HTTP/CORS 8 9 # DEFAULT_CONFIGURATION = { 10 # 'origins': '*', 11 # 'allowed_methods': ['GET', 'HEAD', 'POST', 'OPTIONS', 'PUT', 'PATCH', 'DELETE'], 12 # 'allowed_headers': '*', 13 # 'allow_credentials': True, 14 # 'cache_max_age': str(60 * 5) 15 # } 16 17 DEFAULT_CONFIGURATION = { 18 'origins': None, 19 'allowed_methods': [], 20 'allowed_headers': None, 21 'allow_credentials': False, 22 'cache_max_age': None 23 } 24 25 26 class Yafcorse(object): 27 def __init__(self, configuration: dict = DEFAULT_CONFIGURATION, app: Flask = None) -> None: 28 super().__init__() 29 self.__initialized = False 30 31 self.__origins = configuration.get('origins', DEFAULT_CONFIGURATION.get('origins')) 32 self.__regex_origin_patterns = configuration.get('origin_patterns', None) 33 self.__allowed_methods = configuration.get('allowed_methods', DEFAULT_CONFIGURATION.get('allowed_methods')) 34 self.__allowed_headers = configuration.get('allowed_headers', DEFAULT_CONFIGURATION.get('allowed_headers')) 35 self.__allow_credentials = configuration.get('allow_credentials', DEFAULT_CONFIGURATION.get('allow_credentials')) 36 self.__max_age = configuration.get('cache_max_age', DEFAULT_CONFIGURATION.get('cache_max_age')) 37 38 self.__allowed_methods_value = '' 39 self.__allowed_headers_value = '' 40 41 self.init_app(app) 42 43 def init_app(self, app: Flask): 44 if not self.__initialized and app: 45 46 self.__allowed_methods_value = ', '.join(self.__allowed_methods) 47 self.__allowed_methods = [m.strip().lower() for m in self.__allowed_methods] 48 self.__allowed_headers_value = ', '.join(self.__allowed_headers) 49 self.__allowed_headers = [h.strip().lower() for h in self.__allowed_headers] 50 51 if not isinstance(self.__origins, str) and isinstance(self.__origins, (list, tuple, Iterable)): 52 self.__validate_origin = _check_if_contains_origin(self.__origins) 53 elif isinstance(self.__origins, Callable): 54 self.__validate_origin = self.__origins 55 elif self.__regex_origin_patterns is not None: 56 self.__validate_origin = _check_if_regex_match_origin(self.__regex_origin_patterns) 57 else: 58 self.__validate_origin = _check_if_asterisk_origin(self.__origins) 59 60 app.after_request(self.__handle_response) 61 62 app.extensions['yafcorse'] = self 63 self.__initialized = True 64 65 def __append_headers(self, response: Response, origin: str, is_preflight_request: bool = False): 66 response.headers.add_header('Access-Control-Allow-Origin', origin) 67 68 if 'Access-Control-Request-Method' in request.headers \ 69 and request.headers.get('Access-Control-Request-Method', '').strip().lower() in self.__allowed_methods: 70 response.headers.add_header('Access-Control-Allow-Methods', self.__allowed_methods_value) 71 72 if 'Access-Control-Request-Headers' in request.headers \ 73 and _string_list_in(request.headers.get('Access-Control-Request-Headers').split(','), self.__allowed_headers): 74 response.headers.add_header('Access-Control-Allow-Headers', self.__allowed_headers_value) 75 76 if self.__allow_credentials: 77 response.headers.add_header('Access-Control-Allow-Credentials', 'true') 78 if is_preflight_request: 79 response.headers.add_header('Access-Control-Max-Age', self.__max_age) 80 81 def __handle_response(self, response: Response): 82 is_preflight_request = request.method == 'OPTIONS' 83 if not is_preflight_request and 'Origin' not in request.headers: 84 return response 85 86 origin = request.headers.get('Origin') 87 88 if not self.__validate_origin(origin): 89 return response 90 91 self.__append_headers(response, origin, is_preflight_request) 92 return response 93 94 95 def _string_list_in(target: list[str], source: list[str]): 96 contained = [element for element in target if element.strip().lower() in source] 97 return contained == target 98 99 100 def _check_if_regex_match_origin(patterns): 101 compiled_patterns = [re.compile(p) for p in patterns] 102 def execute_check(origin): 103 for matcher in compiled_patterns: 104 if matcher.match(origin): 105 return True 106 return False 107 108 execute_check.__name__ = _check_if_regex_match_origin.__name__ 109 return execute_check 110 111 112 def _check_if_contains_origin(origins): 113 def execute_check(origin): 114 for o in origins: 115 if o == origin: 116 return True 117 return False 118 119 execute_check.__name__ = _check_if_contains_origin.__name__ 120 return execute_check 121 122 123 def _check_if_asterisk_origin(origins): 124 allow_all = origins == '*' 125 def execute_check(origin): 126 return allow_all and origin is not None 127 128 execute_check.__name__ = _check_if_asterisk_origin.__name__ 129 return execute_check
96 - warning: bad-indentation 97 - warning: bad-indentation 26 - refactor: useless-object-inheritance 26 - refactor: too-many-instance-attributes 27 - warning: dangerous-default-value 26 - refactor: too-few-public-methods
1 import pytest 2 from flask import Flask, Response 3 from flask.testing import FlaskClient 4 5 from yafcorse import Yafcorse 6 7 8 @pytest.fixture() 9 def local_app(): 10 app = Flask(__name__) 11 12 cors = Yafcorse({ 13 'allowed_methods': ['GET', 'POST', 'PUT'], 14 'allowed_headers': ['Content-Type', 'X-Test-Header'], 15 'origins': lambda origin: origin == 'https://from_lambda' 16 }) 17 cors.init_app(app) 18 19 return app 20 21 22 @pytest.fixture() 23 def local_client(local_app: Flask): 24 return local_app.test_client() 25 26 27 def test_origin_function(local_client: FlaskClient): 28 response: Response = local_client.options('/some-request', headers={ 29 'Origin': 'https://from_lambda' 30 }) 31 assert response.status_code == 404 32 assert 'Access-Control-Allow-Origin'.lower() in response.headers 33 assert 'Access-Control-Max-Age'.lower() in response.headers 34 assert response.headers.get('Access-Control-Allow-Origin') is not None 35 assert response.headers.get('Access-Control-Allow-Origin') == 'https://from_lambda' 36 assert response.headers.get('Access-Control-Max-Age') is not None 37 assert response.headers.get('Access-Control-Max-Age') != '' 38 39 40 def test_origin_function_fail(local_client: FlaskClient): 41 response: Response = local_client.options('/some-request', headers={ 42 'Origin': 'https://other_than_lambda' 43 }) 44 assert response.status_code == 404 45 assert 'Access-Control-Allow-Origin'.lower() not in response.headers 46 assert 'Access-Control-Max-Age'.lower() not in response.headers
23 - warning: redefined-outer-name 27 - warning: redefined-outer-name 40 - warning: redefined-outer-name
1 ''' 2 PDF Text Extractor Main Module 3 4 This module will read every .pdf file within a directory. It will 5 use the PDFExtractor to extract its contents to a string. That 6 string will then be passed to TextFormatter where it will be 7 properly formatted to the desired format. 8 9 The module will ask the user for a desired output file name, but 10 if one if not provided then a default name will be used. 11 12 The .exe file must be within the same directory as the .pdf files. 13 ''' 14 15 import os 16 import pymsgbox 17 18 from extractor import PDFExtractor 19 from formatter import TextFormatter 20 21 # returs a name of the output file 22 def get_user_input(): 23 user_input = pymsgbox.prompt('Enter name', default=add_txt_ext(''), title='FBPI .pdf Text Extractor') 24 # closes program if user clicks cancel 25 if user_input == None: 26 exit(0) 27 return user_input 28 29 # ensure the output file has a name 30 def add_txt_ext(user_input): 31 if len(user_input) < 1: 32 return '_output' 33 else: 34 return user_input 35 36 # main function, runs on program startup 37 def main(): 38 #create an pdf extractor 39 extractor = PDFExtractor() 40 41 # create a text formatter 42 formatter = TextFormatter() 43 44 # stores the name of the output file 45 user_input = get_user_input() 46 47 # create the output .txt file 48 output_file = open(add_txt_ext(user_input) + '.txt', 'w') 49 50 # stores a list of all files in the current directory 51 file_list = os.listdir(os.getcwd()) 52 53 # interate through all the files in the file list 54 for files in file_list: 55 # will only process .pdf files 56 if files.endswith('.pdf'): 57 # convert contents of each pdf file to a string 58 name_badge = extractor.pdf_to_text(files) 59 60 # formats the string to the propper format 61 name_badge = formatter.name_tab_title(name_badge) 62 63 # writes the formatted string to the output file 64 output_file.write(name_badge) 65 66 output_file.close() 67 68 if __name__ == '__main__': 69 main()
19 - warning: deprecated-module 26 - refactor: consider-using-sys-exit 31 - refactor: no-else-return 48 - warning: unspecified-encoding 48 - refactor: consider-using-with
1 ''' 2 PDF Text Extractor Module 3 4 This module will extract the text from a .pdf file and return the 5 contents as a string. 6 ''' 7 8 from io import StringIO 9 from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter 10 from pdfminer.converter import TextConverter 11 from pdfminer.layout import LAParams 12 from pdfminer.pdfpage import PDFPage 13 import getopt 14 15 class PDFExtractor(object): 16 17 # takes in a parameter of a pdf file 18 # returns the contents as a string 19 def pdf_to_text(self, pdf_file, pages=None): 20 # allows multiple pages to be passed in as a parameter 21 if pages: 22 num_of_pages = set(pages) 23 else: 24 num_of_pages = set() 25 26 output = StringIO() 27 manager = PDFResourceManager() 28 29 # parameters require a resource manager and an output text stream 30 converter = TextConverter(manager, output, laparams=LAParams()) 31 32 # parameters require a resource manager and a text converter 33 interpreter = PDFPageInterpreter(manager, converter) 34 35 input_file = open(pdf_file, 'rb') 36 for page in PDFPage.get_pages(input_file, num_of_pages): 37 interpreter.process_page(page) 38 input_file.close() 39 converter.close() 40 41 text = output.getvalue() 42 output.close() 43 44 return text
15 - refactor: useless-object-inheritance 35 - refactor: consider-using-with 15 - refactor: too-few-public-methods 13 - warning: unused-import
1 ''' 2 Text Formatter Module 3 4 This module will format the string input to match the desired output. 5 ''' 6 7 class TextFormatter(object): 8 9 # takes in a string parameter 10 # returns the string formatted as: 'name TAB title' 11 def name_tab_title(self, text): 12 # stores contents of the input text into a list 13 name_badge = text.split('\n') 14 15 badges = [] 16 17 # strip the whitepsace from every element 18 for element in name_badge: 19 badges.append(element.strip()) 20 21 # return true from as long as the badge has a blank line 22 while badges.count(''): 23 badges.remove('') 24 25 # stores the last string added to the badge list as the title 26 title = badges.pop() 27 28 # stores the first string added to the badge list as the name 29 name = badges.pop() 30 31 # formats the string as 'name TAB title' 32 name_badge = ('%s\t%s\n' % (name, title)) 33 34 return name_badge
7 - refactor: useless-object-inheritance 7 - refactor: too-few-public-methods
1 # -*- coding: utf-8 -*- 2 from datetime import datetime 3 #from googletrans import Translator 4 from translate import Translator 5 from TwitterSearch import * 6 7 import configparser 8 import random 9 import re 10 import io 11 12 weather = [u"Sunny", u"Rainy", u"Cloudy"] 13 weather_tw = [u"晴天",u"雨天", u"陰天"] 14 15 translator= Translator(to_lang='zh-TW') 16 #translator= Translator() 17 18 cf = configparser.ConfigParser() 19 cf.read('janediary.conf') 20 21 #consumer_key = cf.get('twitter', 'consumer_key') 22 #consumer_secret = cf.get('twitter', 'consumer_secret') 23 #access_token = cf.get('twitter', 'access_token') 24 #access_token_secret = cf.get('twitter', 'access_token_secret') 25 26 ts = TwitterSearch( 27 consumer_key = cf.get('twitter', 'consumer_key'), 28 consumer_secret = cf.get('twitter', 'consumer_secret'), 29 access_token = cf.get('twitter', 'access_token'), 30 access_token_secret = cf.get('twitter', 'access_token_secret') 31 ) 32 data_path = cf.get('data', 'data_path') 33 34 tso = TwitterSearchOrder() 35 36 def get_tweets(keyword_list, num=20, lang='en'): 37 tweets = [] 38 try: 39 tso.set_keywords(keyword_list) 40 tso.set_language(lang) 41 i = 0 42 for tweet in ts.search_tweets_iterable(tso): 43 if i == num: break 44 if tweet['retweeted']: continue 45 tweets.append(tweet) 46 i = i+1 47 48 except TwitterSearchException as e: 49 print(e) 50 51 return tweets 52 53 def generate_jane_story(num=20, lang='en'): 54 tweets = get_tweets(['jane'], num, lang) 55 story = "" 56 for tweet in tweets: 57 story = u"%s %s" % (story, tweet['text']) 58 59 return story 60 61 def clear_up_text(text): 62 text = re.sub(r'RT @\S+: ', '', text) 63 clear_text = re.sub(r'http\S+', '', text) 64 clear_text = remove_emoji(clear_text) 65 66 return clear_text.strip() 67 68 def remove_emoji(text): 69 emoji_pattern = re.compile( 70 u"(\ud83d[\ude00-\ude4f])|" # emoticons 71 u"(\ud83c[\udf00-\uffff])|" # symbols & pictographs (1 of 2) 72 u"(\ud83d[\u0000-\uddff])|" # symbols & pictographs (2 of 2) 73 u"(\ud83d[\ude80-\udeff])|" # transport & map symbols 74 u"(\ud83c[\udde0-\uddff])" # flags (iOS) 75 "+", flags=re.UNICODE) 76 77 return emoji_pattern.sub(r'', text) 78 79 def get_translation(input_text, lang='zh-TW'): 80 output = "" 81 try: 82 #output = translator.translate(input_text, dest=lang) 83 output = translator.translate(input_text) 84 85 except Exception as e: 86 print(e) 87 return "" 88 89 return output 90 91 def save_story(filename, text): 92 with io.open(filename,'w',encoding='utf8') as f: 93 f.write(text) 94 f.close() 95 96 if __name__ == '__main__': 97 jane_story_en = "" 98 clear_story = "" 99 translated_story = "" 100 101 jane_story_en = generate_jane_story(10, 'en') 102 clear_story = clear_up_text(jane_story_en) 103 print("---") 104 print(clear_story) 105 translated_story = get_translation(clear_story[:500]) 106 print("----") 107 print(translated_story) 108 current_time = datetime.now() 109 weather_idx = random.randrange(3) 110 y, m, d, h = current_time.year, current_time.month, current_time.day, current_time.hour 111 clear_story = u"%s %s\n%s" % (current_time.strftime('%Y-%m-%d %H:00'), weather[weather_idx], clear_story) 112 translated_story = u"%d年%d月%d日%d時 %s\n%s" % (y, m, d, h, weather_tw[weather_idx], translated_story) 113 114 print(clear_story) 115 print("\n") 116 print(translated_story) 117 print("save file") 118 save_story("%s/%s.txt" %(data_path, current_time.strftime("%Y%m%d")), clear_story+"\n\n"+translated_story) 119 #save_story("%s/%s_en.txt" % (data_path, current_time.strftime("%Y%m%d")), clear_story) 120 #save_story("%s/%s_tw.txt" % (data_path, current_time.strftime("%Y%m%d")), translated_story) 121
5 - warning: wildcard-import 12 - warning: redundant-u-string-prefix 12 - warning: redundant-u-string-prefix 12 - warning: redundant-u-string-prefix 13 - warning: redundant-u-string-prefix 13 - warning: redundant-u-string-prefix 13 - warning: redundant-u-string-prefix 26 - error: undefined-variable 34 - error: undefined-variable 48 - error: undefined-variable 57 - warning: redundant-u-string-prefix 70 - warning: redundant-u-string-prefix 85 - warning: broad-exception-caught 79 - warning: unused-argument 111 - warning: redundant-u-string-prefix 112 - warning: redundant-u-string-prefix
1 import numpy as pd 2 import matplotlib.pyplot as plt 3 import pandas as pd 4 5 dataset=pd.read_csv('music.csv')
2 - warning: unused-import
1 import mediapipe as mp 2 import numpy as np 3 import cv2 4 5 cap = cv2.VideoCapture(0) 6 7 facmesh = mp.solutions.face_mesh 8 face = facmesh.FaceMesh(static_image_mode=True, min_tracking_confidence=0.6, min_detection_confidence=0.6) 9 draw = mp.solutions.drawing_utils 10 11 while True: 12 13 _, frm = cap.read() 14 print(frm.shape) 15 break 16 rgb = cv2.cvtColor(frm, cv2.COLOR_BGR2RGB) 17 18 op = face.process(rgb) 19 if op.multi_face_landmarks: 20 for i in op.multi_face_landmarks: 21 print(i.landmark[0].y*480) 22 draw.draw_landmarks(frm, i, facmesh.FACE_CONNECTIONS, landmark_drawing_spec=draw.DrawingSpec(color=(0, 255, 255), circle_radius=1)) 23 24 25 cv2.imshow("window", frm) 26 27 if cv2.waitKey(1) == 27: 28 cap.release() 29 cv2.destroyAllWindows() 30 break
13 - warning: bad-indentation 14 - warning: bad-indentation 15 - warning: bad-indentation 16 - warning: bad-indentation 18 - warning: bad-indentation 19 - warning: bad-indentation 20 - warning: bad-indentation 21 - warning: bad-indentation 22 - warning: bad-indentation 25 - warning: bad-indentation 27 - warning: bad-indentation 28 - warning: bad-indentation 29 - warning: bad-indentation 30 - warning: bad-indentation 16 - warning: unreachable 2 - warning: unused-import
1 from datetime import datetime 2 3 def log(data): 4 print('----', datetime.now(), '----') 5 print(data) 6 7 8 def logError(error): 9 print('****', datetime.now(), '****') 10 print(error)
Clean Code: No Issues Detected
1 from tattle_helper import register_post, upload_file 2 3 data = { 4 "type" : "image", 5 "data" : "", 6 "filename": "asdf", 7 "userId" : 169 8 } 9 10 response = upload_file(file_name='denny.txt') 11 print(response) 12 13 # register_post(data)
1 - warning: unused-import
1 token = "78a6fc20-fa83-11e9-a4ad-d1866a9a3c7b" # add your token here 2 url = "<base-api-url>/api/posts" 3 try: 4 payload = d 5 payload = json.dumps(payload) 6 headers = { 7 'token': token, 8 'Content-Type': "application/json", 9 'cache-control': "no-cache", 10 } 11 r = requests.post(url, data=payload, headers=headers) 12 if r.ok: 13 print ('success') 14 else: 15 print ('something went wrong') 16 17 except: 18 logging.exception('error in POST request') 19 raise 20 21 { 22 "type" : "image", # can be image, text, video 23 "data" : "", 24 "filename": "4bf4b1cc-516b-469d-aa38-be6762d417a5", #filename you put on s3 25 "userId" : 169 # for telegram_bot this should be 169 26 }
4 - error: undefined-variable 5 - error: undefined-variable 11 - error: undefined-variable 18 - error: undefined-variable 21 - warning: pointless-statement
1 import os 2 import json 3 import boto3 4 import requests 5 from logger import log, logError 6 from dotenv import load_dotenv 7 load_dotenv() 8 9 s3 = boto3.client("s3",aws_access_key_id=os.environ.get('S3_ACCESS_KEY'),aws_secret_access_key=os.environ.get('S3_SECRET_ACCESS_KEY')) 10 11 API_BASE_URL = "https://archive-server.tattle.co.in" 12 # API_BASE_URL = "https://postman-echo.com/post" 13 ARCHIVE_TOKEN = os.environ.get('ARCHIVE_TOKEN') 14 15 def register_post(data): 16 """ 17 registers a post on archive server 18 """ 19 url_to_post_to = API_BASE_URL+"/api/posts" 20 payload = json.dumps(data) 21 headers = { 22 'token': ARCHIVE_TOKEN, 23 'Content-Type': "application/json", 24 'cache-control': "no-cache", 25 } 26 27 try: 28 r = requests.post(url_to_post_to, data=payload, headers=headers) 29 30 if r.status_code==200: 31 log('STATUS CODE 200 \n'+json.dumps(r.json(), indent=2)) 32 else: 33 log('STATUS CODE '+str(r.status_code)+'\n '+r.text) 34 except: 35 log('error with API call') 36 37 38 def upload_file(file_name, s3=s3 ,acl="public-read"): 39 bucket_name = os.environ.get('TGM_BUCKET_NAME') 40 #opens file, reads it, and uploads it to the S3 bucket. 41 try: 42 with open(file_name, 'rb') as data: 43 s3.upload_fileobj(data,bucket_name,file_name,ExtraArgs={"ACL": acl,"ContentType": file_name.split(".")[-1]}) 44 except: 45 logError('ERROR_S3_UPLOAD of '+file_name) 46 47 file_url = "https://s3.ap-south-1.amazonaws.com/"+bucket_name+"/"+file_name 48 return file_url 49 50 def upload_file(file_name, s3=s3 ,acl="public-read"): 51 bucket_name = os.environ.get('TGM_BUCKET_NAME') 52 #opens file, reads it, and uploads it to the S3 bucket. 53 try: 54 with open(file_name, 'rb') as data: 55 s3.upload_fileobj(data,bucket_name,file_name,ExtraArgs={"ACL": acl,"ContentType": file_name.split(".")[-1]}) 56 except: 57 logError('ERROR_S3_UPLOAD of '+file_name) 58 59 file_url = "https://s3.ap-south-1.amazonaws.com/"+bucket_name+"/"+file_name 60 return file_url
16 - warning: bad-indentation 19 - warning: bad-indentation 20 - warning: bad-indentation 21 - warning: bad-indentation 27 - warning: bad-indentation 28 - warning: bad-indentation 30 - warning: bad-indentation 31 - warning: bad-indentation 32 - warning: bad-indentation 33 - warning: bad-indentation 34 - warning: bad-indentation 35 - warning: bad-indentation 39 - warning: bad-indentation 41 - warning: bad-indentation 42 - warning: bad-indentation 43 - warning: bad-indentation 44 - warning: bad-indentation 45 - warning: bad-indentation 47 - warning: bad-indentation 48 - warning: bad-indentation 51 - warning: bad-indentation 53 - warning: bad-indentation 54 - warning: bad-indentation 55 - warning: bad-indentation 56 - warning: bad-indentation 57 - warning: bad-indentation 59 - warning: bad-indentation 60 - warning: bad-indentation 34 - warning: bare-except 28 - warning: missing-timeout 38 - warning: redefined-outer-name 44 - warning: bare-except 50 - error: function-redefined 50 - warning: redefined-outer-name 56 - warning: bare-except
1 #!/usr/bin/env python 2 # -*- coding: utf-8 -*- # 3 from __future__ import unicode_literals 4 5 AUTHOR = 'Georges Dubus' 6 SITENAME = 'Compile-toi toi même' 7 SITESUBTITLE = u'(Georges Dubus)' # TODO: remove in next version ? 8 SITEURL = '' 9 ABSOLUTE_SITEURL = SITEURL # TODO: remove 10 11 TIMEZONE = 'Europe/Paris' 12 13 DEFAULT_LANG = 'en' 14 LOCALE = ('en_US.UTF-8', 'fr_FR.UTF8') # TODO: toujours d'actualité ? 15 16 THEME = 'stolenidea' 17 18 # Feed generation is usually not desired when developing 19 FEED_ALL_ATOM = None 20 CATEGORY_FEED_ATOM = None 21 TRANSLATION_FEED_ATOM = None 22 23 MENUITEMS = ( 24 ('Archives', SITEURL + '/archives.html'), 25 ('Tags', SITEURL + '/tags.html') 26 ) 27 28 # Social widget 29 SOCIAL = ( 30 ('Github', 'https://github.com/madjar'), 31 ('Twitter', 'http://twitter.com/georgesdubus'), 32 ('Google+', 'https://plus.google.com/u/0/104750974388692229541'), 33 ) 34 # TWITTER_USERNAME = 'georgesdubus' 35 36 DEFAULT_PAGINATION = 10 # TODO: voir si je dois modifier quelque chose pour ça 37 38 PATH = ('content') 39 STATIC_PATHS = ['CNAME', 'images', 'slides', '.well-known', '_config.yml'] 40 ARTICLE_EXCLUDES = ['slides'] 41 42 # TODO : use buildout to handle the plugin deps ? 43 PLUGIN_PATHS = ['plugins'] 44 PLUGINS = ['pelican_youtube'] 45 46 47 # Uncomment following line if you want document-relative URLs when developing 48 #RELATIVE_URLS = True
7 - warning: fixme 9 - warning: fixme 14 - warning: fixme 36 - warning: fixme 42 - warning: fixme 7 - warning: redundant-u-string-prefix
1 #!/usr/bin/env python 2 # -*- coding: utf-8 -*- 3 """ 4 @author: efourrier 5 6 Purpose : The purpose of this class is too automaticely transfrom a DataFrame 7 into a numpy ndarray in order to use an aglorithm 8 9 """ 10 11 12 ######################################################### 13 # Import modules and global helpers 14 ######################################################### 15 16 from autoc.explorer import DataExploration, pd 17 import numpy as np 18 from numpy.random import permutation 19 from autoc.utils.helpers import cserie 20 from autoc.exceptions import NumericError 21 22 23 24 25 class PreProcessor(DataExploration): 26 subtypes = ['text_raw', 'text_categorical', 'ordinal', 'binary', 'other'] 27 28 def __init__(self, *args, **kwargs): 29 super(PreProcessor, self).__init__(*args, **kwargs) 30 self.long_str_cutoff = 80 31 self.short_str_cutoff = 30 32 self.perc_unique_cutoff = 0.2 33 self.nb_max_levels = 20 34 35 def basic_cleaning(self,filter_nacols=True, drop_col=None, 36 filter_constantcol=True, filer_narows=True, 37 verbose=True, filter_rows_duplicates=True, inplace=False): 38 """ 39 Basic cleaning of the data by deleting manymissing columns, 40 constantcol, full missing rows, and drop_col specified by the user. 41 """ 42 43 44 col_to_remove = [] 45 index_to_remove = [] 46 if filter_nacols: 47 col_to_remove += self.nacols_full 48 if filter_constantcol: 49 col_to_remove += list(self.constantcol()) 50 if filer_narows: 51 index_to_remove += cserie(self.narows_full) 52 if filter_rows_duplicates: 53 index_to_remove += cserie(self.data.duplicated()) 54 if isinstance(drop_col, list): 55 col_to_remove += drop_col 56 elif isinstance(drop_col, str): 57 col_to_remove += [drop_col] 58 else: 59 pass 60 col_to_remove = list(set(col_to_remove)) 61 index_to_remove = list(set(index_to_remove)) 62 if verbose: 63 print("We are removing the folowing columns : {}".format(col_to_remove)) 64 print("We are removing the folowing rows : {}".format(index_to_remove)) 65 if inplace: 66 return self.data.drop(index_to_remove).drop(col_to_remove, axis=1) 67 else: 68 return self.data.copy().drop(index_to_remove).drop(col_to_remove, axis=1) 69 70 def _infer_subtype_col(self, colname): 71 """ This fonction tries to infer subtypes in order to preprocess them 72 better for skicit learn. You can find the different subtypes in the class 73 variable subtypes 74 75 To be completed .... 76 """ 77 serie_col = self.data.loc[:, colname] 78 if serie_col.nunique() == 2: 79 return 'binary' 80 elif serie_col.dtype.kind == 'O': 81 if serie_col.str.len().mean() > self.long_str_cutoff and serie_col.nunique()/len(serie_col) > self.perc_unique_cutoff: 82 return "text_long" 83 elif serie_col.str.len().mean() <= self.short_str_cutoff and serie_col.nunique() <= self.nb_max_levels: 84 return 'text_categorical' 85 elif self.is_numeric(colname): 86 if serie_col.dtype == int and serie_col.nunique() <= self.nb_max_levels: 87 return "ordinal" 88 else : 89 return "other" 90 91 def infer_subtypes(self): 92 """ Apply _infer_subtype_col to the whole DataFrame as a dictionnary """ 93 return {col: {'dtype': self.data.loc[:,col].dtype, 'subtype':self._infer_subtype_col(col)} for col in self.data.columns} 94 95 96 def infer_categorical_str(self, colname, nb_max_levels=10, threshold_value=0.01): 97 """ Returns True if we detect in the serie a factor variable 98 A string factor is based on the following caracteristics : 99 ther percentage of unicity perc_unique = 0.05 by default. 100 We follow here the definition of R factors variable considering that a 101 factor variable is a character variable that take value in a list a levels 102 103 Arguments 104 ---------- 105 nb_max_levels: int 106 the max nb of levels you fix for a categorical variable 107 threshold_value : float 108 the nb of of unique value in percentage of the dataframe length 109 """ 110 # False for numeric columns 111 if threshold_value: 112 max_levels = max(nb_max_levels, threshold_value * self._nrow) 113 else: 114 max_levels = nb_max_levels 115 if self.is_numeric(colname): 116 return False 117 # False for categorical columns 118 if self.data.loc[:, colname].dtype == "category": 119 return False 120 unique_value = set() 121 for i, v in self.data.loc[:, colname], iteritems(): 122 if len(unique_value) >= max_levels: 123 return False 124 else: 125 unique_value.add(v) 126 return True 127 128 def get_factors(self, nb_max_levels=10, threshold_value=None, index=False): 129 """ Return a list of the detected factor variable, detection is based on 130 ther percentage of unicity perc_unique = 0.05 by default. 131 We follow here the definition of R factors variable considering that a 132 factor variable is a character variable that take value in a list a levels 133 134 this is a bad implementation 135 136 137 Arguments 138 ---------- 139 nb_max_levels: int 140 the max nb of levels you fix for a categorical variable. 141 threshold_value : float 142 the nb of of unique value in percentage of the dataframe length. 143 index: bool 144 False, returns a list, True if you want an index. 145 146 147 """ 148 res = self.data.apply(lambda x: self.infer_categorical_str(x)) 149 if index: 150 return res 151 else: 152 return cserie(res) 153 154 def factors_to_categorical(self, inplace=True, verbose=True, *args, **kwargs): 155 factors_col = self.get_factors(*args, **kwargs) 156 if verbose: 157 print("We are converting following columns to categorical :{}".format( 158 factors_col)) 159 if inplace: 160 self.df.loc[:, factors_col] = self.df.loc[:, factors_col].astype(category) 161 else: 162 return self.df.loc[:, factors_col].astype(category) 163 164 def remove_category(self, colname, nb_max_levels, replace_value='other', verbose=True): 165 """ Replace a variable with too many categories by grouping minor categories to one """ 166 if self.data.loc[:, colname].nunique() < nb_max_levels: 167 if verbose: 168 print("{} has not been processed because levels < {}".format( 169 colname, nb_max_levels)) 170 else: 171 if self.is_numeric(colname): 172 raise NumericError( 173 '{} is a numeric columns you cannot use this function'.format()) 174 top_levels = self.data.loc[ 175 :, colname].value_counts[0:nb_max_levels].index 176 self.data.loc[~self.data.loc[:, colname].isin( 177 top_levels), colname] = replace_value
29 - refactor: super-with-arguments 35 - refactor: too-many-arguments 35 - refactor: too-many-positional-arguments 65 - refactor: no-else-return 78 - refactor: no-else-return 81 - refactor: no-else-return 70 - refactor: inconsistent-return-statements 121 - error: undefined-variable 122 - refactor: no-else-return 121 - warning: unused-variable 148 - warning: unnecessary-lambda 149 - refactor: no-else-return 128 - warning: unused-argument 128 - warning: unused-argument 154 - warning: keyword-arg-before-vararg 160 - error: undefined-variable 162 - error: undefined-variable 154 - refactor: inconsistent-return-statements 173 - error: too-few-format-args 16 - warning: unused-import 17 - warning: unused-import 18 - warning: unused-import
1 import seaborn as sns 2 import matplotlib.pyplot as plt 3 4 5 def plot_corrmatrix(df, square=True, linewidths=0.1, annot=True, 6 size=None, figsize=(12, 9), *args, **kwargs): 7 """ 8 Plot correlation matrix of the dataset 9 see doc at https://stanford.edu/~mwaskom/software/seaborn/generated/seaborn.heatmap.html#seaborn.heatmap 10 11 """ 12 sns.set(context="paper", font="monospace") 13 f, ax = plt.subplots(figsize=figsize) 14 sns.heatmap(df.corr(), vmax=1, square=square, linewidths=linewidths, 15 annot=annot, annot_kws={"size": size}, *args, **kwargs)
5 - refactor: too-many-arguments 5 - refactor: too-many-positional-arguments 5 - warning: keyword-arg-before-vararg 13 - warning: unused-variable 13 - warning: unused-variable
1 """ 2 @author: efourrier 3 4 Purpose : This is a simple experimental class to detect outliers. This class 5 can be used to detect missing values encoded as outlier (-999, -1, ...) 6 7 8 """ 9 10 from autoc.explorer import DataExploration, pd 11 import numpy as np 12 #from autoc.utils.helpers import cserie 13 from exceptions import NotNumericColumn 14 15 16 def iqr(ndarray, dropna=True): 17 if dropna: 18 ndarray = ndarray[~np.isnan(ndarray)] 19 return np.percentile(ndarray, 75) - np.percentile(ndarray, 25) 20 21 22 def z_score(ndarray, dropna=True): 23 if dropna: 24 ndarray = ndarray[~np.isnan(ndarray)] 25 return (ndarray - np.mean(ndarray)) / (np.std(ndarray)) 26 27 28 def iqr_score(ndarray, dropna=True): 29 if dropna: 30 ndarray = ndarray[~np.isnan(ndarray)] 31 return (ndarray - np.median(ndarray)) / (iqr(ndarray)) 32 33 34 def mad_score(ndarray, dropna=True): 35 if dropna: 36 ndarray = ndarray[~np.isnan(ndarray)] 37 return (ndarray - np.median(ndarray)) / (np.median(np.absolute(ndarray - np.median(ndarray))) / 0.6745) 38 39 40 class OutliersDetection(DataExploration): 41 """ 42 this class focuses on identifying outliers 43 44 Parameters 45 ---------- 46 data : DataFrame 47 48 Examples 49 -------- 50 * od = OutliersDetection(data = your_DataFrame) 51 * od.structure() : global structure of your DataFrame 52 """ 53 54 def __init__(self, *args, **kwargs): 55 super(OutliersDetection, self).__init__(*args, **kwargs) 56 self.strong_cutoff = {'cutoff_z': 6, 57 'cutoff_iqr': 6, 'cutoff_mad': 6} 58 self.basic_cutoff = {'cutoff_z': 3, 59 'cutoff_iqr': 2, 'cutoff_mad': 2} 60 61 62 def check_negative_value(self, colname): 63 """ this function will detect if there is at leat one 64 negative value and calculate the ratio negative postive/ 65 """ 66 if not self.is_numeric(colname): 67 NotNumericColumn("The serie should be numeric values") 68 return sum(serie < 0) 69 70 def outlier_detection_serie_1d(self, colname, cutoff_params, scores=[z_score, iqr_score, mad_score]): 71 if not self.is_numeric(colname): 72 raise("auto-clean doesn't support outliers detection for Non numeric variable") 73 keys = [str(func.__name__) for func in scores] 74 df = pd.DataFrame(dict((key, func(self.data.loc[:, colname])) 75 for key, func in zip(keys, scores))) 76 df['is_outlier'] = 0 77 for s in keys: 78 cutoff_colname = "cutoff_{}".format(s.split('_')[0]) 79 index_outliers = np.absolute(df[s]) >= cutoff_params[cutoff_colname] 80 df.loc[index_outliers, 'is_outlier'] = 1 81 return df 82 83 def check_negative_value(self): 84 """ this will return a the ratio negative/positve for each numeric 85 variable of the DataFrame 86 """ 87 return self.data[self._dfnum].apply(lambda x: self.check_negative_value_serie(x.name)) 88 89 def outlier_detection_1d(self, cutoff_params, subset=None, 90 scores=[z_score, iqr_score, mad_score]): 91 """ Return a dictionnary with z_score,iqr_score,mad_score as keys and the 92 associate dataframe of distance as value of the dictionnnary""" 93 df = self.data.copy() 94 numeric_var = self._dfnum 95 if subset: 96 df = df.drop(subset, axis=1) 97 df = df.loc[:, numeric_var] # take only numeric variable 98 # if remove_constant_col: 99 # df = df.drop(self.constantcol(), axis = 1) # remove constant variable 100 # df_outlier = pd.DataFrame() 101 for col in df: 102 df_temp = self.outlier_detection_serie_1d(col, cutoff_params, scores) 103 df_temp.columns = [col + '_' + 104 col_name for col_name in df_temp.columns] 105 #df_outlier = pd.concat([df_outlier, df_temp], axis=1) 106 return df_temp
55 - refactor: super-with-arguments 68 - error: undefined-variable 70 - warning: dangerous-default-value 72 - error: raising-bad-type 83 - error: function-redefined 89 - warning: dangerous-default-value
1 __all__ = ["explorer", "naimputer"] 2 from .explorer import DataExploration 3 from .naimputer import NaImputer 4 from .preprocess import PreProcessor 5 from .utils.getdata import get_dataset 6 # from .preprocess import PreProcessor
2 - error: relative-beyond-top-level 3 - error: relative-beyond-top-level 4 - error: relative-beyond-top-level 5 - error: relative-beyond-top-level 1 - error: undefined-all-variable 1 - error: undefined-all-variable 2 - warning: unused-import 3 - warning: unused-import 4 - warning: unused-import 5 - warning: unused-import
1 #!/usr/bin/env python 2 # -*- coding: utf-8 -*- 3 """ 4 @author: efourrier 5 6 Purpose : Get data from https://github.com/ericfourrier/autoc-datasets 7 8 """ 9 import pandas as pd 10 11 12 13 def get_dataset(name, *args, **kwargs): 14 """Get a dataset from the online repo 15 https://github.com/ericfourrier/autoc-datasets (requires internet). 16 Parameters 17 ---------- 18 name : str 19 Name of the dataset 'name.csv' 20 """ 21 path = "https://raw.githubusercontent.com/ericfourrier/autoc-datasets/master/{0}.csv".format(name) 22 return pd.read_csv(path, *args, **kwargs)
Clean Code: No Issues Detected
1 from setuptools import setup, find_packages 2 3 4 def readme(): 5 with open('README.md') as f: 6 return f.read() 7 8 setup(name='autoc', 9 version="0.1", 10 description='autoc is a package for data cleaning exploration and modelling in pandas', 11 long_description=readme(), 12 author=['Eric Fourrier'], 13 author_email='ericfourrier0@gmail.com', 14 license='MIT', 15 url='https://github.com/ericfourrier/auto-cl', 16 packages=find_packages(), 17 test_suite='test', 18 keywords=['cleaning', 'preprocessing', 'pandas'], 19 install_requires=[ 20 'numpy>=1.7.0', 21 'pandas>=0.15.0', 22 'seaborn>=0.5', 23 'scipy>=0.14'] 24 )
5 - warning: unspecified-encoding
1 #!/usr/bin/env python 2 # -*- coding: utf-8 -*- 3 """ 4 @author: efourrier 5 6 Purpose : File with all custom exceptions 7 """ 8 9 class NotNumericColumn(Exception): 10 """ The column should be numeric """ 11 pass 12 13 class NumericError(Exception): 14 """ The column should not be numeric """ 15 pass 16 17 # class NotFactor
11 - warning: unnecessary-pass 15 - warning: unnecessary-pass
1 #!/usr/bin/python 2 3 import sys 4 import csv 5 6 reader = csv.reader(sys.stdin, delimiter='\t') 7 8 for line in reader: 9 post_id = line[0] 10 post_type = line[5] 11 abs_parent_id = line[7] 12 post_length = len(line[4]) 13 14 if post_id == "id": 15 continue 16 17 if post_type[0] == "q": # i.e. if the post is a "question" 18 print post_id ,"\t", "1", "\t", post_length # here, "1" indicates "question" 19 20 if post_type[0] == "a": # i.e. if the post is an "answer" 21 print abs_parent_id, "\t", "2", "\t", post_length 22 # here "2" indicates "answer". The double keys (id and "1", "2") will make sure that an answer always comes after the corresponding question
18 - error: syntax-error
1 #!/usr/bin/python 2 3 import sys 4 5 oldAuthor = None # save the old author's id 6 hourList = [] # save the list of hours that an author makes posts 7 8 for line in sys.stdin: 9 data = line.strip().split("\t") 10 11 author, hour = data 12 13 if oldAuthor and author!=oldAuthor: 14 # if the author changes to a new author, determine the hours of highest frequency, print each of them out 15 LstOfMostFreqHours = set([x for x in hourList if all([hourList.count(x)>=hourList.count(y) for y in hourList])]) 16 for i in LstOfMostFreqHours: 17 print oldAuthor,'\t', i 18 oldAuthor = author # set author to the new author 19 hourList = [] 20 21 oldAuthor = author 22 hourList.append(hour) 23 24 if oldAuthor != None: 25 # for the last author, determine the hours of highest frequency, print each of them out 26 LstOfMostFreqHours = set([x for x in hourList if all([hourList.count(x)>=hourList.count(y) for y in hourList])]) 27 for i in LstOfMostFreqHours: 28 print oldAuthor, "\t", i 29
17 - error: syntax-error
1 #!/usr/bin/python 2 3 import sys 4 import csv 5 6 reader = csv.reader(sys.stdin, delimiter='\t') 7 8 for line in reader: 9 author_id = line[3] 10 added_at = line[8] 11 if len(added_at) > 11: 12 hour = int(added_at[11] + added_at[12]) 13 print author_id,"\t", hour
13 - error: syntax-error
1 #!/usr/bin/python 2 3 import sys 4 import csv 5 6 reader = csv.reader(sys.stdin, delimiter='\t') 7 8 for line in reader: 9 tag = line[2] 10 11 tag_list = tag.strip().split(' ') 12 for A_tag in tag_list: 13 print A_tag
13 - error: syntax-error
1 #!/usr/bin/python 2 3 import sys 4 5 oldQuestionNode = None # save the old question's node id 6 7 Student_IDs = [] # the list of question/answers/comment id's for a forum thread 8 9 for line in sys.stdin: 10 data = line.strip().split("\t") 11 12 question_id, author_id = data 13 14 if oldQuestionNode and oldQuestionNode != question_id: 15 # print the old question's node id, and the list of student id 16 print oldQuestionNode, "\t", Student_IDs 17 18 oldQuestionNode = question_id # set question node ID to that of the new question 19 Student_IDs = [author_id] 20 21 elif oldQuestionNode: 22 Student_IDs.append(author_id) 23 else: 24 oldQuestionNode = question_id 25 Student_IDs.append(author_id) 26 27 if oldQuestionNode != None: 28 # for the last question, print question node id, and student IDs 29 print oldQuestionNode, "\t", Student_IDs
16 - error: syntax-error
1 #!/usr/bin/python 2 3 import sys 4 5 oldQuestionNode = None # save the old question's node id 6 oldQuestionLength = 0 # save the old question's length 7 AnsLengthList = [] # the list of the length of answers for a question 8 9 for line in sys.stdin: 10 data = line.strip().split("\t") 11 12 question_id, post_type, post_length = data 13 14 if oldQuestionNode and oldQuestionNode != question_id: # i.e. it's a new question 15 # print the old question's node id, question length, avg answer length 16 if AnsLengthList == []: 17 print oldQuestionNode,"\t",oldQuestionLength,"\t", 0 18 else: 19 print oldQuestionNode,"\t",oldQuestionLength,"\t", sum(AnsLengthList)/len(AnsLengthList) 20 21 22 oldQuestionNode = question_id # set question node ID to that of the new question 23 oldQuestionLength = float(post_length) 24 AnsLengthList = [] 25 26 elif oldQuestionNode: 27 AnsLengthList.append(float(post_length)) 28 else: 29 oldQuestionNode = question_id 30 oldQuestionLength =float(post_length) 31 32 if oldQuestionNode != None: 33 # for the last question, print id, question length, avg answer length 34 if AnsLengthList == []: 35 print oldQuestionNode,"\t",oldQuestionLength,"\t", 0 36 else: 37 print oldQuestionNode,"\t",oldQuesitionLength,"\t", sum(AnsLengthList)/len(AnsLengthList)
17 - error: syntax-error
1 #!/usr/bin/python 2 3 import sys 4 5 oldTag = None # save the oldTag 6 oldTagCount = 0 # save the oldTag's Count 7 Top10Tag = [] # the list of top 10 tags 8 Top10TagCount = [] # the list of top 1 tags' counts 9 10 for line in sys.stdin: 11 tag = line 12 13 if oldTag and oldTag != tag: 14 # check if the old tag's count beats the current 10th tag 15 # if so, replace the current 10th tag, and its count, with those of the old tag 16 17 if len(Top10TagCount) == 10: 18 if oldTagCount > min(Top10TagCount) : 19 Top10Tag[Top10TagCount.index(min(Top10TagCount))]=oldTag 20 Top10TagCount[Top10TagCount.index(min(Top10TagCount))]=oldTagCount 21 else: 22 Top10Tag.append(oldTag) 23 Top10TagCount.append(oldTagCount) 24 25 oldTag = tag # set tag to the new one 26 oldTagCount = 0 27 28 oldTag = tag 29 oldTagCount = oldTagCount+1 30 31 32 if oldTag != None: 33 # for the last tag, print id, question length, avg answer length 34 # check if the old tag's count beats the current 10th tag 35 # if so, replace the current 10th tag, and its count, with those of the old tag 36 if oldTagCount > min(Top10TagCount) : 37 Top10Tag[Top10TagCount.index(min(Top10TagCount))]=oldTag 38 Top10TagCount[Top10TagCount.index(min(Top10TagCount))]=oldTagCount 39 40 # Sort the final top 10 list, and print out 41 for i in range(10): 42 43 print Top10Tag[Top10TagCount.index(max(Top10TagCount))], "\t", max(Top10TagCount) 44 45 del Top10Tag[Top10TagCount.index(max(Top10TagCount))] 46 del Top10TagCount[Top10TagCount.index(max(Top10TagCount))]
43 - error: syntax-error
1 #!/usr/bin/python 2 3 import sys 4 import csv 5 6 reader = csv.reader(sys.stdin, delimiter='\t') 7 8 for line in reader: 9 post_id = line[0] 10 post_type = line[5] 11 author_id = line[3] 12 abs_parent_id = line[7] 13 14 if post_id == "id": 15 continue 16 17 if post_type[0] == "q": # i.e. if the post is a "question" 18 print post_id ,"\t", author_id 19 20 if post_type[0] != "q": # i.e. if the post is an "answer" or "comment" 21 print abs_parent_id, "\t", author_id
18 - error: syntax-error
1 from python_graphql_client import GraphqlClient 2 3 API_KEY = '5f8fbc2aa23e93716e7c621b' 4 client = GraphqlClient(endpoint="https://staging-api.chargetrip.io/graphql") 5 client.headers = { 6 'x-client-id': API_KEY 7 } 8 9 query = """ 10 query stationListAll ($page: Int!) { 11 stationList(size: 100, page: $page) { 12 id 13 external_id 14 country_code 15 party_id 16 name 17 address 18 city 19 postal_code 20 state 21 country 22 coordinates { 23 latitude 24 longitude 25 } 26 related_locations { 27 latitude 28 longitude 29 } 30 parking_type 31 evses { 32 uid 33 evse_id 34 status 35 status_schedule { 36 period_begin 37 period_end 38 status 39 } 40 capabilities 41 connectors { 42 id 43 standard 44 format 45 power_type 46 max_voltage 47 max_amperage 48 max_electric_power 49 power 50 tariff_ids 51 terms_and_conditions 52 last_updated 53 properties 54 } 55 floor_level 56 coordinates { 57 latitude 58 longitude 59 } 60 physical_reference 61 parking_restrictions 62 images { 63 url 64 thumbnail 65 category 66 type 67 width 68 height 69 } 70 last_updated 71 parking_cost 72 properties 73 } 74 directions { 75 language 76 text 77 } 78 operator { 79 id 80 external_id 81 name 82 website 83 logo { 84 url 85 thumbnail 86 category 87 type 88 width 89 height 90 } 91 country 92 contact { 93 phone 94 email 95 website 96 facebook 97 twitter 98 properties 99 } 100 } 101 suboperator { 102 id 103 name 104 } 105 owner { 106 id 107 name 108 } 109 facilities 110 time_zone 111 opening_times { 112 twentyfourseven 113 regular_hours { 114 weekday 115 period_begin 116 period_end 117 } 118 exceptional_openings { 119 period_begin 120 period_end 121 } 122 exceptional_closings { 123 period_begin 124 period_end 125 } 126 } 127 charging_when_closed 128 images { 129 url 130 thumbnail 131 category 132 type 133 width 134 height 135 } 136 last_updated 137 location { 138 type 139 coordinates 140 } 141 elevation 142 chargers { 143 standard 144 power 145 price 146 speed 147 status { 148 free 149 busy 150 unknown 151 error 152 } 153 total 154 } 155 physical_address { 156 continent 157 country 158 county 159 city 160 street 161 number 162 postalCode 163 what3Words 164 formattedAddress 165 } 166 amenities 167 properties 168 realtime 169 power 170 speed 171 status 172 review { 173 rating 174 count 175 } 176 } 177 } 178 """ 179 variables = {"page": 1} 180 result = client.execute(query=query, variables=variables, verify=False) 181 182 print(result)
Clean Code: No Issues Detected
1 import os 2 import json 3 4 filepath = r"/home/axel/Documents/electralign-data/stations-all.json" 5 newData = {"data": {"stationList": []}} 6 7 if os.path.isfile(filepath): 8 with open(filepath, 'r') as file: 9 print("File opened") 10 data = json.load(file) 11 print("Data loaded") 12 newData["data"]["stationList"] = data 13 print("new data set") 14 15 filepath = r"/home/axel/Documents/electralign-data/stations-all-fixed.json" 16 with open(filepath, 'w') as file: 17 print("New file opened") 18 json.dump(newData, file) 19 print("Done saving data")
8 - warning: unspecified-encoding 16 - warning: unspecified-encoding
1 import os 2 import json 3 4 path = r"/home/axel/Documents/electralign-data/" 5 stations = [] 6 7 for filename in sorted(os.listdir(path)): 8 filepath = os.path.join(path, filename) 9 if os.path.isfile(filepath): 10 print(filename) 11 with open(filepath, 'r') as file: 12 data = json.load(file) 13 stations += data 14 15 16 with open(path+'stations-all.json', 'w') as file: 17 json.dump(stations, file) 18 19 print("Saved " + str(len(stations)) + " stations")
11 - warning: unspecified-encoding 16 - warning: unspecified-encoding
1 # Copyright 2017-present Open Networking Foundation 2 # 3 # Licensed under the Apache License, Version 2.0 (the "License"); 4 # you may not use this file except in compliance with the License. 5 # You may obtain a copy of the License at 6 # 7 # http://www.apache.org/licenses/LICENSE-2.0 8 # 9 # Unless required by applicable law or agreed to in writing, software 10 # distributed under the License is distributed on an "AS IS" BASIS, 11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 # See the License for the specific language governing permissions and 13 # limitations under the License. 14 # 15 from abc import abstractmethod 16 17 import grpc 18 from p4 import p4runtime_pb2 19 from p4.tmp import p4config_pb2 20 21 from p4info import p4browser 22 23 24 def buildSetPipelineRequest(p4info, device_config, device_id): 25 request = p4runtime_pb2.SetForwardingPipelineConfigRequest() 26 config = request.configs.add() 27 config.device_id = device_id 28 config.p4info.CopyFrom(p4info) 29 config.p4_device_config = device_config.SerializeToString() 30 request.action = p4runtime_pb2.SetForwardingPipelineConfigRequest.VERIFY_AND_COMMIT 31 return request 32 33 34 def buildTableEntry(p4info_browser, 35 table_name, 36 match_fields={}, 37 action_name=None, 38 action_params={}): 39 table_entry = p4runtime_pb2.TableEntry() 40 table_entry.table_id = p4info_browser.get_tables_id(table_name) 41 if match_fields: 42 table_entry.match.extend([ 43 p4info_browser.get_match_field_pb(table_name, match_field_name, value) 44 for match_field_name, value in match_fields.iteritems() 45 ]) 46 if action_name: 47 action = table_entry.action.action 48 action.action_id = p4info_browser.get_actions_id(action_name) 49 if action_params: 50 action.params.extend([ 51 p4info_browser.get_action_param_pb(action_name, field_name, value) 52 for field_name, value in action_params.iteritems() 53 ]) 54 return table_entry 55 56 57 class SwitchConnection(object): 58 def __init__(self, name, address='127.0.0.1:50051', device_id=0): 59 self.name = name 60 self.address = address 61 self.device_id = device_id 62 self.p4info = None 63 self.channel = grpc.insecure_channel(self.address) 64 # TODO Do want to do a better job managing stub? 65 self.client_stub = p4runtime_pb2.P4RuntimeStub(self.channel) 66 67 @abstractmethod 68 def buildDeviceConfig(self, **kwargs): 69 return p4config_pb2.P4DeviceConfig() 70 71 def SetForwardingPipelineConfig(self, p4info_file_path, dry_run=False, **kwargs): 72 p4info_broswer = p4browser.P4InfoBrowser(p4info_file_path) 73 device_config = self.buildDeviceConfig(**kwargs) 74 request = buildSetPipelineRequest(p4info_broswer.p4info, device_config, self.device_id) 75 if dry_run: 76 print "P4 Runtime SetForwardingPipelineConfig:", request 77 else: 78 self.client_stub.SetForwardingPipelineConfig(request) 79 # Update the local P4 Info reference 80 self.p4info_broswer = p4info_broswer 81 82 def buildTableEntry(self, 83 table_name, 84 match_fields={}, 85 action_name=None, 86 action_params={}): 87 return buildTableEntry(self.p4info_broswer, table_name, match_fields, action_name, action_params) 88 89 def WriteTableEntry(self, table_entry, dry_run=False): 90 request = p4runtime_pb2.WriteRequest() 91 request.device_id = self.device_id 92 update = request.updates.add() 93 update.type = p4runtime_pb2.Update.INSERT 94 update.entity.table_entry.CopyFrom(table_entry) 95 if dry_run: 96 print "P4 Runtime Write:", request 97 else: 98 print self.client_stub.Write(request) 99 100 def ReadTableEntries(self, table_name, dry_run=False): 101 request = p4runtime_pb2.ReadRequest() 102 request.device_id = self.device_id 103 entity = request.entities.add() 104 table_entry = entity.table_entry 105 table_entry.table_id = self.p4info_broswer.get_tables_id(table_name) 106 if dry_run: 107 print "P4 Runtime Read:", request 108 else: 109 for response in self.client_stub.Read(request): 110 yield response 111 112 def ReadDirectCounters(self, table_name=None, counter_name=None, table_entry=None, dry_run=False): 113 request = p4runtime_pb2.ReadRequest() 114 request.device_id = self.device_id 115 entity = request.entities.add() 116 counter_entry = entity.direct_counter_entry 117 if counter_name: 118 counter_entry.counter_id = self.p4info_broswer.get_direct_counters_id(counter_name) 119 else: 120 counter_entry.counter_id = 0 121 # TODO we may not need this table entry 122 if table_name: 123 table_entry.table_id = self.p4info_broswer.get_tables_id(table_name) 124 counter_entry.table_entry.CopyFrom(table_entry) 125 counter_entry.data.packet_count = 0 126 if dry_run: 127 print "P4 Runtime Read:", request 128 else: 129 for response in self.client_stub.Read(request): 130 print response
76 - error: syntax-error
1 # Copyright 2017-present Open Networking Foundation 2 # 3 # Licensed under the Apache License, Version 2.0 (the "License"); 4 # you may not use this file except in compliance with the License. 5 # You may obtain a copy of the License at 6 # 7 # http://www.apache.org/licenses/LICENSE-2.0 8 # 9 # Unless required by applicable law or agreed to in writing, software 10 # distributed under the License is distributed on an "AS IS" BASIS, 11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 # See the License for the specific language governing permissions and 13 # limitations under the License. 14 # 15 import re 16 17 import google.protobuf.text_format 18 from p4 import p4runtime_pb2 19 from p4.config import p4info_pb2 20 21 22 class P4InfoBrowser(object): 23 def __init__(self, p4_info_filepath): 24 p4info = p4info_pb2.P4Info() 25 # Load the p4info file into a skeleton P4Info object 26 with open(p4_info_filepath) as p4info_f: 27 google.protobuf.text_format.Merge(p4info_f.read(), p4info) 28 self.p4info = p4info 29 30 def get(self, entity_type, name=None, id=None): 31 if name is not None and id is not None: 32 raise AssertionError("name or id must be None") 33 34 for o in getattr(self.p4info, entity_type): 35 pre = o.preamble 36 if name: 37 if (pre.name == name or pre.alias == name): 38 return o 39 else: 40 if pre.id == id: 41 return o 42 43 if name: 44 raise AttributeError("Could not find %r of type %s" % (name, entity_type)) 45 else: 46 raise AttributeError("Could not find id %r of type %s" % (id, entity_type)) 47 48 def get_id(self, entity_type, name): 49 return self.get(entity_type, name=name).preamble.id 50 51 def get_name(self, entity_type, id): 52 return self.get(entity_type, id=id).preamble.name 53 54 def get_alias(self, entity_type, id): 55 return self.get(entity_type, id=id).preamble.alias 56 57 def __getattr__(self, attr): 58 # Synthesize convenience functions for name to id lookups for top-level entities 59 # e.g. get_table_id() or get_action_id() 60 m = re.search("^get_(\w+)_id$", attr) 61 if m: 62 primitive = m.group(1) 63 return lambda name: self.get_id(primitive, name) 64 65 # Synthesize convenience functions for id to name lookups 66 m = re.search("^get_(\w+)_name$", attr) 67 if m: 68 primitive = m.group(1) 69 return lambda id: self.get_name(primitive, id) 70 71 raise AttributeError("%r object has no attribute %r" % (self.__class__, attr)) 72 73 # TODO remove 74 def get_table_entry(self, table_name): 75 t = self.get(table_name, "table") 76 entry = p4runtime_pb2.TableEntry() 77 entry.table_id = t.preamble.id 78 entry 79 pass 80 81 def get_match_field(self, table_name, match_field_name): 82 for t in self.p4info.tables: 83 pre = t.preamble 84 if pre.name == table_name: 85 for mf in t.match_fields: 86 if mf.name == match_field_name: 87 return mf 88 89 def get_match_field_id(self, table_name, match_field_name): 90 return self.get_match_field(table_name,match_field_name).id 91 92 def get_match_field_pb(self, table_name, match_field_name, value): 93 p4info_match = self.get_match_field(table_name, match_field_name) 94 bw = p4info_match.bitwidth 95 p4runtime_match = p4runtime_pb2.FieldMatch() 96 p4runtime_match.field_id = p4info_match.id 97 # TODO switch on match type and map the value into the appropriate message type 98 match_type = p4info_pb2._MATCHFIELD_MATCHTYPE.values_by_number[ 99 p4info_match.match_type].name 100 if match_type == 'EXACT': 101 exact = p4runtime_match.exact 102 exact.value = value 103 elif match_type == 'LPM': 104 lpm = p4runtime_match.lpm 105 lpm.value = value[0] 106 lpm.prefix_len = value[1] 107 # TODO finish cases and validate types and bitwidth 108 # VALID = 1; 109 # EXACT = 2; 110 # LPM = 3; 111 # TERNARY = 4; 112 # RANGE = 5; 113 # and raise exception 114 return p4runtime_match 115 116 def get_action_param(self, action_name, param_name): 117 for a in self.p4info.actions: 118 pre = a.preamble 119 if pre.name == action_name: 120 for p in a.params: 121 if p.name == param_name: 122 return p 123 raise AttributeError("%r has no attribute %r" % (action_name, param_name)) 124 125 126 def get_action_param_id(self, action_name, param_name): 127 return self.get_action_param(action_name, param_name).id 128 129 def get_action_param_pb(self, action_name, param_name, value): 130 p4info_param = self.get_action_param(action_name, param_name) 131 #bw = p4info_param.bitwidth 132 p4runtime_param = p4runtime_pb2.Action.Param() 133 p4runtime_param.param_id = p4info_param.id 134 p4runtime_param.value = value # TODO make sure it's the correct bitwidth 135 return p4runtime_param
73 - warning: fixme 97 - warning: fixme 107 - warning: fixme 134 - warning: fixme 60 - warning: anomalous-backslash-in-string 66 - warning: anomalous-backslash-in-string 22 - refactor: useless-object-inheritance 26 - warning: unspecified-encoding 30 - warning: redefined-builtin 37 - refactor: consider-using-in 43 - refactor: no-else-raise 51 - warning: redefined-builtin 54 - warning: redefined-builtin 78 - warning: pointless-statement 79 - warning: unnecessary-pass 81 - refactor: inconsistent-return-statements 98 - warning: protected-access 94 - warning: unused-variable
1 import tensorflow as tf 2 import numpy as np 3 import time 4 5 #help us to graph 6 import matplotlib 7 import matplotlib.pyplot as plt 8 9 #import datasets we need by scikit-learn 10 from sklearn.datasets.samples_generator import make_blobs 11 from sklearn.datasets.samples_generator import make_circles 12 #fuck Here I install scipy a matherical package 13 14 #set up data type , here i choose blobs to make it simpler 15 DATA_TYPE = "blobs" 16 17 #Set up Number of clusters in train data , if we choose circle,2 is enough 18 K = 4 19 if(DATA_TYPE == "circle"): 20 K = 2 21 else: 22 K = 4 23 24 #Set up max of iterations , if condition is not met , here I choose 1000 25 MAX_ITERS = 1000 26 27 #To caculate the time we use , record the begining time 28 start = time.time() 29 30 #Since we have chosen four clusters , We have to give four center points for training data 31 centers = [(-2, -2), (-2, 1.5), (1.5, -2), (2, 1.5)] 32 #set up the training set 33 #for blobs: 34 #n_samples:number of data,which means we have 200 points 35 #centers = centers 36 #n_features = dimmension , here we choose plane so = 2 37 #cluster_std = std 38 #shuffle:if we mix up samples,here I choose false 39 #random_state:random seed 40 #for circles: 41 #noise: random noise data set up to the sample set 42 #factor: the ratio factor between circle data set 43 if(DATA_TYPE == "circle"): 44 data, features = make_circles(n_samples=200,shuffle=True,noise=None,factor=0.4) 45 else: 46 data, features = make_blobs(n_samples=200,centers=centers,n_features=2,cluster_std=0.8,shuffle=False,random_state=42) 47 48 #Draw the four centers 49 #.transpose[0]: x .transpose[1]: y 50 fig, ax = plt.subplots() 51 ax.scatter(np.asarray(centers).transpose()[0], np.asarray(centers).transpose()[1], marker = 'o', s = 250) 52 plt.show() 53 #Draw the training data 54 fig, ax = plt.subplots() 55 if(DATA_TYPE == "blobs"): 56 ax.scatter(np.asarray(centers).transpose()[0], np.asarray(centers).transpose()[1], marker = 'o', s = 250) 57 ax.scatter(data.transpose()[0],data.transpose()[1], marker = 'o', s = 100 , c = features, cmap =plt.cm.coolwarm) 58 plt.plot() 59 plt.show() 60 61 #Set up tf.Variable 62 #points = data 63 #cluster_assignments = each points 's cluster 64 #for example: 65 #cluster_assignments[13]=2 means 13th point belong cluster 2 66 N = len(data) 67 points = tf.Variable(data) 68 cluster_assignments = tf.Variable(tf.zeros([N], dtype=tf.int64)) 69 70 #centroids: each groups 's centroids 71 #tf.slice() really fuck up 72 #random pick 4 point after all 73 centroids = tf.Variable(tf.slice(points.initialized_value(), [0,0], [K,2])) 74 75 sess = tf.Session() 76 sess.run(tf.initialize_all_variables()) 77 78 sess.run(centroids) 79 80 # Lost function and rep loop 81 #centroids = [[x1,y1],[x2,y2],[x3,y3],[x4,y4]] shape=[4,2] 82 #tf.tile(centroids, [N, 1]) = [N*[x1,y1], N*[x2,y2], N*[x3,y3], N*[x4,y4]] shape=[4N,2] 83 #rep_centroids = tf.reshape(tf.tile(centroids, [N,1]), [N,K,2]) = [ [N*[x1,y1]] , [N*[x2,y2]] , [N*[x3,y3]] , [N*[x4,y4]] ] 84 #The condition of stopping process is : "Centroids stop changing" :: did_assignments_change 85 86 rep_centroids = tf.reshape(tf.tile(centroids, [N,1]), [N,K,2]) 87 rep_points = tf.reshape(tf.tile(points, [1, K]),[N, K, 2]) 88 sum_squares = tf.reduce_sum(tf.square(rep_points - rep_centroids), reduction_indices=2) 89 best_centroids = tf.argmin(sum_squares, 1) 90 did_assignments_change = tf.reduce_any(tf.not_equal(best_centroids, cluster_assignments)) 91 92 #total=[[all sum of points of group 1], [all sum of points of group 2], [all sum of points of group 3], [all sum of points of group 4]] shape=[4,2] 93 #count=[How many points of each group] shape = [4,1] 94 #total/count = [new centroids] shape = [4,1] 95 def bucket_mean(data, bucket_ids, num_buckets): 96 total = tf.unsorted_segment_sum(data, bucket_ids, num_buckets) 97 count = tf.unsorted_segment_sum(tf.ones_like(data), bucket_ids, num_buckets) 98 return total/count 99 100 means = bucket_mean(points, best_centroids, K) 101 102 #Do update 103 with tf.control_dependencies([did_assignments_change]): 104 do_updates = tf.group(centroids.assign(means), cluster_assignments.assign(best_centroids)) 105 106 changed = True 107 iters = 0 108 fig, ax = plt.subplots() 109 if(DATA_TYPE == "blobs"): 110 colourindexes = [2,1,4,3] 111 else: 112 colourindexes = [2,1] 113 114 while changed and iters < MAX_ITERS: 115 fig, ax = plt.subplots() 116 iters +=1 117 [changed, _] = sess.run([did_assignments_change, do_updates]) 118 [centers, assignments] = sess.run([centroids, cluster_assignments]) 119 ax.scatter(sess.run(points).transpose()[0], sess.run(points).transpose()[1], marker = 'o', s = 200, c = assignments, cmap=plt.cm.coolwarm) 120 ax.scatter(centers[:,0], centers[:,1], marker = '^', s = 550, c=colourindexes, cmap=plt.cm.plasma) 121 ax.set_title("Iteration " + str(iters)) 122 plt.savefig("kmeans" + str(iters) + ".png") 123 124 ax.scatter(sess.run(points).transpose()[0], sess.run(points).transpose()[1], marker='o', s=200, c=assignments, cmap=plt.cm.coolwarm) 125 plt.show() 126 end = time.time() 127 print("Found in %.2f seconds" %(end-start), iters, "iterations") 128 print("Centroids: ") 129 print(centers) 130 print("Cluster assignment", assignments)
95 - warning: redefined-outer-name 6 - warning: unused-import
1 from sklearn import datasets 2 from sklearn.model_selection import train_test_split 3 from sklearn.neighbors import KNeighborsClassifier 4 5 6 iris = datasets.load_iris() 7 iris_X = iris.data 8 iris_y = iris.target 9 10 print("=====data=====") 11 print(iris_X) 12 print("===============") 13 print("data length : " + str(len(iris_X))) 14 print("====target====") 15 print(iris_y) 16 print("===============") 17 print("target length : " + str(len(iris_y))) 18 print("===============") 19 X_train, X_test, y_train, y_test = train_test_split(iris_X, iris_y, test_size=0.3) 20 21 print(y_train) 22 23 knn = KNeighborsClassifier() 24 knn.fit(X_train, y_train) 25 26 print(knn.predict(X_test)) 27 print(y_test)
Clean Code: No Issues Detected
1 class Trinangle: 2 def __init__(self,base,height): 3 self.base = base 4 self.height = height 5 def calculate_area(self): 6 area = 0.5 * self.base * self.height 7 print(f"Base: {self.base}, Height: {self.height}","Area = ",area) 8 9 t1 = Trinangle(10,20) 10 t1.calculate_area() 11 t2 = Trinangle(20,30) 12 t2.calculate_area()
1 - refactor: too-few-public-methods
1 #Map Function 2 3 def square(a): 4 return a*a 5 6 num = [1,2,3,4,5] 7 result = list(map(square,num)) 8 print(result) 9 10 # Filter function 11 12 num = [1,2,3,4,5] 13 14 result = list(filter(lambda x: x%2==0,num)) 15 print(result)
Clean Code: No Issues Detected
1 def add(a,b): 2 sum = a+b 3 return sum 4 result = add(20,30) 5 print("Result = ",result)
2 - warning: redefined-builtin
1 #Stack 2 """ 3 books = [] 4 books.append("Learn C") 5 books.append("Learn C++") 6 books.append("Learn Java") 7 print(books) 8 books.pop() 9 print("Now the top book is :",books[-1]) 10 print(books) 11 books.pop() 12 print("Now the top book is :",books[-1]) 13 print(books) 14 books.pop() 15 if not books: 16 print("No books left") 17 18 """ 19 #Queue 20 from collections import deque 21 bank = deque(["Alex","Sabuj","Sonia","Moeen"]) 22 print(bank) 23 bank.popleft() 24 print(bank) 25 bank.popleft() 26 bank.popleft() 27 bank.popleft() 28 if not bank: 29 print("no person left")
Clean Code: No Issues Detected
1 # Using string Function 2 """ 3 sampleStr = "Emma is good developer. Emma is a writer" 4 cnt = sampleStr.count("Emma") 5 print("Emma appeared",cnt,"times") 6 """ 7 8 #Without Using String function 9 10 def count_emma(str): 11 print("Given String : ",str) 12 count = 0 13 for i in range(len(str) -1): 14 count += str[i: i+4] == 'Emma' 15 return count 16 count = count_emma("Emma is good devveloper. Emma is a writer") 17 print("Emma appeared ",count,"times")
10 - warning: redefined-builtin 12 - warning: redefined-outer-name
1 """ 2 num2 = int(input("Enter a number: ")) 3 result = 20 / num2 4 print(result) 5 print("Done") 6 """ 7 """ 8 text = "Alex" 9 print(text) 10 print("Done") 11 """ 12 """ 13 try: 14 list = [20,0,32] 15 result = list[0] / list[3] 16 print(result) 17 print("Done") 18 except ZeroDivisionError: 19 print("Dividing by zero is not possible ") 20 except IndexError: 21 print("Index Error") 22 finally: 23 print("Thanks!!!!!!!!!!") 24 """ 25 #Multiple exception hangle 26 """ 27 try: 28 num1 = int(input("Enter First Number: ")) 29 num2 = int(input("Enter the Second Number: ")) 30 result = num1/num2 31 print(result) 32 except (ValueError,ZeroDivisionError): 33 print("You have entered incorrect input.") 34 finally: 35 print("Thanks!!!!!!!") 36 """ 37 def voter (age): 38 if age < 18: 39 raise ValueError("Invalid Voter") 40 return "You are Allowed to vote" 41 try: 42 print(voter(17)) 43 except ValueError as e: 44 print(e)
7 - warning: pointless-string-statement 12 - warning: pointless-string-statement 26 - warning: pointless-string-statement
1 num = [1,2,3,4,5] 2 3 #[expression for item in list] 4 5 result = [x for x in num if x%2==0] 6 print(result)
Clean Code: No Issues Detected
1 #Multi level inheritance 2 3 """ 4 class A: 5 def display1(self): 6 print("I am inside A class") 7 8 class B(A): 9 def display2(self): 10 print("I am inside B class") 11 12 class C(B): 13 def display3(self): 14 super().display1() 15 super().display2() 16 print("I am inside C class") 17 18 ob1 = C() 19 ob1.display3() 20 """ 21 22 #Multiple inheritance 23 24 class A: 25 def display(self): 26 print("I am inside A class") 27 28 class B: 29 def display(self): 30 print("I am inside B class") 31 32 class C(B,A): 33 pass 34 35 ob1 = C() 36 ob1.display()
24 - refactor: too-few-public-methods 28 - refactor: too-few-public-methods 32 - refactor: too-few-public-methods
1 def mergeList(list1, list2): 2 print("First List ", list1) 3 print("Second List ", list2) 4 thirdList = [] 5 for num in list1: 6 if (num % 2 != 0): 7 thirdList.append(num) 8 for num in list2: 9 if (num % 2 == 0): 10 thirdList.append(num) 11 return thirdList 12 list1 = [10, 20, 35, 11, 27] 13 list2 = [13, 43, 33, 12, 24] 14 15 print("Result List is ", mergeList(list1, list2))
1 - warning: redefined-outer-name 1 - warning: redefined-outer-name
1 2 n = 3 3 for i in range(n + 1): 4 print((2 * i - 1) * " *")
Clean Code: No Issues Detected
1 # 2 kinds of funmctions 2 """ 3 Library -> print(), input() 4 5 userdefine -> make your own need 6 """ 7 def add(a,b): 8 sum = a+b 9 print(sum) 10 def sub(x,y): 11 sub = x-y 12 print(sub) 13 add(10,15) 14 sub(15,7) 15 def message(): 16 print("No parameter") 17 message()
8 - warning: redefined-builtin 11 - warning: redefined-outer-name
1 num = list(range(10)) 2 print(num) 3 print(num[2]) 4 5 num = list(range(2,5)) 6 print(num) 7 8 num = list(range(2,101,2)) 9 print(num)
Clean Code: No Issues Detected
1 2 def char(str): 3 for i in range(0, len(str), 1): 4 print("index[",i,"]", str[i]) 5 str = input("Enter any name: ") 6 7 print("Print Single Charecter: ") 8 char(str) 9 10 """ 11 12 def printEveIndexChar(str): 13 for i in range(0, len(str)-1, 2): 14 print("index[",i,"]", str[i] ) 15 16 inputStr = "pynative" 17 print("Orginal String is ", inputStr) 18 19 print("Printing only even index chars") 20 printEveIndexChar(inputStr) 21 22 """
5 - warning: redefined-builtin 2 - warning: redefined-outer-name 10 - warning: pointless-string-statement
1 class Student: 2 roll = "" 3 gpa = "" 4 def __init__(self,roll,gpa): 5 self.roll = roll 6 self.gpa = gpa 7 def display(self): 8 print(f"Roll: {self.roll}, GPA: {self.gpa}") 9 10 rahim = Student(464,4.50) 11 rahim.display() 12 13 karim = Student(525,4.98) 14 karim.display()
1 - refactor: too-few-public-methods
1 students = ( 2 3 ("Alex Biswas",21,3.46), 4 ("Sabuj Chandra Das",22,3.69), 5 ("Ahad Islam Moeen",22,3.46), 6 ) 7 8 print(students[0:])
Clean Code: No Issues Detected
1 #Parents class , Super class, Base class 2 class Phone: 3 def call(self): 4 print("You can Call") 5 6 def message(self): 7 print("You can Message") 8 9 #Child class, Sub class, Derived class 10 class Samsung(Phone): 11 def photo(self): 12 print("You can Take Photo") 13 14 s = Samsung() 15 s.call() 16 s.message() 17 s.photo() 18 19 print(issubclass(Phone,Samsung))
Clean Code: No Issues Detected
1 2 studentid = { 3 4 464 : "Alex Biswas", 5 525 : "Sabuj Chandra Das", 6 957 : "Sonia Akter", 7 770 : "Tasni Tasnim Nilima", 8 } 9 print(studentid.get(525,"Not a valid key"))
Clean Code: No Issues Detected
1 file = open("Hello.html","w") 2 3 file.write("<h1> This is a text</h1>") 4 5 file.close()
1 - warning: unspecified-encoding 1 - refactor: consider-using-with
1 num1 = {1,2,3,4,5} 2 num2 = set([4,5,6]) 3 num2.add(7) 4 num2.remove(4) 5 print(num1 | num2) 6 print(num1 & num2) 7 print(num1 - num2)
Clean Code: No Issues Detected
1 class Student: 2 roll = " " 3 gpa = " " 4 5 rahim = Student() 6 print(isinstance(rahim,Student)) 7 rahim.roll = 101 8 rahim.gpa = 3.95 9 print(f"Roll: {rahim.roll}, GPA: {rahim.gpa}") 10 11 karim = Student() 12 print(isinstance(karim,Student)) 13 karim.roll = 102 14 karim.gpa = 4.85 15 print(f"Roll: {karim.roll}, GPA: {karim.gpa}")
1 - refactor: too-few-public-methods
1 """ 2 import re 3 pattern = r"colour" 4 text = r"My favourite colour is Red" 5 match = re.search(pattern,text) 6 if match: 7 print(match.start()) 8 print(match.end()) 9 print(match.span()) 10 11 """ 12 13 14 #Search And Replace 15 16 """ 17 import re 18 pattern = r"colour" 19 text = r"My favourite colour is Red. I love blue colour as well" 20 text1 = re.sub(pattern,"color",text,count=1) 21 print(text1) 22 """ 23 #Metacharecter 24 25 import re 26 pattern = r"[A-Z] [a-z] [0-9]" 27 28 if re.match(pattern,"Ag0"): 29 print("Matched")
16 - warning: pointless-string-statement
1 from area import * 2 3 rectangle_area(25,6) 4 triangle_area(10,15)
1 - warning: wildcard-import 3 - error: undefined-variable 4 - error: undefined-variable
1 import random 2 3 for x in range(1,6): 4 guessNumber = int(input("Enter your guess between 1 to 5 : ")) 5 randomNumber = random.randint(1,5) 6 7 if guessNumber == randomNumber: 8 print("You have won") 9 else: 10 print("You have loss", randomNumber)
Clean Code: No Issues Detected
1 """ 2 def calculate(a,b): 3 return a*a + 2*a*b + b*b 4 lambda parameter : a*a + 2*a*b + b*b 5 print(calculate(2,3)) 6 """ 7 a = (lambda a,b : a*a + 2*a*b + b*b) (2,3) 8 print(a) 9 #another 10 def cube(x): 11 return x*x*x 12 a = (lambda x : x*x*x) (3) 13 print(a)
Clean Code: No Issues Detected
1 import pyttsx3 2 friend = pyttsx3.init() 3 friend.say('I can speak now') 4 friend.runAndWait()
Clean Code: No Issues Detected
1 #xargs 2 """ 3 def student(id,name): 4 print(id,name) 5 student(191,"Alex Biswas") 6 """ 7 8 """ 9 def student(*details): 10 print(details) 11 student(191,"Alex",3.46) 12 student(192,"Alex",3.46) 13 """ 14 15 """ 16 def add(*numbers): 17 sum = 0 18 for num in numbers: 19 sum = sum + num 20 print(sum) 21 add(10,15) 22 add(10,15,20) 23 add(10,15,20,25) 24 """ 25 #xxagrs 26 def student(**details): 27 print(details) 28 29 student(id=191,name="Alex")
8 - warning: pointless-string-statement 15 - warning: pointless-string-statement
1 def isFirstLastsame(numl): 2 print("Given List is ",numl) 3 firstElement = numl[0] 4 lastElement = numl[-1] 5 if (firstElement == lastElement): 6 return True 7 else: 8 return False 9 numl = [10,15,12,17,19] 10 print("Result is ",isFirstLastsame(numl))
1 - warning: redefined-outer-name 5 - refactor: simplifiable-if-statement 5 - refactor: no-else-return
1 2 num = [10,20,30,40,50] 3 print(num) 4 """ 5 index = 0 6 n = len(num) 7 while index<n: 8 print(num[index]) 9 index = index+1 10 """ 11 sum = 0 12 for x in num: 13 sum = sum+x 14 print(sum)
11 - warning: redefined-builtin 4 - warning: pointless-string-statement
1 2 num = list(range(10)) 3 print(num) 4 5 num = list(range(10)) 6 j
6 - warning: pointless-statement 6 - error: undefined-variable
1 #Regular method 2 """ 3 a = 20 4 b = 15 5 print("a = ",a) 6 print("b = ",b) 7 temp = a #temp = 20 8 a = b #a = 15 9 b = temp # b = 15 10 11 print("After Swapping") 12 print("a = ",a) 13 print("b = ",b) 14 """ 15 #Python Special Method 16 a = 20 17 b = 15 18 print("a = ",a) 19 print("b = ",b) 20 a, b = b, a 21 print("After Swapping") 22 print("a = ",a) 23 print("b = ",b)
Clean Code: No Issues Detected
1 def multiplication_or_sum(num1,num2): 2 product = num1 * num2 3 if product <= 1000: 4 return product 5 else: 6 return num1 + num2 7 8 num1 = int(input("Enter 1st integer number: ")) 9 num2 = int(input("Enter 2nd integer number: ")) 10 print("\n") 11 result = multiplication_or_sum(num1, num2) 12 print("The result is ", result)
1 - warning: redefined-outer-name 1 - warning: redefined-outer-name 3 - refactor: no-else-return
1 number = 7536 2 print("Given number", number) 3 while (number > 0): 4 digit = number % 10 5 number = number // 10 6 print(digit, end = " ")
Clean Code: No Issues Detected
1 file = open("student.txt","r") 2 #print(file.readable()) 3 #text = file.read() 4 #print(text) 5 #size = len(text) 6 #print(size) 7 #text = file.readlines() 8 for line in file: 9 print(line) 10 #print(text) 11 file.close()
1 - warning: unspecified-encoding 1 - refactor: consider-using-with