code
stringlengths
20
13.2k
label
stringlengths
21
6.26k
1 #Write a python program to count the numbers of alphabets, digits and spaces in a file. 2 3 f = open("demo.txt", "r") 4 alphabets = 0 5 digits = 0 6 spaces = 0 7 others = 0 8 lines = f.readlines() 9 for line in lines: 10 for c in line: 11 if c.isalpha(): 12 alphabets += 1 13 elif c.isdigit(): 14 digits += 1 15 elif c.isspace(): 16 spaces += 1 17 else: 18 others += 1 19 20 21 print("Number of alphabets", alphabets) 22 print("Number of digits", digits) 23 print("Number of spaces", spaces) 24 print("Others", others)
3 - warning: unspecified-encoding 3 - refactor: consider-using-with
1 def is_leap(y): 2 return y % 4 == 0 3 4 y = int(input("Enter a year\n")) 5 if is_leap(y): 6 print("Leap year") 7 else: 8 print("Not a Leap Year")
1 - warning: redefined-outer-name
1 # To find a factorial of a number 2 # 5! = 5 * 4 * 3 * 2 * 1 3 4 # fact(5) = 5 * fact(4) 5 # fact(4) = 4 * fact(3) 6 # fact(3) = 3 * fact(2) 7 # fact(2) = 2 * fact(1) 8 # fact(1) = 1 9 10 # fact(5) = 5 * 4 * 3 * 2 * 1 11 12 def fact(n): 13 if n == 1: 14 return 1 15 return n * fact(n-1) 16 17 n = 5 18 result = fact(n) 19 print(result)
12 - warning: redefined-outer-name
1 for i in range(5): 2 for j in range(5-i): 3 print("X", end=" ") 4 5 print() 6 7 for i in range(5): 8 print("X " * int(5-i))
Clean Code: No Issues Detected
1 from django.shortcuts import render,redirect 2 from .models import Jogo 3 from django.views.decorators.csrf import csrf_protect 4 5 #método para chamar todos os objetos que estão na classe Jogo quando entrar na home page 6 def home_page(request): 7 jogo = Jogo.objects.all() 8 return render (request,'home.html',{'jogo':jogo}) 9 10 #método para inserir os dados na tabela quando o botão ser clicado 11 def inserir(request): 12 placar = request.POST.get('nPlacar') 13 14 #método para buscar os valores do objeto anterior 15 try: 16 placarMin = int(Jogo.objects.earliest('placarMin').placarMin) 17 placarMax = int(Jogo.objects.latest('placarMax').placarMax) 18 quebraRecMin = int(Jogo.objects.latest('quebraRecMin').quebraRecMin) 19 quebraRecMax = int(Jogo.objects.latest('quebraRecMax').quebraRecMax) 20 except: 21 placarMin = False 22 placarMax = False 23 quebraRecMin = False 24 quebraRecMax = False 25 26 placar = int(placar) 27 28 #condição para adicionar o placar nos demais atributos alem dele mesmo 29 if placarMin is False: 30 placarMin = placar 31 placarMax = placar 32 elif placar < placarMin: 33 placarMin = placar 34 quebraRecMin += 1 35 elif placar > placarMax or placarMax is False: 36 placarMax = placar 37 quebraRecMax += 1 38 else: 39 quebraRecMin = quebraRecMin+ 0 40 quebraRecMmax = quebraRecMax+ 0 41 42 #método para criar o objeto já com os atributos populados 43 jogo = Jogo.objects.create(placarMin=placarMin,placar=placar,placarMax=placarMax,quebraRecMin=quebraRecMin,quebraRecMax=quebraRecMax) 44 return redirect('/') #função para ficar home page após inserir o dado e clica no botão inserir
2 - error: relative-beyond-top-level 20 - warning: bare-except 40 - warning: unused-variable 43 - warning: unused-variable 3 - warning: unused-import
1 # Generated by Django 3.1 on 2020-10-01 01:54 2 3 from django.db import migrations, models 4 5 6 class Migration(migrations.Migration): 7 8 dependencies = [ 9 ('core', '0001_initial'), 10 ] 11 12 operations = [ 13 migrations.RemoveField( 14 model_name='jogo', 15 name='id', 16 ), 17 migrations.AlterField( 18 model_name='jogo', 19 name='idJogo', 20 field=models.AutoField(primary_key=True, serialize=False), 21 ), 22 migrations.AlterField( 23 model_name='jogo', 24 name='placar', 25 field=models.IntegerField(), 26 ), 27 ]
6 - refactor: too-few-public-methods
1 from django.db import models 2 3 #criação da classe com os atributos 4 class Jogo(models.Model): 5 idJogo = models.AutoField(primary_key=True) 6 placar = models.IntegerField() 7 placarMin = models.IntegerField() 8 placarMax = models.IntegerField() 9 quebraRecMin = models.IntegerField() 10 quebraRecMax = models.IntegerField() 11 12 def __str__(self): 13 return str(self.idJogo) 14
4 - refactor: too-few-public-methods
1 # Generated by Django 3.1.1 on 2020-09-28 18:50 2 3 from django.db import migrations, models 4 5 6 class Migration(migrations.Migration): 7 8 initial = True 9 10 dependencies = [ 11 ] 12 13 operations = [ 14 migrations.CreateModel( 15 name='Jogo', 16 fields=[ 17 ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), 18 ('idJogo', models.IntegerField()), 19 ('placar', models.IntegerField(max_length=3)), 20 ('placarMin', models.IntegerField()), 21 ('placarMax', models.IntegerField()), 22 ('quebraRecMin', models.IntegerField()), 23 ('quebraRecMax', models.IntegerField()), 24 ], 25 ), 26 ]
6 - refactor: too-few-public-methods
1 import os 2 import sys 3 import logging 4 from time import time 5 6 7 class AppFilter(logging.Filter): 8 def filter(self, record): 9 record.function_id = os.environ.get("function_id", 'no_function_id') 10 record.request_id = os.environ.get("request_id", 'no_request_id') 11 return True 12 13 14 logger = logging.getLogger('pratai') 15 logger.setLevel(logging.DEBUG) 16 17 # Docker can log stdout and stderr 18 handler = logging.StreamHandler(sys.stdout) 19 handler.setLevel(logging.DEBUG) 20 21 formatter = logging.Formatter('%(asctime)s - %(function_id)s - %(request_id)s - %(levelname)s - %(message)s') 22 logger.addFilter(AppFilter()) 23 24 handler.setFormatter(formatter) 25 logger.addHandler(handler) 26 27 28 def load_function_from_filesystem(path='/etc/pratai/'): 29 sys.path.append(path) 30 from new_module import main 31 return main 32 33 34 def load_payload(): 35 payload = os.environ.get("pratai_payload", None) 36 return payload 37 38 39 def execute_function(): 40 f = load_function_from_filesystem() 41 42 payload = load_payload() 43 44 start = time() 45 46 logger.debug("function started with payload {0}".format(str(payload))) 47 48 result = None 49 try: 50 result = f(payload) 51 status = 'succeeded' 52 except Exception as err: 53 status = 'failed' 54 logger.error(err.message, exc_info=True) 55 56 finish = time() 57 58 logger.debug("function {0}, it took {1} seconds with response {2}" 59 .format(status, str(finish-start), str(result))) 60 61 return result 62 63 64 if __name__ == '__main__': 65 r = execute_function() 66 67
7 - refactor: too-few-public-methods 46 - warning: logging-format-interpolation 52 - warning: broad-exception-caught 54 - error: no-member 58 - warning: logging-format-interpolation
1 #Problem Given 2 #Convert a string containing only lower case letter to a string with upper case 3 #It is expected to solve the problem within O(sizeof(str) 4 #Auxilary Space O(1) 5 6 #function to convert string into upper 7 def to_upper(str): 8 #temp will store the intger value of 1st letter of the string 9 temp = 0 10 #loop will run till the end of string 11 for i in range(len(str)): 12 #ord converts the char into its equivalent integer value 13 #ord(str[0]) - 32, so we will get ASCII value of upper case 14 temp = ord(str[0])-32 15 #storing string in the same string but removing the first element 16 str = str[1::] 17 #chr converts integer into its equivalent char value 18 #adding or concatenating the str and temp together then storing it in str 19 str = str+chr(temp) 20 21 #return str 22 return str 23 24 if __name__ == "__main__": 25 n = input() 26 print(to_upper(n))
9 - warning: bad-indentation 11 - warning: bad-indentation 14 - warning: bad-indentation 16 - warning: bad-indentation 19 - warning: bad-indentation 22 - warning: bad-indentation 7 - warning: redefined-builtin 11 - warning: unused-variable
1 import pandas as pd 2 protein_data=pd.read_csv('../data/protein_classification.csv') 3 X=protein_data['Sequence'] 4 def split(word): 5 return [char for char in word] 6 7 sequences = [split(x) for x in X] 8 protein_data=pd.read_csv('../data/protein_classification.csv') 9 X=protein_data['Sequence'] 10 11 import string 12 # import sgtdev as sgt 13 from sgt import Sgt 14 # Spark 15 from pyspark import SparkContext 16 sc = SparkContext("local", "app") 17 rdd = sc.parallelize(sequences) 18 sgt_sc = Sgt(kappa = 1, lengthsensitive = False, mode="spark", alphabets=list(string.ascii_uppercase)) 19 rdd_embedding = sgt_sc.fit_transform(corpus=rdd) 20 21 sc.stop() 22 # Multi-processing 23 sgt_mp = Sgt(kappa = 1, lengthsensitive = False, mode="multiprocessing", processors=3) 24 mp_embedding = sgt_mp.fit_transform(corpus=sequences) 25 mp_embedding = sgt_mp.transform(corpus=sequences) 26 # Default 27 sgt = Sgt(kappa = 1, lengthsensitive = False) 28 embedding = sgt.fit_transform(corpus=sequences) 29 30 # Spark again 31 corpus = [["B","B","A","C","A","C","A","A","B","A"], ["C", "Z", "Z", "Z", "D"]] 32 33 sc = SparkContext("local", "app") 34 35 rdd = sc.parallelize(corpus) 36 37 sgt_sc = Sgt(kappa = 1, 38 lengthsensitive = False, 39 mode="spark", 40 alphabets=["A", "B", "C", "D", "Z"], 41 lazy=False) 42 s = sgt_sc.fit_transform(corpus=rdd) 43 print(s) 44 sc.stop()
5 - warning: bad-indentation 5 - refactor: unnecessary-comprehension
1 # Generated by Django 3.0.2 on 2020-03-28 23:19 2 3 from django.db import migrations, models 4 5 6 class Migration(migrations.Migration): 7 8 dependencies = [ 9 ('ohjelma', '0003_song_release_year'), 10 ] 11 12 operations = [ 13 migrations.CreateModel( 14 name='Track', 15 fields=[ 16 ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), 17 ('track_name', models.CharField(max_length=500)), 18 ('track_artist', models.CharField(max_length=500)), 19 ('track_duration', models.IntegerField(default=200000)), 20 ('track_popularity', models.IntegerField(default=100)), 21 ], 22 ), 23 ]
6 - refactor: too-few-public-methods
1 # Generated by Django 3.0.2 on 2020-03-29 10:13 2 3 from django.db import migrations, models 4 5 6 class Migration(migrations.Migration): 7 8 dependencies = [ 9 ('ohjelma', '0004_track'), 10 ] 11 12 operations = [ 13 migrations.AlterField( 14 model_name='track', 15 name='track_duration', 16 field=models.CharField(max_length=5), 17 ), 18 ]
6 - refactor: too-few-public-methods
1 # Generated by Django 3.0.2 on 2020-03-13 17:36 2 3 from django.db import migrations, models 4 5 6 class Migration(migrations.Migration): 7 8 dependencies = [ 9 ('ohjelma', '0001_initial'), 10 ] 11 12 operations = [ 13 migrations.CreateModel( 14 name='Song', 15 fields=[ 16 ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), 17 ('song_name', models.CharField(max_length=200)), 18 ('song_artist', models.CharField(max_length=200)), 19 ], 20 ), 21 ]
6 - refactor: too-few-public-methods
1 # Generated by Django 3.0.2 on 2020-03-15 16:01 2 3 from django.db import migrations, models 4 5 6 class Migration(migrations.Migration): 7 8 dependencies = [ 9 ('ohjelma', '0002_song'), 10 ] 11 12 operations = [ 13 migrations.AddField( 14 model_name='song', 15 name='release_year', 16 field=models.IntegerField(default=2000), 17 ), 18 ]
6 - refactor: too-few-public-methods
1 # Generated by Django 3.0.2 on 2020-04-11 18:42 2 3 from django.db import migrations, models 4 5 6 class Migration(migrations.Migration): 7 8 dependencies = [ 9 ('ohjelma', '0006_auto_20200329_1329'), 10 ] 11 12 operations = [ 13 migrations.AddField( 14 model_name='track', 15 name='track_id', 16 field=models.CharField(default=0, max_length=30), 17 preserve_default=False, 18 ), 19 ]
6 - refactor: too-few-public-methods
1 # Generated by Django 3.0.2 on 2020-03-29 10:29 2 3 from django.db import migrations, models 4 5 6 class Migration(migrations.Migration): 7 8 dependencies = [ 9 ('ohjelma', '0005_auto_20200329_1313'), 10 ] 11 12 operations = [ 13 migrations.AlterField( 14 model_name='track', 15 name='track_duration', 16 field=models.CharField(max_length=10), 17 ), 18 ]
6 - refactor: too-few-public-methods
1 from django.apps import AppConfig 2 3 4 class OhjelmaConfig(AppConfig): 5 name = 'ohjelma'
4 - refactor: too-few-public-methods
1 # Generated by Django 3.0.2 on 2020-04-11 19:11 2 3 from django.db import migrations, models 4 5 6 class Migration(migrations.Migration): 7 8 dependencies = [ 9 ('ohjelma', '0008_track_track_danceability'), 10 ] 11 12 operations = [ 13 migrations.AddField( 14 model_name='track', 15 name='track_acousticness', 16 field=models.FloatField(default=0, max_length=10), 17 preserve_default=False, 18 ), 19 migrations.AddField( 20 model_name='track', 21 name='track_energy', 22 field=models.FloatField(default=0, max_length=10), 23 preserve_default=False, 24 ), 25 migrations.AddField( 26 model_name='track', 27 name='track_instrumentalness', 28 field=models.FloatField(default=0, max_length=10), 29 preserve_default=False, 30 ), 31 migrations.AddField( 32 model_name='track', 33 name='track_key', 34 field=models.IntegerField(default=0, max_length=3), 35 preserve_default=False, 36 ), 37 migrations.AddField( 38 model_name='track', 39 name='track_liveness', 40 field=models.FloatField(default=0, max_length=10), 41 preserve_default=False, 42 ), 43 migrations.AddField( 44 model_name='track', 45 name='track_loudness', 46 field=models.FloatField(default=0, max_length=10), 47 preserve_default=False, 48 ), 49 migrations.AddField( 50 model_name='track', 51 name='track_speechiness', 52 field=models.FloatField(default=0, max_length=10), 53 preserve_default=False, 54 ), 55 migrations.AddField( 56 model_name='track', 57 name='track_tempo', 58 field=models.FloatField(default=0, max_length=10), 59 preserve_default=False, 60 ), 61 migrations.AddField( 62 model_name='track', 63 name='track_valence', 64 field=models.FloatField(default=0, max_length=10), 65 preserve_default=False, 66 ), 67 ]
6 - refactor: too-few-public-methods
1 from django.urls import path 2 from . import views 3 4 urlpatterns = [ 5 6 path('', views.index, name = 'home'), 7 path('songs/', views.SongList.as_view(), name = 'song_list'), 8 path('view/<int:pk>', views.SongView.as_view(), name = 'song_view'), 9 path('new', views.SongCreate.as_view(), name = 'song_new'), 10 path('view/<int:pk>', views.SongView.as_view(), name = 'song_view'), 11 path('edit/<int:pk>', views.SongUpdate.as_view(), name = 'song_edit'), 12 path('delete/<int:pk>', views.SongDelete.as_view(), name = 'song_delete'), 13 path('tracks/', views.TrackView, name = 'track_list'), 14 path('yearanalysis/', views.YearAnalysis, name = 'year_analysis'), 15 path('analysis/<int:pk>', views.Analysis.as_view(), name = 'track_detail'), 16 17 #url(r'^tracks/(?P<tracksyear>\w+)/$', views.TrackView, name = "TrackView") 18 path('tracks/<int:tracksyear>', views.TrackView, name = "TrackView") 19 ]
2 - error: no-name-in-module
1 from django.db import models 2 from django.urls import reverse 3 4 class Question(models.Model): 5 question_text = models.CharField(max_length=200) 6 pub_date = models.DateTimeField('Date published') 7 8 9 class Choice(models.Model): 10 question = models.ForeignKey(Question, on_delete=models.CASCADE) 11 choice_text = models.CharField(max_length=200) 12 votes = models.IntegerField(default=0) 13 14 class Song(models.Model): 15 song_name = models.CharField(max_length=200) 16 song_artist = models.CharField(max_length = 200) 17 release_year = models.IntegerField(default=2000) 18 19 def __str__(self): 20 return self.song_name 21 22 def get_absolute_url(self): 23 return reverse('song_edit', kwargs={'pk': self.pk}) 24 25 class Track(models.Model): 26 track_id = models.CharField(max_length=30) 27 track_name = models.CharField(max_length=500) 28 track_artist = models.CharField(max_length = 500) 29 track_duration = models.CharField(max_length = 10) 30 track_popularity = models.IntegerField(default=100) 31 32 track_danceability = models.FloatField(max_length=10) 33 track_energy = models.FloatField(max_length=10) 34 track_key = models.IntegerField(max_length=3) 35 track_loudness = models.FloatField(max_length=10) 36 track_speechiness = models.FloatField(max_length=10) 37 track_acousticness = models.FloatField(max_length=10) 38 track_instrumentalness = models.FloatField(max_length=10) 39 track_liveness = models.FloatField(max_length=10) 40 track_valence = models.FloatField(max_length=10) 41 track_tempo = models.FloatField(max_length=10) 42 43 def __str__(self): 44 return self.track_name 45 46
4 - refactor: too-few-public-methods 9 - refactor: too-few-public-methods 25 - refactor: too-few-public-methods
1 import logging 2 from logging.handlers import RotatingFileHandler 3 4 from flask import Flask 5 from flask import url_for as _url_for 6 from flask.ext.sqlalchemy import SQLAlchemy 7 from flask.ext.oauth import OAuth 8 from flask.ext.assets import Environment 9 10 import certifi 11 from kombu import Exchange, Queue 12 from celery import Celery 13 14 from nomenklatura import default_settings 15 16 logging.basicConfig(level=logging.DEBUG) 17 18 app = Flask(__name__) 19 app.config.from_object(default_settings) 20 app.config.from_envvar('NOMENKLATURA_SETTINGS', silent=True) 21 app_name = app.config.get('APP_NAME') 22 23 file_handler = RotatingFileHandler('/var/log/nomenklatura/errors.log', 24 maxBytes=1024 * 1024 * 100, 25 backupCount=20) 26 file_handler.setLevel(logging.DEBUG) 27 formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s") 28 file_handler.setFormatter(formatter) 29 app.logger.addHandler(file_handler) 30 31 if app.debug is not True: 32 from raven.contrib.flask import Sentry 33 sentry = Sentry(app, dsn=app.config.get('SENTRY_DSN')) 34 35 db = SQLAlchemy(app) 36 assets = Environment(app) 37 38 celery = Celery('nomenklatura', broker=app.config['CELERY_BROKER_URL']) 39 40 queue_name = app_name + '_q' 41 app.config['CELERY_DEFAULT_QUEUE'] = queue_name 42 app.config['CELERY_QUEUES'] = ( 43 Queue(queue_name, Exchange(queue_name), routing_key=queue_name), 44 ) 45 46 celery = Celery(app_name, broker=app.config['CELERY_BROKER_URL']) 47 celery.config_from_object(app.config) 48 49 oauth = OAuth() 50 github = oauth.remote_app('github', 51 base_url='https://github.com/login/oauth/', 52 authorize_url='https://github.com/login/oauth/authorize', 53 request_token_url=None, 54 access_token_url='https://github.com/login/oauth/access_token', 55 consumer_key=app.config.get('GITHUB_CLIENT_ID'), 56 consumer_secret=app.config.get('GITHUB_CLIENT_SECRET')) 57 58 github._client.ca_certs = certifi.where() 59 60 61 def url_for(*a, **kw): 62 try: 63 kw['_external'] = True 64 return _url_for(*a, **kw) 65 except RuntimeError: 66 return None
58 - warning: protected-access
1 from normality import normalize 2 from flask.ext.script import Manager 3 from flask.ext.assets import ManageAssets 4 5 from nomenklatura.core import db 6 from nomenklatura.model import Entity 7 from nomenklatura.views import app 8 from nomenklatura.assets import assets 9 10 manager = Manager(app) 11 manager.add_command('assets', ManageAssets(assets)) 12 13 14 @manager.command 15 def createdb(): 16 """ Make the database. """ 17 db.engine.execute("CREATE EXTENSION IF NOT EXISTS hstore;") 18 db.engine.execute("CREATE EXTENSION IF NOT EXISTS fuzzystrmatch;") 19 db.create_all() 20 21 22 @manager.command 23 def flush(dataset): 24 ds = Dataset.by_name(dataset) 25 for alias in Alias.all_unmatched(ds): 26 db.session.delete(alias) 27 db.session.commit() 28 29 30 if __name__ == '__main__': 31 manager.run()
24 - error: undefined-variable 25 - error: undefined-variable 1 - warning: unused-import 6 - warning: unused-import
1 import os 2 3 def bool_env(val): 4 """Replaces string based environment values with Python booleans""" 5 return True if os.environ.get(val, 'False').lower() == 'true' else False 6 7 #DEBUG = True 8 SECRET_KEY = os.environ.get('SECRET_KEY') 9 SQLALCHEMY_DATABASE_URI = os.environ.get('DATABASE_URL', 10 os.environ.get('SHARED_DATABASE_URL')) 11 12 APP_NAME = os.environ.get('APP_NAME', 'nomenklatura') 13 14 GITHUB_CLIENT_ID = os.environ.get('GITHUB_CLIENT_ID') 15 GITHUB_CLIENT_SECRET = os.environ.get('GITHUB_CLIENT_SECRET') 16 17 MEMCACHE_HOST = os.environ.get('MEMCACHIER_SERVERS') 18 19 S3_BUCKET = os.environ.get('S3_BUCKET', 'nomenklatura') 20 S3_ACCESS_KEY = os.environ.get('S3_ACCESS_KEY') 21 S3_SECRET_KEY = os.environ.get('S3_SECRET_KEY') 22 23 CELERY_BROKER = os.environ.get('CLOUDAMQP_URL') 24 25 SIGNUP_DISABLED = bool_env('SIGNUP_DISABLED')
5 - refactor: simplifiable-if-expression
1 2 from nomenklatura.model.dataset import Dataset 3 from nomenklatura.model.entity import Entity 4 from nomenklatura.model.account import Account 5 from nomenklatura.model.upload import Upload
2 - warning: unused-import 3 - warning: unused-import 4 - warning: unused-import 5 - warning: unused-import
1 from setuptools import setup, find_packages 2 3 setup( 4 name='nomenklatura', 5 version='0.1', 6 description="Make record linkages on the web.", 7 long_description='', 8 classifiers=[ 9 ], 10 keywords='data mapping identity linkage record', 11 author='Open Knowledge Foundation', 12 author_email='info@okfn.org', 13 url='http://okfn.org', 14 license='MIT', 15 packages=find_packages(exclude=['ez_setup', 'examples', 'tests']), 16 namespace_packages=[], 17 include_package_data=False, 18 zip_safe=False, 19 install_requires=[ 20 ], 21 tests_require=[], 22 entry_points=\ 23 """ """, 24 )
Clean Code: No Issues Detected
1 DEBUG = False 2 APP_NAME = 'nomenklatura' 3 4 CELERY_BROKER_URL = 'amqp://guest:guest@localhost:5672//' 5 6 ALLOWED_EXTENSIONS = set(['csv', 'tsv', 'ods', 'xls', 'xlsx', 'txt']) 7 8 SIGNUP_DISABLED = False
Clean Code: No Issues Detected
1 from flask.ext.assets import Bundle 2 3 from nomenklatura.core import assets 4 5 deps_assets = Bundle( 6 'vendor/jquery/dist/jquery.js', 7 'vendor/bootstrap/js/collapse.js', 8 'vendor/angular/angular.js', 9 'vendor/angular-route/angular-route.js', 10 'vendor/angular-bootstrap/ui-bootstrap-tpls.js', 11 'vendor/ngUpload/ng-upload.js', 12 filters='uglifyjs', 13 output='assets/deps.js' 14 ) 15 16 app_assets = Bundle( 17 'js/app.js', 18 'js/services/session.js', 19 'js/directives/pagination.js', 20 'js/directives/keybinding.js', 21 'js/directives/authz.js', 22 'js/controllers/app.js', 23 'js/controllers/import.js', 24 'js/controllers/home.js', 25 'js/controllers/docs.js', 26 'js/controllers/review.js', 27 'js/controllers/datasets.js', 28 'js/controllers/entities.js', 29 'js/controllers/profile.js', 30 filters='uglifyjs', 31 output='assets/app.js' 32 ) 33 34 css_assets = Bundle( 35 'vendor/bootstrap/less/bootstrap.less', 36 'vendor/font-awesome/less/font-awesome.less', 37 'style/style.less', 38 filters='less,cssrewrite', 39 output='assets/style.css' 40 ) 41 42 assets.register('deps', deps_assets) 43 assets.register('app', app_assets) 44 assets.register('css', css_assets)
Clean Code: No Issues Detected
1 import logging 2 3 import requests 4 from flask import url_for, session, Blueprint, redirect 5 from flask import request 6 from apikit import jsonify 7 from werkzeug.exceptions import Forbidden 8 9 from nomenklatura import authz 10 from nomenklatura.core import app, db, github 11 from nomenklatura.model import Account, Dataset 12 13 section = Blueprint('sessions', __name__) 14 15 16 @section.route('/sessions') 17 def status(): 18 return jsonify({ 19 'logged_in': authz.logged_in(), 20 'api_key': request.account.api_key if authz.logged_in() else None, 21 'account': request.account, 22 'base_url': url_for('index', _external=True) 23 }) 24 25 26 @section.route('/sessions/authz') 27 def get_authz(): 28 permissions = {} 29 dataset_name = request.args.get('dataset') 30 if dataset_name is not None: 31 dataset = Dataset.find(dataset_name) 32 permissions[dataset_name] = { 33 'view': True, 34 'edit': authz.dataset_edit(dataset), 35 'manage': authz.dataset_manage(dataset) 36 } 37 return jsonify(permissions) 38 39 40 @section.route('/sessions/login') 41 def login(): 42 callback = url_for('sessions.authorized', _external=True) 43 return github.authorize(callback=callback) 44 45 46 @section.route('/sessions/logout') 47 def logout(): 48 logging.info(authz.require(authz.logged_in())) 49 session.clear() 50 return redirect('/') 51 52 53 @section.route('/sessions/callback') 54 @github.authorized_handler 55 def authorized(resp): 56 if 'access_token' not in resp: 57 return redirect(url_for('index', _external=True)) 58 access_token = resp['access_token'] 59 session['access_token'] = access_token, '' 60 res = requests.get('https://api.github.com/user?access_token=%s' % access_token, 61 verify=False) 62 data = res.json() 63 for k, v in data.items(): 64 session[k] = v 65 account = Account.by_github_id(data.get('id')) 66 if account is None: 67 if app.config.get('SIGNUP_DISABLED'): 68 raise Forbidden("Sorry, account creation is disabled") 69 account = Account.create(data) 70 db.session.commit() 71 return redirect('/')
60 - warning: missing-timeout
1 # shut up useless SA warning: 2 import warnings 3 warnings.filterwarnings('ignore', 'Unicode type received non-unicode bind param value.')
Clean Code: No Issues Detected
1 # Where I am currently: function makeOutfitMyself allows user to select an outfit choice from each category, adds it to a list, and returns the complete outfit. 2 # function computerChooses() has not been designed yet 3 # I plan on later adding in color options or allowing the user to add their own options 4 import random 5 gChoices = [] 6 DictionaryClothing = {'head options:': 'baseball cap wig sombrero beret fedora toupee'.split(), 7 'chest options': 'blouse dress shirt tanktop bikini t-shirt sweater chestplate corset'.split(), 8 'leg options:': 9 'leggings skinny-jeans khaki\'s shorts daisy-dukes skirt bike-shorts tutu'.split(), 10 'feet options:': 11 'running-shoes tap-dance-shoes clogs stilettos platform-shoes sandals flipflops cowboy-boots'.split(), 12 'accessory options:': 13 'belt purse necklace headband hoop-earrings sword bow mustache goatee glasses'.split()} 14 # def computerChooses(): 15 # The computer selects a random clothing option for each clothing category 16 # for every keyValues in DictionaryClothing: 17 # randomIndex = (random.randint(1, len((keyValues)-1) 18 # Return key[randomIndex] 19 20 def makeOutfitMyself(): 21 # The user selects a choice for each category 22 Choices = [] 23 for item in DictionaryClothing: 24 print(item) 25 print(DictionaryClothing[item]) 26 response = '' 27 while response not in DictionaryClothing[item] and response != 'CC': 28 print("please select one of the choices, or type ‘CC’ to have the computer do it for you") 29 response = input() 30 Choices.append(response) 31 return Choices 32 # If input() in values: 33 # Return input() 34 # Else: 35 # randomIndex = (random.randint(1, len((key values)-1) 36 # Return key[randomIndex] 37 38 39 print("""Everyday most people must choose an outfit to wear.This game, 'Dress My Day', is here to help you design outfits. 40 Type MC (my choice) to make one yourself, or CC (computer choice) to have the computer make it for you. 41 If you make it yourself, you will be asked a series of questions about clothing type and color. 42 Select one of the given options by typing it in. 43 At any point you can respond to a question by typing “CC” and the computer will make that specific choice. 44 At the end, you will be told your outfit.""") 45 response = input() 46 47 if response == 'MC': 48 gChoices = makeOutfitMyself() 49 # Else: 50 # Choices.append(ComputerChooses()) 51 # print('The outfit is now done. The outfit is: ’) 52 # print(Choices) 53 print('Looks like your outfit is: ') 54 for item in gChoices: 55 print(item) 56 print('Hope you enjoyed')
23 - warning: redefined-outer-name 26 - warning: redefined-outer-name 4 - warning: unused-import
1 import numpy as np 2 import matplotlib.pyplot as plt 3 from matplotlib import colors 4 5 rpms = np.array([4000,3500,3000,2500,2000,1500,1000,500]) 6 throttle = np.array([0,0,10,20,40,60,80,100,120]) 7 efi_map = np.array([[17.2, 16.8, 15.5, 14.8, 13.8, 13.0, 12.2], 8 [17.0, 16.5, 15.0, 14.0, 13.4, 13.0, 12.4], 9 [16.8, 16.0, 14.6, 14.2, 13.6, 13.2, 12.6], 10 [16.6, 15.8, 14.8, 14.4, 13.8, 13.4, 12.8], 11 [16.4, 15.5, 15.0, 14.6, 14.0, 13.6, 13.0], 12 [16.2, 15.6, 15.2, 14.8, 14.2, 13.8, 13.2], 13 [16.0, 15.8, 15.5, 15.1, 14.6, 14.0, 13.5]]) 14 15 def ShowEFIMap(): 16 plt.figure(figsize = (6, 6)) 17 ax = plt.subplot(111) 18 ax.set_ylabel("RPM") 19 ax.set_xlabel("Throttle") 20 21 plt.imshow(efi_map, cmap = "autumn") 22 23 ax.set_xticklabels(throttle) 24 ax.set_yticklabels(rpms) 25 26 for a in range(len(efi_map)): 27 for b in range(len(efi_map[a])): 28 ax.text(a,b,efi_map[b,a], ha = "center", va = "center", color = "b") 29 30 ax.set_title("EFI MAP") 31 plt.colorbar() 32 33 plt.show() 34 35 ShowEFIMap()
3 - warning: unused-import
1 from Data import MNIST_Data 2 from sklearn.preprocessing import OneHotEncoder 3 from sklearn.model_selection import train_test_split 4 from sklearn.linear_model import LogisticRegression 5 import numpy as np 6 import csv 7 8 mnist_loader = MNIST_Data(base_dir = "/home/hrishi/1Hrishi/ECE542_Neural_Networks/Homeworks/2/Data/", img_size = 784) 9 10 X_train = mnist_loader._load_imgs("train-images-idx3-ubyte.gz") 11 y_train = mnist_loader._load_labels("train-labels-idx1-ubyte.gz") 12 X_test = mnist_loader._load_imgs("t10k-images-idx3-ubyte.gz") 13 y_test = mnist_loader._load_labels("t10k-labels-idx1-ubyte.gz") 14 15 # np.random.seed(1) # Reset random state 16 # np.random.shuffle(X_train) 17 # np.random.shuffle(y_train) 18 19 input = np.append(X_train, y_train[:,None], axis=1) 20 # print(input.shape) 21 np.random.shuffle(input) 22 X_train = input[:,0:784] 23 y_train = input[:,784] 24 25 # X_train, X_test, y_train, y_test = train_test_split(train_images, train_labels, test_size=0.33, shuffle = True, random_state=42) 26 27 # from sklearn.preprocessing import StandardScaler 28 # scaler = StandardScaler() 29 # X_train = scaler.fit_transform(X_train) 30 31 # from sklearn.decomposition import PCA 32 # pca = PCA(n_components = 256) 33 # X_train = pca.fit_transform(X_train) 34 # X_test = pca.fit_transform(X_test) 35 36 # l2-sag-ovr = 91.25% acc without standard scaling 37 # l2-sag-multinomial = 91.91% acc without standard scaling 38 # l1-saga-ovr = 91.37% acc without standard scaling 39 # l1-saga-multinomial = 92.29% acc without standard scaling 40 41 # logistic_regressor = LogisticRegression(penalty = 'l1', solver = 'saga', tol = 1e-1, multi_class = 'multinomial', verbose = 1, n_jobs = -1) 42 # logistic_regressor.fit(X_train, y_train) 43 # 44 # predictions = logistic_regressor.predict(X_test) 45 # from sklearn.metrics import accuracy_score 46 # print(accuracy_score(y_test, predictions)) 47 # 48 # onehot_encoder = OneHotEncoder(n_values = 10, sparse = False, dtype = np.int8) 49 # predictions = onehot_encoder.fit_transform(y_train.reshape(-1,1)) 50 # np.savetxt('lr.csv', predictions, delimiter = ',', fmt = '%i') 51 52 from sklearn.ensemble import RandomForestClassifier 53 random_forest_regressor = RandomForestClassifier(criterion = 'entropy', verbose = 1) 54 random_forest_regressor.fit(X_train, y_train) 55 56 predictions = random_forest_regressor.predict(X_test) 57 from sklearn.metrics import accuracy_score 58 print(accuracy_score(y_test, predictions)) 59 60 onehot_encoder = OneHotEncoder(n_values = 10, sparse = False, dtype = np.int8) 61 predictions = onehot_encoder.fit_transform(y_train.reshape(-1,1)) 62 np.savetxt('rf.csv', predictions, delimiter = ',', fmt = '%i')
19 - warning: redefined-builtin 10 - warning: protected-access 11 - warning: protected-access 12 - warning: protected-access 13 - warning: protected-access 3 - warning: unused-import 4 - warning: unused-import 6 - warning: unused-import
1 import numpy as np 2 import gzip 3 from sklearn.preprocessing import OneHotEncoder 4 5 class MNIST_Data(object): 6 7 def __init__(self, base_dir, img_size): 8 self.base_dir = base_dir 9 self.img_size = img_size 10 11 def _load_labels(self, file_name): 12 file_path = self.base_dir + file_name 13 14 with gzip.open(file_path, 'rb') as f: 15 labels = np.frombuffer(f.read(), np.uint8, offset=8) 16 17 return np.array(labels) 18 19 def _load_imgs(self, file_name): 20 file_path = self.base_dir + file_name 21 22 with gzip.open(file_path, 'rb') as f: 23 images = np.frombuffer(f.read(), np.uint8, offset=16) 24 images = images.reshape(-1, self.img_size) 25 26 return np.array(images) 27 28 if __name__ == '__main__': 29 mnist_loader = MNIST_Data(base_dir = "/home/hrishi/1Hrishi/ECE542_Neural_Networks/Homeworks/2/Data/", img_size = 784) 30 train_labels = mnist_loader._load_labels("train-labels-idx1-ubyte.gz") 31 onehot_encoder = OneHotEncoder(n_values = 10, sparse=False) 32 onehot_encoded = onehot_encoder.fit_transform(train_labels.reshape(-1,1)) 33 print(train_labels) 34 print(onehot_encoded)
15 - warning: bad-indentation 23 - warning: bad-indentation 5 - refactor: useless-object-inheritance 5 - refactor: too-few-public-methods 30 - warning: protected-access
1 import sys 2 import traceback 3 from flask import jsonify, request 4 5 from . import api 6 7 class InvalidAPIUsage(Exception): 8 status_code = 400 9 10 def __init__(self, message='', status_code=None): 11 super().__init__() 12 self.message = message 13 self.path = request.path 14 if status_code is None: 15 self.status_code = InvalidAPIUsage.status_code 16 17 def to_dict(self): 18 rv = {} 19 rv['path'] = self.path 20 rv['status'] = self.status_code 21 rv['message'] = self.message 22 return rv 23 24 25 class IncorrectVideoFormat(InvalidAPIUsage): 26 def __init__(self, message_id): 27 super().__init__() 28 self.message = self.msg[message_id] 29 30 msg = {1:'Incorrect video type: only RGB - Type=video/mp4 allowed', 31 2:'Incorrect video dimensions: only 720p supported (1280*720)'} 32 33 34 class InvalidFilterParams(InvalidAPIUsage): 35 def __init__(self, message_id, filter_name=''): 36 super().__init__() 37 self.message = self.msg(message_id, filter_name) 38 39 def msg(self, id, filter_name): 40 # TODO:Lukas [07252021] messges could be stored in static files as JSON 41 avail_msg = {1:'Incorrect filter parameters: should be {"fps": "<fps: float>", "filter_params":{"type":"<filter: str>"}} \ 42 or for default preview, {"filter_params":{"type":""}}', 43 2:f'Incorrect filter parameters: filter does not exist, for more go to /api/v1/help/filters/', 44 3:f'Incorrect filter parameters: required parameters are missing or invalid, for more go to /api/v1/help/filters/{filter_name}/', 45 4:f'Incorrect download parameters: for more go to /api/v1/help/download/', 46 } 47 return avail_msg[id] 48 49 50 @api.errorhandler(InvalidAPIUsage) 51 def invalid_api_usage(e): 52 return jsonify(e.to_dict()), 400 53
40 - warning: fixme 5 - error: no-name-in-module 39 - warning: redefined-builtin 43 - warning: f-string-without-interpolation 45 - warning: f-string-without-interpolation 1 - warning: unused-import 2 - warning: unused-import
1 from flask_swagger_ui import get_swaggerui_blueprint 2 3 4 swagger_ui = get_swaggerui_blueprint( 5 '/docs', 6 '/static/swagger.json', 7 config={ 8 "app_name": "videoApi" 9 } 10 )
Clean Code: No Issues Detected
1 from flask import request, jsonify 2 from functools import wraps 3 4 from .errors import InvalidAPIUsage, InvalidFilterParams, IncorrectVideoFormat 5 6 7 8 """ 9 Almost like an Architect - makes decorations 10 """ 11 def decorator_maker(func): 12 def param_decorator(fn=None, does_return=None, req_c_type=None, req_type=None, arg=None, session=None): 13 def deco(fn): 14 @wraps(fn) 15 def wrapper(*args, **kwargs): 16 result = func(does_return, req_c_type, req_type, arg, session) 17 if does_return: 18 return fn(result) 19 return fn(*args, **kwargs) 20 return wrapper 21 if callable(fn): return deco(fn) 22 return deco 23 return param_decorator 24 25 26 27 """ 28 Checks if user input is not out of bounds, and also Content-Type 29 """ 30 def wrap_param_check(does_return, req_c_type, req_type, arg, session): 31 check_content_type(req_c_type) 32 return check_correct_filter_params(session) 33 34 def check_content_type(req_c_type): 35 if not request.content_type.startswith(req_c_type): 36 raise InvalidAPIUsage(f'Content-Type should be of type: {req_c_type}', 400) 37 38 def check_correct_filter_params(session): 39 if request.data: 40 data = request.get_json() 41 f_params = data['filter_params'] 42 if 'filter_params' not in data: 43 raise InvalidFilterParams(1) 44 elif 'type' not in f_params: 45 raise InvalidFilterParams(1) 46 if 'download' in request.url: 47 if 'fps' not in data: 48 raise InvalidFilterParams(1) 49 if 'max_f' in f_params and 'min_f' in f_params: 50 max_fr = session['video_frame_count'] 51 min_f_raw = f_params['min_f'] 52 max_f_raw = f_params['max_f'] 53 54 if min_f_raw == "": min_f_raw = 0 55 if max_f_raw == "": max_f_raw = max_fr 56 57 min_f = _check_for_req_type(int, min_f_raw, 4) 58 max_f = _check_for_req_type(int, max_f_raw, 4) 59 a = check_bounds(min_f_raw, max_fr) 60 b = check_bounds(max_f_raw, max_fr) 61 return sorted([a, b]) 62 63 64 def _check_for_req_type(req_type, val, ex): 65 try: 66 req_type(val) 67 except Exception: 68 raise InvalidFilterParams(ex) 69 return val 70 71 parameter_check = decorator_maker(wrap_param_check) 72 73 74 75 """ 76 Checks if user input is not out of bounds, and also Content-Type 77 """ 78 def wrap_url_arg_check(does_return, req_c_type, req_type, arg, session): 79 check_arg_urls(req_type, arg) 80 frame_idx = request.view_args[arg] 81 return check_bounds(frame_idx, session['video_frame_count']) 82 83 84 def check_arg_urls(req_type, arg): 85 try: 86 req_type(request.view_args[arg]) 87 except ValueError: 88 raise InvalidAPIUsage(f'Content-Type should be of type: {req_type.__name__}', 400) 89 90 def check_bounds(frame_idx, max_frames): 91 f_max = int(max_frames) 92 f_idx = int(frame_idx) 93 if f_idx > f_max: 94 f_idx = f_max-50 95 elif f_idx < 1: 96 f_idx = 1 97 return f_idx 98 99 url_arg_check = decorator_maker(wrap_url_arg_check) 100 101 102 103 """ 104 Checks Video Metadata 105 """ 106 def wrap_metadata_check(does_return, req_c_type, req_type, arg, session): 107 check_metadata(req_type) 108 109 def check_metadata(req_type): 110 byteStream = request.files['file'] 111 vid_type = byteStream.__dict__['headers'].get('Content-Type') 112 if vid_type != req_type: 113 raise IncorrectVideoFormat(1) 114 115 metadata_check = decorator_maker(wrap_metadata_check) 116 117 118 119 """ 120 Excpetion Handler for non-Endpoints 121 """ 122 def exception_handler(fn=None, ex=None, type=None, pas=False): 123 def deco(fn): 124 @wraps(fn) 125 def wrapper(*args, **kwargs): 126 try: 127 fn(*args, **kwargs) 128 except Exception: 129 if not pas: 130 raise ex(type) 131 pass 132 return fn(*args, **kwargs) 133 return wrapper 134 if callable(fn): return deco(fn) 135 return deco
4 - error: relative-beyond-top-level 8 - warning: pointless-string-statement 12 - refactor: too-many-arguments 12 - refactor: too-many-positional-arguments 27 - warning: pointless-string-statement 30 - warning: unused-argument 30 - warning: unused-argument 30 - warning: unused-argument 42 - refactor: no-else-raise 38 - refactor: inconsistent-return-statements 57 - warning: unused-variable 58 - warning: unused-variable 68 - warning: raise-missing-from 78 - warning: unused-argument 78 - warning: unused-argument 88 - warning: raise-missing-from 106 - warning: unused-argument 106 - warning: unused-argument 106 - warning: unused-argument 106 - warning: unused-argument 122 - warning: redefined-builtin 128 - warning: broad-exception-caught 130 - warning: raise-missing-from 131 - warning: unnecessary-pass 1 - warning: unused-import
1 from flask import Blueprint 2 3 api = Blueprint('videoApi', __name__) 4 5 from . import videoApi, errors, help
5 - warning: redefined-builtin 5 - error: no-name-in-module 5 - error: no-name-in-module 5 - error: no-name-in-module 5 - warning: unused-import 5 - warning: unused-import 5 - warning: unused-import
1 from flask import Flask 2 from config import config 3 from flask_caching import Cache 4 5 from flask_swagger_ui import get_swaggerui_blueprint 6 7 VIDEO_EXTENSION=None 8 VIDEO_WIDTH=None 9 VIDEO_HEIGHT=None 10 11 VIDEO_UPLOAD_PATH=None 12 FRAMES_UPLOAD_PATH=None 13 IMG_EXTENSION=None 14 15 HELP_MSG_PATH=None 16 17 CACHE=None 18 19 20 def create_app(config_name): 21 22 global VIDEO_EXTENSION 23 global VIDEO_WIDTH 24 global VIDEO_HEIGHT 25 26 global VIDEO_UPLOAD_PATH 27 global FRAMES_UPLOAD_PATH 28 29 global IMG_EXTENSION 30 global HELP_MSG_PATH 31 global CACHE 32 33 app = Flask(__name__) 34 app.config.from_object(config[config_name]) 35 config[config_name].init_app(app) 36 37 cache = Cache(config={"CACHE_TYPE": "filesystem", 38 "CACHE_DIR": app.root_path + '/static/cache'}) 39 cache.init_app(app) 40 41 CACHE = cache 42 43 VIDEO_EXTENSION = app.config["VIDEO_EXTENSION"] 44 VIDEO_WIDTH = int(app.config["VIDEO_WIDTH"]) 45 VIDEO_HEIGHT = int(app.config["VIDEO_HEIGHT"]) 46 47 IMG_EXTENSION = app.config["IMG_EXTENSION"] 48 49 VIDEO_UPLOAD_PATH = app.root_path + '/static/uploads/videos' 50 FRAMES_UPLOAD_PATH = app.root_path + '/static/uploads/frames' 51 52 HELP_MSG_PATH = app.root_path + '/static/helpmessages' 53 54 #TODO: video max dimensions, video max length 55 56 from .main import main as main_blueprint 57 app.register_blueprint(main_blueprint) 58 59 from .api import api as api_blueprint 60 app.register_blueprint(api_blueprint, url_prefix='/videoApi/v1') 61 62 from .docs import swagger_ui 63 app.register_blueprint(swagger_ui, url_prefix="/docs") 64 65 66 return app
54 - warning: fixme 22 - warning: global-statement 23 - warning: global-statement 24 - warning: global-statement 26 - warning: global-statement 27 - warning: global-statement 29 - warning: global-statement 30 - warning: global-statement 31 - warning: global-statement 56 - error: relative-beyond-top-level 59 - error: relative-beyond-top-level 62 - error: relative-beyond-top-level 5 - warning: unused-import
1 import cv2 2 import math 3 import string 4 import random 5 import numpy as np 6 import skvideo.io 7 from PIL import Image 8 9 from .. import VIDEO_EXTENSION, VIDEO_UPLOAD_PATH, \ 10 FRAMES_UPLOAD_PATH, IMG_EXTENSION, CACHE 11 12 FPS = 23.98 13 SK_CODEC = 'libx264' 14 15 16 def create_vid_path(name): 17 return f'{VIDEO_UPLOAD_PATH}/{name}{VIDEO_EXTENSION}' 18 19 def create_frame_path(name): 20 return f'{FRAMES_UPLOAD_PATH}/{name}{IMG_EXTENSION}' 21 22 def framecount_from_vid_id(video_id): 23 video_path = create_vid_path(video_id) 24 cap = cv2.VideoCapture(video_path) 25 return math.floor(cap.get(7)) 26 27 def id_generator(size, chars=string.ascii_lowercase + string.digits) -> str: 28 return ''.join(random.choice(chars) for _ in range(size)) 29 30 31 def create_sk_video_writer(video_f_path, fps = None): 32 if not fps : fps = FPS 33 return skvideo.io.FFmpegWriter(video_f_path, 34 outputdict={'-c:v':SK_CODEC, '-profile:v':'main', 35 '-pix_fmt': 'yuv420p', '-r':str(fps)}) 36 37 38 def set_cache_f_count(s_id: str, ud: str, fc: str) -> None: 39 CACHE.set(f'{s_id}_{ud}', fc) 40 41 42 def bgr_to_rgb(frame: np.ndarray) -> np.ndarray: 43 return frame[:, :, ::-1] 44 45 46 def is_greyscale(frame) -> bool: 47 return frame.ndim == 2 48 49 50 def is_rgb(frame) -> bool: 51 return frame.ndim == 3 52 53 54 def img_from_greyscale(frame: np.ndarray) -> Image: 55 return Image.fromarray(frame).convert("L") 56 57 58 def img_from_bgr(frame: np.ndarray) -> Image: 59 return Image.fromarray(bgr_to_rgb(frame)) 60 61 62
9 - error: relative-beyond-top-level
1 import os 2 basedir = os.path.abspath(os.path.dirname(__file__)) 3 4 5 class Config: 6 7 """ 8 """ 9 SECRET_KEY = os.environ.get('SECRET_KEY') 10 FLASK_CONFIG = os.environ.get('FLASK_CONFIG') 11 12 VIDEO_EXTENSION = os.environ.get('VIDEO_EXTENSION') 13 VIDEO_WIDTH = os.environ.get('VIDEO_WIDTH') 14 VIDEO_HEIGHT = os.environ.get('VIDEO_HEIGHT') 15 16 IMG_EXTENSION = os.environ.get('IMG_EXTENSION') 17 18 19 @staticmethod 20 def init_app(app): 21 pass 22 23 24 class DevelopmentConfig(Config): 25 26 """ 27 """ 28 DEBUG = True 29 30 config = { 31 'development': DevelopmentConfig, 32 'default': DevelopmentConfig 33 }
5 - refactor: too-few-public-methods 24 - refactor: too-few-public-methods
1 from werkzeug.utils import secure_filename 2 from functools import partial 3 import subprocess as sp 4 import time 5 6 import skvideo.io 7 import numpy as np 8 import threading 9 import ffmpeg 10 import shlex 11 import cv2 12 import re 13 14 from PIL import Image 15 16 from werkzeug.datastructures import FileStorage as FStorage 17 from .. import VIDEO_EXTENSION, VIDEO_WIDTH, VIDEO_HEIGHT, \ 18 VIDEO_UPLOAD_PATH, FRAMES_UPLOAD_PATH, IMG_EXTENSION 19 20 from . import utils 21 from . errors import IncorrectVideoFormat, InvalidFilterParams, InvalidAPIUsage 22 from . decorators import exception_handler 23 24 FRAME_SIZE = VIDEO_WIDTH * VIDEO_HEIGHT * 3 25 FRAME_WH = (VIDEO_WIDTH, VIDEO_HEIGHT) 26 FFMPEG_COMMAND = 'ffmpeg -i pipe: -f rawvideo -pix_fmt bgr24 -an -sn pipe: -loglevel quiet' 27 28 ID_LEN = 32 29 30 31 32 class Frame: 33 34 def __init__(self, id=None): 35 self.id = id 36 37 @exception_handler(ex=IncorrectVideoFormat, type=2) 38 def from_bytes(self, in_bytes: bytes) -> np.ndarray: 39 """ 40 """ 41 frame_arr = np.frombuffer(in_bytes, np.uint8) 42 f_arr = frame_arr.reshape([VIDEO_HEIGHT, VIDEO_WIDTH, 3]) 43 return utils.bgr_to_rgb(f_arr) 44 45 def f_save(self, frame: np.ndarray, frame_id: str) -> None: 46 upload_path = utils.create_frame_path(frame_id) 47 if utils.is_rgb(frame): 48 Image.fromarray(frame).save(upload_path) 49 return 50 utils.img_from_greyscale(frame).save(upload_path) 51 return 52 53 def get_by_idx(self, frame_idx): 54 vid = utils.create_vid_path(self.id) 55 cap = cv2.VideoCapture(vid) 56 cap.set(1, frame_idx) 57 _, frame = cap.read() 58 return frame 59 60 61 62 class VideoUploader(Frame): 63 64 def __init__(self): 65 id = utils.id_generator(ID_LEN) 66 super().__init__(id) 67 self.frame_count = 0 68 69 def upload_from_bytestream(self, byte_stream: FStorage): 70 video_f_path = utils.create_vid_path(self.id) 71 sk_writer = utils.create_sk_video_writer(video_f_path) 72 73 sh_command = shlex.split(FFMPEG_COMMAND) 74 process = sp.Popen(sh_command, stdin=sp.PIPE, stdout=sp.PIPE, bufsize=10**8) 75 thread = threading.Thread(target=self._writer, args=(process, byte_stream, )) 76 thread.start() 77 78 while True: 79 in_bytes = process.stdout.read(FRAME_SIZE) 80 if not in_bytes: break 81 frame = self.from_bytes(in_bytes) 82 self.frame_count += 1 83 if self.frame_count == 1: self.f_save(frame, self.id) 84 sk_writer.writeFrame(frame) 85 thread.join() 86 sk_writer.close() 87 88 def _writer(self, process, byte_stream): 89 for chunk in iter(partial(byte_stream.read, 1024), b''): 90 process.stdin.write(chunk) 91 try: 92 process.stdin.close() 93 except (BrokenPipeError): 94 pass 95 96 97 98 class Filter: 99 100 def __init__(self, img=None): 101 self.img = img 102 103 def applyCanny(self, params): 104 if 'thresh1' in params and 'thresh2' in params: 105 gs_img = self.applyGreyScale(params) 106 return cv2.Canny(gs_img, 107 int(params['thresh1']), 108 int(params['thresh2'])) 109 raise InvalidFilterParams(3, 'canny') 110 111 def applyGauss(self, params): 112 if 'ksize_x' and 'ksize_y' in params and \ 113 params['ksize_x'] % 2 != 0 and \ 114 params['ksize_y'] % 2 != 0: 115 g_img = self.img.copy() 116 if np.ndim(g_img) == 3: g_img = utils.bgr_to_rgb(g_img) 117 return cv2.GaussianBlur(g_img, 118 (int(params["ksize_x"]), int(params["ksize_y"])), 0) 119 raise InvalidFilterParams(3, 'gauss') 120 121 def applyGreyScale(self, _): 122 c_img = self.img.copy() 123 return cv2.cvtColor(c_img, cv2.COLOR_RGB2GRAY) 124 125 def applyLaplacian(self, params): 126 gs_img = self.applyGreyScale(params) 127 return cv2.Laplacian(gs_img, cv2.CV_8U) 128 129 def run_func(self, params): 130 if params["type"] in self.filter_map: 131 func = self.filter_map[params["type"]].__get__(self, type(self)) 132 return func(params) 133 raise InvalidFilterParams(2) 134 135 def _default(self, _): 136 return utils.bgr_to_rgb(self.img) 137 138 filter_map = {'canny': applyCanny, 139 'gauss': applyGauss, 140 'greyscale': applyGreyScale, 141 'laplacian': applyLaplacian, 142 '': _default} 143 144 145 146 class VideoDownloader(Frame, Filter): 147 148 def __init__(self, fps, vid_range=None): 149 Frame.__init__(self) 150 Filter.__init__(self) 151 self.fps = fps 152 self.vid_range = vid_range 153 self.curr_f_frame = None 154 if vid_range: 155 self.range_min = vid_range[0] 156 self.range_max = vid_range[1] 157 158 def download(self, s_id, tot_video_frames, params): 159 f_vid_name = f'{s_id}_{params["type"]}' 160 video_f_path = utils.create_vid_path(f_vid_name) 161 local_vid = cv2.VideoCapture(utils.create_vid_path(s_id)) 162 vid_writer = utils.create_sk_video_writer(video_f_path, self.fps) 163 164 for i in range(tot_video_frames-1): 165 utils.set_cache_f_count(s_id, 'd', i) 166 _, curr_frame = local_vid.read() 167 if curr_frame is None: break 168 self.img = curr_frame 169 f_frame = self._filter_apply(i, params) 170 vid_writer.writeFrame(f_frame) 171 vid_writer.close() 172 return f_vid_name 173 174 def _filter_apply(self, i, params): 175 """ 176 we simply check if a range is given, 177 then if we get a gs-img from the filter we add three dimensions 178 """ 179 if self.vid_range: 180 if(i >= self.vid_range[0] and 181 i <= self.vid_range[1]): 182 f_frame = self.run_func(params) 183 if not utils.is_rgb(f_frame): 184 return np.dstack(3*[f_frame]) 185 return f_frame 186 else: 187 return self.run_func({"type":""}) 188 else: 189 return self.run_func(params)
70 - warning: bad-indentation 71 - warning: bad-indentation 73 - warning: bad-indentation 74 - warning: bad-indentation 75 - warning: bad-indentation 76 - warning: bad-indentation 78 - warning: bad-indentation 79 - warning: bad-indentation 80 - warning: bad-indentation 81 - warning: bad-indentation 82 - warning: bad-indentation 83 - warning: bad-indentation 84 - warning: bad-indentation 85 - warning: bad-indentation 86 - warning: bad-indentation 159 - warning: bad-indentation 160 - warning: bad-indentation 161 - warning: bad-indentation 162 - warning: bad-indentation 164 - warning: bad-indentation 165 - warning: bad-indentation 166 - warning: bad-indentation 167 - warning: bad-indentation 168 - warning: bad-indentation 169 - warning: bad-indentation 170 - warning: bad-indentation 171 - warning: bad-indentation 172 - warning: bad-indentation 17 - error: relative-beyond-top-level 20 - error: no-name-in-module 21 - error: relative-beyond-top-level 22 - error: relative-beyond-top-level 34 - warning: redefined-builtin 65 - warning: redefined-builtin 74 - refactor: consider-using-with 112 - refactor: simplifiable-condition 180 - refactor: no-else-return 180 - refactor: chained-comparison 1 - warning: unused-import 4 - warning: unused-import 6 - warning: unused-import 9 - warning: unused-import 12 - warning: unused-import 17 - warning: unused-import 17 - warning: unused-import 17 - warning: unused-import 17 - warning: unused-import 21 - warning: unused-import
1 from flask import jsonify, request, send_from_directory 2 from . decorators import parameter_check 3 from . import api 4 from ..import HELP_MSG_PATH 5 import json 6 7 AV_EP = ["upload", "preview", "download", "stats", "filters"] 8 AV_FILTERS = ["canny", "greyscale", "laplacian", "gauss"] 9 10 @api.route('/help/', methods=['GET']) 11 @api.route('/help/<endpts>/', methods=['GET']) 12 @api.route('/help/filters/<filter_type>/', methods=['GET']) 13 @parameter_check(req_c_type='application/json') 14 def help(endpts=None, filter_type=None): 15 if endpts and endpts in AV_EP: 16 return jsonify(load_json_from_val(endpts)), 200 17 elif filter_type and filter_type in AV_FILTERS: 18 return jsonify(load_json_from_val(filter_type)), 200 19 else: 20 return jsonify(load_json_from_val('help')), 200 21 22 23 def load_json_from_val(val): 24 f = open(HELP_MSG_PATH+f'/{val}.json') 25 return json.load(f)
14 - warning: redefined-builtin 2 - error: relative-beyond-top-level 3 - error: no-name-in-module 4 - error: relative-beyond-top-level 15 - refactor: no-else-return 24 - warning: unspecified-encoding 24 - refactor: consider-using-with 1 - warning: unused-import 1 - warning: unused-import
1 import os 2 from flask import Flask, request, redirect, \ 3 url_for, session, jsonify, send_from_directory, make_response, send_file 4 5 from . import api 6 from . import utils 7 from .. import VIDEO_UPLOAD_PATH, FRAMES_UPLOAD_PATH, IMG_EXTENSION, VIDEO_EXTENSION, CACHE 8 9 from . VideoProcessing import Frame, VideoUploader, VideoDownloader, Filter 10 from . decorators import parameter_check, url_arg_check, metadata_check 11 from . errors import InvalidAPIUsage 12 13 14 15 @api.route('/upload/', methods=['POST']) 16 @parameter_check(does_return=False, req_c_type='multipart/form-data') 17 @metadata_check(does_return=False, req_type='video/mp4') 18 def upload_video(): 19 """ 20 uploads the video 21 """ 22 23 byteStream = request.files['file'] 24 vu = VideoUploader() 25 vu.upload_from_bytestream(byteStream) 26 27 session['s_id'] = vu.id 28 f_c = utils.framecount_from_vid_id(vu.id) 29 session['video_frame_count'] = f_c 30 session['is_uploaded'] = True 31 32 return jsonify({'status' : '201', 33 'message' : 'video uploaded!'}), 201 34 35 36 37 @api.route('/preview/', defaults={'frame_idx':1}, methods=['GET']) 38 @api.route('/preview/<frame_idx>/', methods=['GET', 'POST']) 39 @parameter_check(does_return=False, req_c_type='application/json') 40 @url_arg_check(does_return=True, req_type=int, arg='frame_idx', session=session) 41 def preview_thumbnail(frame_idx): 42 """ 43 Preview a frame by index, given filter parameters 44 """ 45 if session.get('is_uploaded'): 46 data = request.get_json() 47 filter_params = data['filter_params'] 48 session['filter_params'] = filter_params 49 frame = Frame(session['s_id']) 50 frame_i = frame.get_by_idx(frame_idx) 51 filter_frame = Filter(frame_i).run_func(filter_params) 52 frame.f_save(filter_frame, session['s_id']) 53 54 return send_from_directory(directory=f'{FRAMES_UPLOAD_PATH}', 55 path=f'{session["s_id"]}{IMG_EXTENSION}', 56 as_attachment=True), 200 57 58 raise InvalidAPIUsage('Invalid usage: please upload a video first') 59 60 61 62 @api.route('/download/', methods=['POST']) 63 @parameter_check(does_return=True, req_c_type='application/json', session=session) 64 def download_video(vid_range): 65 """ 66 Download a video given filter parameters 67 """ 68 69 if session.get('is_uploaded'): 70 data = request.get_json() 71 fps = data['fps'] 72 filter_params = data['filter_params'] 73 frame_count = session['video_frame_count'] 74 vd = VideoDownloader(fps, vid_range) 75 filter_vid = vd.download(session['s_id'], frame_count, filter_params) 76 77 session['is_downloaded'] = True 78 return send_from_directory(directory=f'{VIDEO_UPLOAD_PATH}', 79 path=f'{filter_vid}{VIDEO_EXTENSION}', 80 as_attachment=True), 200 81 82 raise InvalidAPIUsage('Invalid usage: please upload a video first') 83 84 85 @api.route('/status/', methods=['GET']) 86 @parameter_check(req_c_type='application/json') 87 def status(): 88 """ 89 The progress of the user, uploaded, download / frames 90 """ 91 92 resp = {} 93 try: 94 if session['is_uploaded']: 95 resp["upload"] = "done" 96 if CACHE.get(f"{session['s_id']}_d"): 97 d_status = CACHE.get(f"{session['s_id']}_d") 98 resp["downloaded_frames"] = f'{d_status}/{session["video_frame_count"]}' 99 if session["is_downloaded"]: 100 resp["is_downloaded"] = True 101 except KeyError: 102 pass 103 return jsonify({"status" : resp}), 200
5 - error: no-name-in-module 6 - error: no-name-in-module 7 - error: relative-beyond-top-level 9 - error: relative-beyond-top-level 10 - error: relative-beyond-top-level 11 - error: relative-beyond-top-level 1 - warning: unused-import 2 - warning: unused-import 2 - warning: unused-import 2 - warning: unused-import 2 - warning: unused-import 2 - warning: unused-import
1 from flask import redirect, url_for, jsonify 2 from . import main 3 4 @main.app_errorhandler(404) 5 def page_not_found(e): 6 return jsonify(error=str(e)), 404 7 8 @main.app_errorhandler(405) 9 def method_not_allowed(e): 10 return jsonify(error=str(e)), 405 11 12
2 - error: no-name-in-module 1 - warning: unused-import 1 - warning: unused-import
1 #!/usr/bin/env python3 2 """Combine all hours of data into one CSV""" 3 import pandas as pd 4 5 #output combined CSV file 6 def concat_file(file_list, output_file): 7 """concat .csv file according to list of files 8 :param str file_list: List of CSV from provided dataset 9 :param str output_file: Output filename to save the concat CSV of files 10 :return: New file written to <output_file> 11 :rtype: void 12 """ 13 combined_csv = pd.concat([pd.read_csv(f) for f in file_list ]) #combine all files in the list 14 combined_csv.to_csv( output_file, index=False, encoding='utf-8-sig') #export to csv with uft-8 encoding 15 16 # hold paths for each hour 17 acc_file_locations=[] 18 gyro_file_locations=[] 19 20 # loop to add path hours to list 21 for hour in range (12,18): 22 acc_file_locations.append("Data-raw/Accelerometer/2019-11-12/" + str(hour) + "/accel_data.csv") 23 gyro_file_locations.append("Data-raw/Gyroscope/2019-11-12/" + str(hour) + "/accel_data.csv") 24 25 concat_file(acc_file_locations, 'acc_data.csv') 26 concat_file(gyro_file_locations, 'gyro_data.csv')
Clean Code: No Issues Detected
1 #!/usr/bin/env python3 2 """Module to calculate reliability of samples of raw accelerometer files.""" 3 4 import pandas as pd 5 import matplotlib.pyplot as plt 6 import datetime 7 import argparse 8 import os 9 10 11 def main(): 12 """ 13 Application entry point responsible for parsing command line requests 14 """ 15 parser = argparse.ArgumentParser(description='Process accelerometer data.') 16 parser.add_argument('input_file', metavar='file', type=str, nargs='+', 17 help='filename for csv accelerometer data') 18 19 # parse command line arguments 20 args = parser.parse_args() 21 for file in args.input_file: 22 reliability_score(file) 23 24 25 def reliability_score(input_file): 26 """ calculate reliability score based on input file 27 :param str input_file: CSV from provided dataset 28 :return: New file written to csv output naming convention and new png image of plot 29 :rtype: void 30 """ 31 sampling_rate=20 # Sample rate (Hz) for target device data 32 33 # save file name 34 base_input_name = os.path.splitext(input_file)[0] 35 36 # timestamp for filename 37 now = datetime.datetime.now() 38 timestamp = str(now.strftime("%Y%m%d_%H-%M-%S")) 39 40 df = pd.read_csv(input_file) # read data 41 42 df['Time'] = pd.to_datetime(df['Time'], unit='ms') # convert timestamp to seconds 43 df = df.set_index('Time') #index as timestamp to count 44 samples_seconds = df.resample('1S').count() # count sample in each 1s time period 45 46 # reliability by second 47 samples_seconds['Reliability']= samples_seconds['Hour'] / sampling_rate 48 samples_seconds.loc[samples_seconds['Reliability'] >= 1, 'Reliability'] = 1 #if sample rate greater than one set to 1 49 50 # save csv of reliability by second 51 header = ["Reliability"] 52 samples_seconds.to_csv("reliability_csv_by_seconds_" + base_input_name + "_" + timestamp + ".csv" , columns=header) 53 54 print("Reliability for data set = " + str(samples_seconds["Reliability"].mean(axis=0))) 55 56 # set and display plot 57 plot_df = samples_seconds.reset_index() # add index column 58 plot_df.plot(x='Time', y='Reliability', rot=45, style=".", markersize=5) 59 60 # save png image 61 plt.savefig("reliability_plot_" + base_input_name + "_" + timestamp + ".png", bbox_inches='tight') 62 63 #show plot 64 plt.title("Reliability Score by Second") 65 plt.show() 66 67 if __name__ == '__main__': 68 main() # Standard boilerplate to call the main() function to begin the program. 69
Clean Code: No Issues Detected
1 #!/usr/bin/env python3 2 """Module to calculate energy and non-wear time of accelerometer data.""" 3 4 import os 5 import pandas as pd 6 import numpy as np 7 import matplotlib.pyplot as plt 8 import datetime 9 import argparse 10 11 12 def main(): 13 """ 14 Application entry point responsible for parsing command line requests 15 """ 16 parser = argparse.ArgumentParser(description='Process Non-wear-time accelerometer data.') 17 parser.add_argument('input_file', metavar='file', type=str, nargs='+', 18 help='filename for csv accelerometer data') 19 20 # parse command line arguments 21 args = parser.parse_args() 22 for file in args.input_file: 23 energy_calculations(file) 24 25 def energy_calculations(input_file): 26 """calculate energy and non-wear time stamps based on input file 27 :param str input_file: CSV from provided dataset 28 :return: New file written to csv output naming convention and new png image of plot 29 :rtype: void 30 """ 31 df = pd.read_csv(input_file) # read data 32 df['Time'] = pd.to_datetime(df['Time'], unit='ms') # convert timestamp to datetime object 33 34 # save file name 35 base_input_name = os.path.splitext(input_file)[0] 36 37 # timestamp for filename 38 now = datetime.datetime.now() 39 timestamp = str(now.strftime("%Y%m%d_%H-%M-%S")) 40 41 # Simple smoothing signal with rolling window 42 # use rolling window of 10 samples ~ .5 second 43 df['accX'] = df['accX'].rolling(window=10, min_periods=1).mean() # smoothing 44 df['accY'] = df['accY'].rolling(window=10, min_periods=1).mean() # smoothing 45 df['accZ'] = df['accZ'].rolling(window=10, min_periods=1).mean() # smoothing 46 47 #rolling std 48 df['stdX'] = df['accX'].rolling(300).std()*1000 # rolling std of 15 seconds is 300 samples 49 df['stdY'] = df['accY'].rolling(300).std()*1000 50 df['stdZ'] = df['accZ'].rolling(300).std()*1000 # 1000 X to convert g to mg 51 52 # Calculate non-wear time using std if 2 of 3 axes is less than target, point can be marked as non-wear point 53 target_std=13 # set target std to check against 54 df["Non_Wear"] = (df['stdX'] < target_std) & (df['stdY'] < target_std) | (df['stdX'] < target_std) & (df['stdZ'] < target_std) | (df['stdY'] < target_std) & (df['stdZ'] < target_std) 55 56 # Vector Mag to calc non-worn time 57 df["Energy"]= np.sqrt((df['accX']**2) + (df['accY']**2) + (df['accZ']**2)) # energy calculation 58 59 # plot the energy expenditure 60 ax = df.plot(x="Time", y='Energy', rot=45, markersize=5) 61 ax = plt.gca() 62 63 # run gridlines for each hour bar 64 ax.get_xaxis().grid(True, which='major', color='grey', alpha=0.5) 65 ax.get_xaxis().grid(True, which='minor', color='grey', alpha=0.25) 66 67 # mask the blocks for wear and non_wear time 68 df['block'] = (df['Non_Wear'].astype(bool).shift() != df['Non_Wear'].astype(bool)).cumsum() # checks if next index label is different from previous 69 df.assign(output=df.groupby(['block']).Time.apply(lambda x:x - x.iloc[0])) # calculate the time of each sample in blocks 70 71 # times of blocks 72 start_time_df = df.groupby(['block']).first() # start times of each blocked segment 73 stop_time_df = df.groupby(['block']).last() # stop times for each blocked segment 74 75 # lists of times stamps 76 non_wear_starts_list=start_time_df[start_time_df['Non_Wear'] == True]['Time'].tolist() 77 non_wear_stops_list=stop_time_df[stop_time_df['Non_Wear'] == True]['Time'].tolist() 78 79 # new df from all non-wear periods 80 data = { "Start": non_wear_starts_list, "Stop": non_wear_stops_list} 81 df_non_wear=pd.DataFrame(data) # new df for non-wear start/stop times 82 df_non_wear['delta'] = [pd.Timedelta(x) for x in (df_non_wear["Stop"]) - pd.to_datetime(df_non_wear["Start"])] 83 84 # check if non-wear is longer than target 85 valid_no_wear = df_non_wear["delta"] > datetime.timedelta(minutes=5) # greater than 5 minutes 86 no_wear_timestamps=df_non_wear[valid_no_wear] 87 88 # list of valid non-wear starts and stops 89 non_wear_start = no_wear_timestamps["Start"] 90 non_wear_stop = no_wear_timestamps["Stop"] 91 92 # calculate total capture time 93 capture_time_df = df[['Time']].copy() 94 # capture_time_df = capture_time_df.set_index('Time') 95 96 # plot non-wear periods 97 for non_start, non_stop in zip(non_wear_start, non_wear_stop): 98 capture_time_df['Non_Wear'] = (capture_time_df['Time'] > non_start ) & (capture_time_df['Time'] < non_stop ) 99 ax.axvspan(non_start, non_stop, alpha=0.5, color='red') 100 101 # blocking validated wear and non wear time 102 capture_time_df['block'] = (capture_time_df['Non_Wear'].astype(bool).shift() != capture_time_df['Non_Wear'].astype(bool)).cumsum() # checks if next index label is different from previous 103 capture_time_df.assign(output=capture_time_df.groupby(['block']).Time.apply(lambda x: x - x.iloc[0])) # calculate the time of each sample in blocks 104 # times of blocks 105 start_time_df = capture_time_df.groupby(['block']).first() # start times of each blocked segment 106 stop_time_df = capture_time_df.groupby(['block']).last() # stop times for each blocked segment 107 108 109 start_time_df.rename(columns={'Time': 'StartTime'}, inplace=True) 110 stop_time_df.rename(columns={'Time': 'StopTime'}, inplace=True) 111 112 # combine start and stop dataframes 113 time_marks = pd.concat([start_time_df, stop_time_df], axis=1) 114 print("Capture Segment Periods:") 115 print(time_marks) 116 117 #save csv of individual time periods (worn and non-worn timestamps 118 time_marks.to_csv("wear_periods_csv_" + base_input_name + "_" + timestamp + ".csv") 119 120 # save png image 121 plt.savefig("non_wear_time_plot_" + base_input_name + "_" + timestamp + ".png", bbox_inches='tight') 122 123 #show plot 124 plt.title("Non-wear Time") 125 plt.show() 126 127 if __name__ == '__main__': 128 main() # Standard boilerplate to call the main() function to begin the program. 129 130
25 - refactor: too-many-locals
1 import numpy as np 2 import cv2 3 import pyyolo 4 5 cap = cv2.VideoCapture('gun4_2.mp4') 6 meta_filepath = "/home/unknown/yolo/darknet.data" 7 cfg_filepath = "/home/unknown/yolo/darknet-yolov3.cfg" 8 weights_filepath = "/home/unknown/yolo/yolov3.weights" 9 10 11 meta = pyyolo.load_meta(meta_filepath) 12 net = pyyolo.load_net(cfg_filepath, weights_filepath, False) 13 14 while(cap.isOpened()): 15 ret, frame = cap.read() 16 if not ret: 17 break 18 19 yolo_img = pyyolo.array_to_image(frame) 20 res = pyyolo.detect(net, meta, yolo_img) 21 22 for r in res: 23 cv2.rectangle(frame, r.bbox.get_point(pyyolo.BBox.Location.TOP_LEFT, is_int=True), 24 r.bbox.get_point(pyyolo.BBox.Location.BOTTOM_RIGHT, is_int=True), (0, 255, 0), 2) 25 26 27 cv2.imshow('frame', frame) 28 if cv2.waitKey(1) & 0xFF == ord('q'): 29 break 30 31 cap.release() 32 cv2.destroyAllWindows()
1 - warning: unused-import
1 import urllib.request 2 import re 3 import ssl 4 5 #全局取消证书验证 6 ssl._create_default_https_context = ssl._create_unverified_context 7 8 #设置淘宝搜索的关键词 9 keyword = urllib.request.quote("毛衣") 10 11 #将爬虫伪装成火狐浏览器 12 headers=("User-Agent","Mozilla/5.0 (Macintosh; Intel Mac OS X 10.13; rv:57.0) Gecko/20100101 Firefox/57.0") 13 14 #创建一个opener对象 15 opener = urllib.request.build_opener() 16 17 #为opener设置header 18 opener.addheaders = [headers] 19 20 #将opener设为全局 21 urllib.request.install_opener(opener) 22 23 #为了方便测试,仅下载两页的数据 24 for i in range(0,2): 25 26 #把关键词添加到URL中并请求数据 27 url = "https://s.taobao.com/search?q="+ keyword +"&imgfile=&js=1&stats_click=search_radio_all%3A1&initiative_id=staobaoz_20180121&ie=utf8&bcoffset=4&ntoffset=4&p4ppushleft=1%2C48&s="+str(44*i) 28 data = urllib.request.urlopen(url).read().decode("utf-8","ignore") 29 30 #测试是否请求到数据 31 print(len(data)) 32 33 #使用正则表达式进行匹配 34 pat = '"pic_url":"//(.*?)"' 35 imgs = re.compile(pat).findall(data) 36 37 for j in range(0,len(imgs)): 38 39 #用匹配到的网址建立完整的URL,并直接下载到本地 40 thisurl = "http://" + imgs[j] 41 file = "/Users/Rocky1/Desktop/imgs/" + str(i) + "-" + str(j) + ".jpg" 42 urllib.request.urlretrieve(thisurl,file) 43 44 45 46 47
6 - warning: protected-access 6 - warning: protected-access 28 - refactor: consider-using-with
1 import sqlite3 2 3 """ Demo Data Query Using Sqlite 3 """ 4 5 def data_operations(conn,query): 6 """ Function which performs database operations and returns results """ 7 try: 8 #creating a cursor for connection 9 cursor = conn.cursor() 10 #executing the query on the database and get the results 11 results = cursor.execute(query).fetchall() 12 except: 13 return "error in data operations" 14 15 #If No error is enountered, cursor is closed 16 cursor.close() 17 #Committing the data operatios 18 conn.commit() 19 #On successful completion return the results 20 return results 21 22 23 24 def count_query(connect): 25 """ 26 Function to find the number of rows in the demo table 27 Expected Output :The number of rows in demo table is 6 28 29 """ 30 #How many rows in the demo table 31 count_query = """SELECT COUNT(*) FROM demo; """ 32 #checking for 3 rows 33 result = data_operations(connect,count_query) 34 for row in result: 35 print(f'The number of rows in demo table is {row[0]}') 36 37 def xy_query(connect): 38 """ 39 Function for finding the number of rows where x and y are atleast equal to 5 40 Expected Output :The number of rows where x and y is atleast 5: 4 41 42 """ 43 #How many rows where x and y are atleast 5 44 xy_query = """ SELECT COUNT(*) FROM demo WHERE x >= 5 AND y >= 5; """ 45 #checking for atleast x y having value 5 46 result = data_operations(connect,xy_query) 47 for row in result: 48 print(f'The number of rows where x and y is atleast 5: {row[0]}') 49 50 51 def y_unique(connect): 52 """ 53 Function for finding the Number of Unique values of Y 54 Expected output : The number of distinct values of y : 2 55 56 """ 57 #Query for unique values of y 58 y_unique = """ SELECT COUNT(DISTINCT y) FROM demo ; """ 59 #checking for distinct values of y 60 result = data_operations(connect,y_unique) 61 for row in result: 62 print(f'The number of distinct values of y : {row[0]}') 63 64 65 #Create a connection within a try excecpt block to pass errors without causing exception 66 try: 67 #Creating a database with name demo_data 68 connect = sqlite3.connect('demo_data.sqlite3') 69 #SQL Query for creating the table 70 create_table_query = """CREATE TABLE "demo" ( 71 "s" TEXT, 72 "x" INTEGER, 73 "y" INTEGER 74 ); """ 75 76 #Creating the table by sending to data operations function 77 result = data_operations(connect,create_table_query) 78 79 #Inserting values into the demo table 80 insert_query = """INSERT INTO demo (s,x,y) values 81 ("\'g\'",3,9), 82 ("\'v\'",5,7), 83 ("\'f\'",8,7) ;""" 84 85 #inserting the values into the demo table 86 data_operations(connect,insert_query) 87 88 #Now checking the demo table for data 89 count_query(connect) # Number of rows in the table 90 xy_query(connect) # Number of rows with x y values more than 5 91 y_unique(connect) # Number of distinct y values in the table 92 93 except: 94 pass 95 96 #closing the connection to the database 97 connect.close()
3 - warning: pointless-string-statement 12 - warning: bare-except 24 - warning: redefined-outer-name 31 - warning: redefined-outer-name 33 - warning: redefined-outer-name 37 - warning: redefined-outer-name 44 - warning: redefined-outer-name 46 - warning: redefined-outer-name 51 - warning: redefined-outer-name 58 - warning: redefined-outer-name 60 - warning: redefined-outer-name 93 - warning: bare-except
1 import psycopg2 2 from sqlalchemy import create_engine 3 import pandas as pd 4 5 #Reading titanic file to upload into pandas 6 titanic = pd.read_csv('titanic.csv') 7 #Print the shape of titanic and print the top 5 rows 8 print(titanic.shape) 9 print(titanic.head()) 10 #Pring the columns of the titanics dataframe 11 print(titanic.columns) 12 13 from sqlalchemy import create_engine 14 15 dbname = "rgfajssc" 16 username = "rgfajssc" 17 pass_word = "SECRET" 18 host = "john.db.elephantsql.com" 19 #creating creating engine inserting the titanic dataframe to postgres 20 try: 21 engine = create_engine(f'postgresql://{username}:{pass_word}@{host}/{username}') 22 titanic.to_sql('titanic', engine) 23 except: 24 pass 25 26 # pg_connect = psycopg2.connect(dbname=dbname, user=username, 27 # password=pass_word, host=host) 28 # cur = pg_connect.cursor()
13 - warning: reimported 23 - warning: bare-except 1 - warning: unused-import
1 import psycopg2 2 import sqlite3 3 4 dbname = "rgfajssc" 5 username = "rgfajssc" 6 pass_word = "U0W4kG-Um-Pug_wj8ec9OnbkQ70deuZR" 7 host = "john.db.elephantsql.com" 8 9 pg_connect = psycopg2.connect(dbname=dbname, user=username, 10 password=pass_word, host=host) 11 cur = pg_connect.cursor() 12 #Query for Survived people by class 13 query = 'SELECT survived,pclass, COUNT(pclass) FROM titanic \ 14 GROUP BY (pclass,survived) order by survived asc ,pclass asc;' 15 try: 16 cur.execute(query) 17 for row in cur: 18 print(row) 19 except : 20 pass 21 22 cur.close() 23 pg_connect.close()
19 - warning: bare-except 2 - warning: unused-import
1 import sqlite3 2 3 """Database operations for the NorthWind data """ 4 5 def data_operations(conn,query): 6 """ Function which performs database operations and returns results """ 7 try: 8 #creating a cursor for connection 9 cursor = conn.cursor() 10 #executing the query on the database and get the results 11 results = cursor.execute(query).fetchall() 12 except: 13 return "error in data operations" 14 15 #If No error is enountered, cursor is closed 16 cursor.close() 17 #Committing the data operatios 18 conn.commit() 19 #On successful completion return the results 20 return results 21 22 def top_10_expensive_items(connect): 23 """ 24 Function to find the Top 10 expensive items per unit price 25 Expected Output 26 The 10 Most expensive Items in the database are: 27 Côte de Blaye 28 Thüringer Rostbratwurst 29 Mishi Kobe Niku 30 Sir Rodney's Marmalade 31 Carnarvon Tigers 32 Raclette Courdavault 33 Manjimup Dried Apples 34 Tarte au sucre 35 Ipoh Coffee 36 Rössle Sauerkraut 37 """ 38 #query for ten most expensive items in the database 39 expensive_query = """ SELECT ProductName 40 FROM Product 41 ORDER BY UnitPrice DESC LIMIT 10 """ 42 result = data_operations(connect,expensive_query) 43 print("The 10 Most expensive Items in the database are:\n") 44 for row in result: 45 print(f'{row[0]}') 46 47 def avg_age_employee(connect): 48 """ 49 Function to find the average age of the employee at the time of hire 50 Expected Output 51 The Averag age of the employee at the time of hire is:37.22 52 """ 53 #Query for the Avg age of the employee at the time of hiring 54 avg_age_employee = """ SELECT AVG(HireDate - BirthDate) FROM Employee; """ 55 result = data_operations(connect,avg_age_employee) 56 print("\n") 57 for row in result: 58 print(f'The Averag age of the employee at the time of hire is:{row[0]:0.2f}') 59 60 def avg_employee_age_bycity(connect): 61 """ 62 Function to find the average age of employees at the time of hire by city 63 Expected Output 64 The Averag age of the employee at the time of hire by City is : 65 Kirkland : 29.0 66 London : 32.5 67 Redmond : 56.0 68 Seattle : 40.0 69 Tacoma : 40.0 70 """ 71 #Query for avg age of the employee by city 72 avg_employee_age_bycity = """ SELECT city, AVG(HireDate - BirthDate) 73 FROM Employee GROUP BY City; """ 74 result = data_operations(connect,avg_employee_age_bycity) 75 print("\nThe Averag age of the employee at the time of hire by City is :") 76 for row in result: 77 print(f'{row[0]} : {row[1]}') 78 79 def expensive_items_supplier(connect): 80 """ 81 Function to find the Top 10 expensive items per unit price and the Name of the Supplier 82 Expected Output 83 The 10 Most expensive Items in the database Supplier Names followed by Item Name: 84 Aux joyeux ecclésiastiques : Côte de Blaye 85 Plutzer Lebensmittelgroßmärkte AG : Thüringer Rostbratwurst 86 Tokyo Traders : Mishi Kobe Niku 87 Specialty Biscuits, Ltd. : Sir Rodney's Marmalade 88 Pavlova, Ltd. : Carnarvon Tigers 89 Gai pâturage : Raclette Courdavault 90 G'day, Mate : Manjimup Dried Apples 91 Forêts d'érables : Tarte au sucre 92 Leka Trading : Ipoh Coffee 93 Plutzer Lebensmittelgroßmärkte AG : Rössle Sauerkraut 94 """ 95 #Query for Top 10 expensive items along with Suppliet names 96 expensive_query_supplier = """ SELECT CompanyName,ProductName 97 FROM Product, Supplier 98 WHERE Supplier.Id = Product.SupplierId 99 ORDER BY UnitPrice DESC LIMIT 10""" 100 result = data_operations(connect,expensive_query_supplier) 101 print("\nThe 10 Most expensive Items in the database with Supplier Names followed by Item Name:\n") 102 for row in result: 103 print(f'{row[0]} : {row[1]}') 104 105 def largest_category(connect): 106 """ 107 Function to find the Top category with largest unique products 108 Expected Output 109 The Category with largest unique products is :Confections 110 111 """ 112 #Query for the name of category with largest number of unique products 113 largest_category = """ SELECT CategoryName FROM Category WHERE id = ( 114 SELECT CategoryId FROM Product 115 GROUP BY CategoryId 116 ORDER BY COUNT(CategoryId) DESC LIMIT 1) """ 117 result = data_operations(connect,largest_category) 118 print("\n") 119 for row in result: 120 print(f'The Category with largest unique products is :{row[0]}') 121 122 def most_territories_employee(connect): 123 """ 124 Function to find the Top 10 expensive items per unit price 125 Expected Output 126 The Employee with most territories is :Robert King 127 128 """ 129 #Query for name of the Employee who has the most territories 130 most_territories_employee = """ SELECT FirstName,LastName FROM Employee WHERE id = ( 131 SELECT EmployeeId FROM EmployeeTerritory 132 GROUP BY EmployeeId 133 ORDER BY COUNT(TerritoryId) DESC LIMIT 1 134 ) """ 135 result = data_operations(connect,most_territories_employee) 136 print("\n") 137 for row in result: 138 print(f'The Employee with most territories is :{row[0]} {row[1]}') 139 140 141 142 143 #Creating a try catch block to safely operation on database 144 try: 145 #Creating a connection to the Northwind database 146 connect = sqlite3.connect('northwind_small.sqlite3') 147 148 top_10_expensive_items(connect) 149 avg_age_employee(connect) 150 avg_employee_age_bycity(connect) 151 expensive_items_supplier(connect) 152 largest_category(connect) 153 most_territories_employee(connect) 154 155 156 except : 157 pass 158 #closing the connection to the database 159 connect.close()
3 - warning: pointless-string-statement 12 - warning: bare-except 22 - warning: redefined-outer-name 47 - warning: redefined-outer-name 54 - warning: redefined-outer-name 60 - warning: redefined-outer-name 72 - warning: redefined-outer-name 79 - warning: redefined-outer-name 105 - warning: redefined-outer-name 113 - warning: redefined-outer-name 122 - warning: redefined-outer-name 130 - warning: redefined-outer-name 156 - warning: bare-except
1 import pandas as pd 2 import sqlite3 3 #Import buddymove dataset by reading csv 4 buddymove_df = pd.read_csv('buddymove_holidayiq.csv') 5 #Printing the shape of the dataset and first five rows 6 print(buddymove_df.shape) 7 print(buddymove_df.head()) 8 #Printing the number of null values in the dataset 9 print("The number of null values in the dataset are:\n",buddymove_df.isna().sum()) 10 11 #Opening a sqlite connection and creating a database 12 database_name = 'buddymove_holidayiq.sqlite3' 13 conn = sqlite3.connect(database_name) 14 #Dumping the dataframe to the database 15 buddymove_df.to_sql('buddymove_tbl',con=conn,if_exists='replace') 16 17 #Checking for the first five rows to ensure the database dump was complete 18 query = 'SELECT * FROM buddymove_tbl LIMIT 5;' 19 #Query for number of rows in database 20 query_rows = 'SELECT COUNT("User Id") FROM buddymove_tbl;' 21 try: 22 answer = conn.execute(query) 23 for row in answer: 24 print(row) 25 except: 26 pass 27 28 #Getting the number of rows in the table 29 try: 30 answer = conn.execute(query_rows) 31 for row in answer: 32 print(f'Number of rows in the table buddymove_tbl is :{row[0]}') 33 except: 34 pass 35 36 #Number of users have rated atleast 100 in nature and atleast 100 in shopping category 37 query_users = 'SELECT COUNT("User Id") FROM buddymove_tbl WHERE\ 38 "Nature" >=100 AND "Shopping" >=100;' 39 try: 40 answer = conn.execute(query_users) 41 for row in answer: 42 print(f'Number of users have rated atleast 100 in Nature and Shopping are :{row[0]}') 43 except: 44 pass 45 #Query for getting average rating for all categories 46 query_avg_rating = 'SELECT AVG("Sports"),AVG("Religious"),AVG("Nature"),AVG("Theatre"),AVG("Shopping"),AVG("Picnic") FROM buddymove_tbl;' 47 try: 48 answer = conn.execute(query_avg_rating) 49 for row in answer: 50 print(f'Avg rating for Sports:{row[0]:.2f}') 51 print(f'Avg rating for Religious:{row[1]:.2f}') 52 print(f'Avg rating for Nature:{row[2]:.2f}') 53 print(f'Avg rating for Theatre:{row[3]:.2f}') 54 print(f'Avg rating for Shopping:{row[4]:.2f}') 55 print(f'Avg rating for Picnic:{row[5]:.2f}') 56 except: 57 pass 58 #committing the changes and closing the connection 59 conn.commit() 60 conn.close()
25 - warning: bare-except 33 - warning: bare-except 43 - warning: bare-except 56 - warning: bare-except
1 import pymongo 2 3 4 client = pymongo.MongoClient("mongodb+srv://mongoadmin:2BlYV2t3X4jws3XR@cluster0-uosnx.mongodb.net/test?retryWrites=true&w=majority") 5 db = client.test
Clean Code: No Issues Detected
1 import sqlite3 2 3 #Creating a connection to the rpg database 4 conn = sqlite3.connect('rpg_db.sqlite3') 5 #creating a cursor for rpg database connection 6 curs = conn.cursor() 7 #Query for number of characters in the game 8 query = 'SELECT COUNT(name) FROM charactercreator_character;' 9 #Executing the query 10 answer = curs.execute(query) 11 for row in answer: 12 print(f'They are a total of {row[0]} characters in the game') 13 no_of_characters = row[0] 14 #Different classes of character by table name 15 character_class = ['mage','thief','cleric','fighter'] 16 for subclass in character_class: 17 query = f'SELECT COUNT(character_ptr_id) FROM charactercreator_{subclass}' 18 answer = curs.execute(query) 19 for row in answer: 20 print(f'They are {row[0]} characters of the class {subclass}') 21 22 #Total items in the armoury 23 query = 'SELECT COUNT(name) FROM armory_item;' 24 answer = curs.execute(query) 25 for row in answer: 26 print(f'They are a total of {row[0]} items in the armoury') 27 no_of_items = row[0] 28 #Number of weapons in the items 29 query = f'SELECT COUNT(item_ptr_id) FROM armory_weapon;' 30 answer = curs.execute(query) 31 for row in answer: 32 print(f'They are a total of {row[0]} weapons in the items') 33 no_of_weapons = row[0] 34 #Number of non weapons in the items 35 print(f'They are a total of {(no_of_items-no_of_weapons)} weapons in the items') 36 37 #No of items for Top 20 chararcters by name 38 query = 'select count(item_id) AS no_of_items,name\ 39 from charactercreator_character_inventory,charactercreator_character\ 40 where charactercreator_character.character_id = charactercreator_character_inventory.character_id\ 41 GROUP BY charactercreator_character_inventory.character_id ORDER BY name ASC LIMIT 20;' 42 answer = curs.execute(query).fetchall() 43 print('The Number of items of the top 20 characters by name are') 44 for row in answer: 45 print(f'No. of Items:{row[0]}, Name:{row[1]}') 46 47 #No of weapons for Top 20 chararcters by name 48 query = 'select count(armory_weapon.item_ptr_id) AS no_of_items,name\ 49 from charactercreator_character_inventory,charactercreator_character,armory_weapon\ 50 where charactercreator_character.character_id = charactercreator_character_inventory.character_id\ 51 AND charactercreator_character_inventory.item_id = armory_weapon.item_ptr_id\ 52 GROUP BY charactercreator_character_inventory.character_id ORDER BY name ASC LIMIT 20;' 53 answer = curs.execute(query).fetchall() 54 print('The number of weapons of the top 20 characters by name are') 55 for row in answer: 56 print(f'No. of Items:{row[0]}, Name:{row[1]}') 57 58 #Total Number of items held by characters 59 query = 'select count(id) from charactercreator_character_inventory' 60 answer = curs.execute(query) 61 for row in answer: 62 total_no_of_items = row[0] 63 #Average number of items for each character 64 print(f'The average number of items per character is {total_no_of_items/no_of_characters:0.2f}') 65 #closing the cursor and connection 66 curs.close() 67 conn.close()
13 - warning: undefined-loop-variable 29 - warning: f-string-without-interpolation
1 import requests 2 from datetime import datetime 3 import time 4 import argparse 5 import getpass 6 import json 7 from rich import print 8 import logging 9 import urllib3 10 from netmiko import ConnectHandler 11 from eve_up import get_nodes, get_links 12 from ipaddress import * 13 urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) 14 logging.basicConfig(level=logging.DEBUG, 15 format=f'%(asctime)s %(levelname)s %(name)s %(threadName)s : %(message)s') 16 17 def base_config(): 18 counter = 0 19 nodes = get_nodes(topo="NornirJunos.unl") 20 ips = ['192.168.20.191', 21 '192.168.20.192', 22 '192.168.20.193', 23 '192.168.20.194', 24 '192.168.20.195', 25 '192.168.20.196', 26 '192.168.20.197', 27 '192.168.20.198', 28 '192.168.20.199'] 29 for key, value in nodes.items(): 30 try: 31 if value["template"] == "vmx": 32 ## Get the Telnet address and port set to variables 33 url = value["url"].split(":") 34 ip = url[1].replace("//", "") 35 port = (url[2]) 36 node_conn = { 37 'device_type' : 'juniper_junos_telnet', 38 'host' : ip, 39 'port': port, 40 } 41 # Initiate connection to EVE 42 net_connect = ConnectHandler(**node_conn) 43 hostname = f'vMX{str(counter+1)}' 44 # counter += 1 45 # Send commands and view output 46 config_commands = [ 'set system root-authentication encrypted-password "$1$hBBaQcLY$AZYmNq9VbicPSNbl4KDcf0"', 47 'delete chassis auto-image-upgrade', 48 f'set system host-name {hostname}', 49 'set system domain-name abc.co', 50 'set system services ssh', 51 'set system services netconf ssh', 52 'set system login user cisco class super-user authentication encrypted-password "$1$hBBaQcLY$AZYmNq9VbicPSNbl4KDcf0"', 53 f'set interfaces ge-0/0/4 unit 0 family inet address {ips[counter]}/24'] 54 output = net_connect.send_config_set(config_commands, exit_config_mode=False) 55 counter += 1 56 print(output) 57 # Commit 58 output = net_connect.commit(and_quit=True) 59 print(output) 60 61 except Exception as err: 62 continue 63 64 # def ip_addresser(subnet: str = '192.168.20.0/24'): 65 # subnets = list(ip_network(subnet).subnets(new_prefix = 30)) 66 # print(subnets) 67 # for subn in subnets: 68 # print(list(subn.hosts())) 69 # links = get_links("NornirJunos.unl") 70 # print(links) 71 # return subnets 72 73 74 if __name__ == "__main__": 75 base_config()
7 - warning: redefined-builtin 12 - warning: wildcard-import 15 - warning: f-string-without-interpolation 61 - warning: broad-exception-caught 29 - warning: unused-variable 61 - warning: unused-variable 1 - warning: unused-import 2 - warning: unused-import 3 - warning: unused-import 4 - warning: unused-import 5 - warning: unused-import 6 - warning: unused-import 11 - warning: unused-import 12 - warning: unused-wildcard-import
1 #!/bin/env python 2 # the graphical interface of resql compiler client 3 import wx 4 import wx.grid 5 from subprocess import * 6 import sys 7 8 # call the client to connect to the server for rewriting the sql statement 9 def call_clnt(sql): 10 try: 11 # under windows 12 # p1 = Popen(['echo',sql],stdout=PIPE,shell=True) 13 # p2 = Popen(['python','clnt.py'],stdin=p1.stdout,stdout=PIPE,shell=True) 14 p1 = Popen(['echo',sql],stdout=PIPE) 15 p2 = Popen(['python','clnt.py'],stdin=p1.stdout,stdout=PIPE) 16 fout,ferr = p2.communicate() 17 return fout 18 except OSError, e: 19 pass 20 21 # define my application form 22 class MyApp(wx.App): 23 def OnInit(self): 24 frame = MyFrame("ReSQL Client v0.1",(50,60),(460,420)) 25 frame.Show() 26 self.SetTopWindow(frame) 27 return True 28 29 # define the output table of the query result 30 class MyTable(wx.grid.PyGridTableBase): 31 def __init__(self): 32 wx.grid.PyGridTableBase.__init__(self) 33 self.data = {} 34 self.odd = wx.grid.GridCellAttr() 35 self.odd.SetBackgroundColour("white") 36 self.even = wx.grid.GridCellAttr() 37 self.even.SetBackgroundColour("wheat") 38 self.rows = self.cols = 5 39 40 def setData(self,data): 41 self.data = data 42 43 def GetNumberRows(self): 44 return self.rows 45 46 def GetNumberCols(self): 47 return self.cols 48 49 def SetNumberRows(self,rows): 50 self.rows = rows 51 52 def SetNumberCols(self,cols): 53 self.cols = cols 54 55 def IsEmptyCell(self,row,col): 56 return self.data.get((row,col)) is None 57 58 def GetValue(self,row,col): 59 value = self.data.get((row,col)) 60 if value is not None: 61 return value 62 else: 63 return '' 64 65 def SetValue(self,row,col,value): 66 self.data[(row,col)] = value 67 68 def GetAttr(self,row,col,kind): 69 attr = [self.even,self.odd][row % 2] 70 attr.IncRef() 71 return attr 72 73 # define the Frame with menus, buttons, output table in it. 74 class MyFrame(wx.Frame): 75 def __init__(self,title,post,sizet): 76 wx.Frame.__init__(self,None,-1,title, pos=post,size=sizet) 77 menuFile = wx.Menu() 78 menuFile.Append(1,"&About") 79 menuFile.AppendSeparator() 80 menuFile.Append(2,"E&xit") 81 menuOutput = wx.Menu() 82 menuOutput.Append(3,"Output rewiting") 83 menuOutput.Append(4,"Output result") 84 menuBar = wx.MenuBar() 85 menuBar.Append(menuFile,"&File") 86 menuBar.Append(menuOutput,"&Output") 87 88 panel = wx.Panel(self,-1) 89 self.schemaBtn = wx.Button(panel,-1,"S",pos=(20,0),size=(40,30)) 90 self.rewriteBtn = wx.Button(panel,-1,"R",pos=(70,0),size=(40,30)) 91 self.rewriteBtn.Disable() 92 self.execBtn = wx.Button(panel,-1,"Exec",pos=(120,0),size=(40,30)) 93 self.execBtn.Disable() 94 self.Bind(wx.EVT_BUTTON,self.OnSchemaClick,self.schemaBtn) 95 self.Bind(wx.EVT_BUTTON,self.OnRewrite,self.rewriteBtn) 96 self.Bind(wx.EVT_BUTTON,self.OnExecQuery,self.execBtn) 97 98 self.text = wx.TextCtrl(panel,-1,"",size=(440,100),pos=(5,40),style=wx.TE_MULTILINE) 99 100 from wx.grid import Grid 101 self.grid = Grid(panel,pos=(5,140),size=(440,200)) 102 self.table = MyTable() 103 self.grid.SetTable(self.table) 104 105 self.SetMenuBar(menuBar) 106 self.CreateStatusBar() 107 self.SetStatusText("Welcome to ReSQL Client") 108 self.Bind(wx.EVT_MENU,self.OnAbout,id=1) 109 self.Bind(wx.EVT_MENU,self.OnQuit,id=2) 110 self.Bind(wx.EVT_MENU,self.OnOutputRewriting,id=3) 111 self.Bind(wx.EVT_MENU,self.OnOutputResult,id=4) 112 113 def OnQuit(self,event): 114 self.Close() 115 116 def OnAbout(self,event): 117 msg = "The Rewriting SQL client v0.1 !\n\nContact:wanghit2006@gmail.com" 118 wx.MessageBox(msg,"About ReSQL client", wx.OK | wx.ICON_INFORMATION, self) 119 120 def OnSchemaClick(self,event): 121 schemaStr = 'schema: ' + self.text.GetValue().decode('utf-8').encode('ascii') 122 back = call_clnt(schemaStr.replace('\n',' ')) 123 wx.MessageBox(back,"Schema",wx.OK | wx.ICON_INFORMATION,self) 124 self.rewriteBtn.Enable() 125 126 def OnRewrite(self,event): 127 sql = "sql: " + self.text.GetValue().decode('utf-8').encode('ascii') 128 self.resql = call_clnt(sql.replace('\n',' ')) 129 wx.MessageBox(self.resql,"Rewrite", wx.OK | wx.ICON_INFORMATION,self) 130 self.execBtn.Enable() 131 132 def OnExecQuery(self,event): 133 #rows,cols,data = self.execQuery(self.resql) 134 #self.table.SetNumberRows(rows) 135 #self.table.SetNumberCols(cols) 136 #self.table.setData(data) 137 #self.grid.SetTable(self.table) 138 wx.MessageBox("Exec " + self.resql,"Rewrite", wx.OK | wx.ICON_INFORMATION,self) 139 140 def OnOutputRewriting(self,event): 141 msg = "output writing query" 142 wx.MessageBox(msg,"Rewriting query",wx.OK | wx.ICON_INFORMATION,self) 143 144 def OnOutputResult(self,event): 145 rows,cols = self.table.GetNumberRows(),self.table.GetNumberCols() 146 wd = [] 147 for i in range(rows): 148 tmp = [] 149 for j in range(cols): 150 tmp.append(self.table.data[(i,j)]) 151 wd.append(tmp) 152 153 import csv 154 writer = csv.writer(open('sample.csv','wb')) 155 writer.writerows(wd) 156 157 msg = "output query result" 158 wx.MessageBox(msg,"Query result",wx.OK | wx.ICON_INFORMATION,self) 159 160 def execQuery(self,sql): 161 import pymssql 162 cxn = pymssql.connect(password='61813744',host=r'.\SQLEXPRESS',database='hello') 163 cur = cxn.cursor() 164 cur.execute(sql) 165 166 data = {} 167 i = coln = 0 168 for eachRow in cur.fetchall(): 169 coln = len(eachRow) 170 for x in range(coln): 171 data[(i,x)] = eachRow[x] 172 i += 1 173 174 cxn.commit() 175 cxn.close() 176 return cur.rownumber,coln,data 177 178 if __name__ == '__main__': 179 app = MyApp(False) 180 app.MainLoop()
18 - error: syntax-error
1 # the rewrite sql compiler server end 2 import socket 3 from subprocess import * 4 5 HOST = '' 6 PORT = 9999 7 BUFSIZE=1024 8 ADDR = (HOST,PORT) 9 10 # call the resql compiler 11 # pass in the sql statement 12 # return the rewriting sql result 13 def rewrite_sql(sql): 14 print 'In reswrite_sql: ',sql 15 p1 = Popen(["echo",sql],stdout=PIPE) 16 p2 = Popen(["./resql"],stdin=p1.stdout,stdout=PIPE) 17 fout = p2.communicate()[0] 18 if p2.returncode == 0: 19 return fout 20 else: 21 return "can't rewrite" 22 23 # parse the create table statement 24 # and generation the schema file 25 # for the convince processing of the compiler writen in C. 26 def parse_query(query): 27 table = [] 28 keys = [] 29 attrs = [] 30 31 # parse table name 32 s = query.find('c') 33 e = query.find('(') 34 st = query[s:e] 35 stab = st.split() 36 table.append(stab[-1]) 37 38 s = e+1 39 e = query.rfind(')'); 40 sat = query[s:e] 41 sats = sat.split(',') 42 for attab in sats: 43 if attab.find("foreign") != -1: 44 pass 45 elif attab.find('primary') == -1: 46 attrs.append((attab.split())[0]) 47 else: 48 s = attab.find('(') 49 e = attab.rfind(')') 50 keys = attab[s+1:e].split(',') 51 52 for i in range(len(keys)): 53 keys[i] = keys[i].strip() 54 55 for key in keys: 56 attrs.remove(key) 57 58 table.append(keys) 59 table.append(attrs) 60 61 return table 62 63 # read in the schema definations and 64 # pass each defination to the parse_query function 65 # get the parsed schema and write it into the schema.txt file 66 def extract_schema(schemadef): 67 querys = schemadef.split(';') 68 tables = [] 69 for query in querys: 70 query = query.strip() 71 if query != '': 72 tables.append(parse_query(query)) 73 74 fout = open('schema.txt','w') 75 fout.write(str(len(tables)) + '\n') 76 for table in tables: 77 fout.write(table[0]+'\n') 78 fout.write(str(len(table[1]))+' ') 79 fout.write(str(len(table[2]))+'\n') 80 for key in table[1]: 81 fout.write(key+'\n') 82 for attr in table[2]: 83 fout.write(attr+'\n') 84 fout.write('\n') 85 86 # deal with the user requestion 87 def deal_with(conn,data): 88 if not data.rstrip().endswith(';'): 89 data = data + ';' 90 91 if data.startswith("\""): 92 data = data[1:] 93 94 if data.endswith("\";"): 95 data = data[:-2] 96 97 if data.startswith('schema:'): 98 print 'create schema with' 99 create_sql = data.split(':')[1] 100 print create_sql 101 extract_schema(create_sql) 102 conn.send('SCHEMA') 103 elif data.startswith("sql:"): 104 ts = data.split(':')[1] 105 print 'try rewriting' 106 print ts 107 resql = rewrite_sql(ts) 108 conn.send(resql) 109 else: 110 print 'wrong format' 111 print data 112 conn.send('WRONG') 113 114 if __name__ == '__main__': 115 sock = socket.socket(socket.AF_INET,socket.SOCK_STREAM) 116 sock.bind(ADDR) 117 sock.listen(5) 118 while True: 119 print 'waiting... for connection...' 120 connection,address = sock.accept() 121 print '...connect from',address 122 123 buf = connection.recv(1024) 124 deal_with(connection,buf) 125 connection.close() 126 127 sock.close() 128
14 - error: syntax-error
1 import logging 2 import os 3 4 import pandas as pd 5 import wget as wget 6 from tqdm import tqdm 7 8 from sean_logger import setup_logging 9 from toolbox import make_directory 10 11 12 def scrape_election_results(prov_id=35, base_url=None, results_format=1): 13 setup_logging() 14 if results_format == 1: 15 results_format = "pollbypoll_bureauparbureau" 16 elif results_format == 2: 17 results_format = "pollresults_resultatsbureau" 18 if base_url is None: 19 base_url = "https://www.elections.ca/res/rep/off/ovr2015app/41/data_donnees/" 20 num_except_in_a_row = 0 21 exceptions = [] 22 for fed_num in tqdm(range(prov_id * 1000, ((prov_id + 1) * 1000) - 1)): 23 logging.info(f"fed num {fed_num}") 24 try: 25 url = f"{base_url}{results_format}{fed_num}.csv" 26 outfile = f"./data_donnees/{results_format}{fed_num}.csv" 27 logging.debug(url) 28 logging.debug(outfile) 29 make_directory(outfile) 30 wget.download(url, outfile) 31 num_except_in_a_row = 0 32 except: 33 logging.exception(f"Exception!! {fed_num}") 34 exceptions.append(fed_num) 35 num_except_in_a_row += 1 36 if num_except_in_a_row > 10: 37 logging.info(f"Probably finished at {fed_num - num_except_in_a_row}") 38 break 39 logging.info(f"Missed FED Nums:") 40 for fed in exceptions: 41 logging.info(fed) 42 logging.info() 43 print('fin') 44 45 46 def combine_result_csvs(folder=None, cols=None): 47 if folder is None: 48 folder = "./data_donnees/" 49 files = os.listdir(folder) 50 if cols is None: 51 cols = "Electoral District Number/Numéro de circonscription," \ 52 "Electoral District Name/Nom de circonscription," \ 53 "Polling Station Number/Numéro du bureau de scrutin," \ 54 "Polling Station Name/Nom du bureau de scrutin," \ 55 "Rejected Ballots/Bulletins rejetés," \ 56 "Total Votes/Total des votes," \ 57 "Electors/Électeurs".split(',') 58 print("Reading...") 59 frames = [pd.read_csv(folder + file, usecols=cols) for file in tqdm(files)] 60 print("Combining...") 61 data = pd.concat(frames) 62 print("Writing...") 63 data.to_csv("turnout_data_ontario_42nd_federal.csv", index=False) 64 print("Fin.") 65 66 67 if __name__ == '__main__': 68 scrape_election_results() 69 combine_result_csvs()
23 - warning: logging-fstring-interpolation 32 - warning: bare-except 33 - warning: logging-fstring-interpolation 37 - warning: logging-fstring-interpolation 39 - warning: logging-fstring-interpolation 39 - warning: f-string-without-interpolation 42 - error: no-value-for-parameter
1 ''' 2 Author: Robert Cabral 3 File Name: Post_Module.py 4 Purpose: To create an Article Post into the database that has the Article Title and Article URL properties 5 associated with the Article Post. 6 Date: 2/16/2013 7 ''' 8 import datastore 9 import webapp2 10 import cgi 11 from google.appengine.api import users 12 13 form = """ 14 <html> 15 <body> 16 <form method="post"> 17 <div><h1>Post Page</h1></div> 18 <div>Title:</div> 19 <div><textarea name="link_title" rows="2" cols="60"></textarea></div> 20 <div>Location/URL:<br></div> 21 <div><textarea name="link_url" rows="2" cols="60"></textarea></div> 22 <div><input type="submit" value="Post"></div> 23 </form> 24 </body> 25 </html> 26 """ 27 28 def escape_html(s): 29 return cgi.escape(s, quote = True) 30 31 class PostPage(webapp2.RequestHandler): 32 def write_form(self, error="", title="", url=""): 33 self.response.out.write(form %{"error": error, 34 "link_title": escape_html(title), 35 "link_url": escape_html(url)}) 36 def get(self): 37 #We should check to see if the user is logged in here instead of after our POST. 38 if users.get_current_user(): 39 self.write_form() 40 else: 41 self.redirect(users.create_login_url(self.request.uri)) 42 43 def post(self): 44 user = users.get_current_user() 45 user_link_url = self.request.get('link_url') 46 user_link_title = self.request.get('link_title') 47 user_name = user.nickname() 48 datastore.Post_Article(user_link_url,user_link_title,user_name) 49 self.redirect("/")
29 - warning: bad-indentation 32 - warning: bad-indentation 33 - warning: bad-indentation 36 - warning: bad-indentation 38 - warning: bad-indentation 39 - warning: bad-indentation 40 - warning: bad-indentation 41 - warning: bad-indentation 43 - warning: bad-indentation 44 - warning: bad-indentation 45 - warning: bad-indentation 46 - warning: bad-indentation 47 - warning: bad-indentation 48 - warning: bad-indentation 49 - warning: bad-indentation 10 - warning: deprecated-module 11 - error: no-name-in-module 29 - error: no-member
1 # This file contains hardcoded strings and values 2 3 main_page="article_list.html" 4 main_title="Oratorical Decaf"
Clean Code: No Issues Detected
1 import datetime 2 from google.appengine.ext import db 3 from google.appengine.api import users 4 5 ''' 6 DATASTORE CLASSES 7 ''' 8 class Articles(db.Model): 9 link = db.LinkProperty() 10 text = db.StringProperty() 11 votes = db.IntegerProperty() 12 posted = db.DateTimeProperty() 13 owner = db.StringProperty() 14 15 class Votes(db.Model): 16 article_id = db.IntegerProperty() 17 users = db.ListProperty(db.Email) 18 19 20 class Comments(db.Model): 21 article_id = db.IntegerProperty() 22 comment_owner = db.EmailProperty() 23 comment_text = db.StringProperty() 24 posted = db.DateTimeProperty() 25 26 ''' 27 DATASTORE FUNCTIONS 28 ''' 29 ''' 30 Function: Post Article 31 Properties: 32 input: 33 link = URL link passed from script 34 text = Article title text passed from script 35 output: 36 None 37 required: 38 None 39 ''' 40 def Post_Article(link,text,owner): 41 article_info = Articles() 42 43 #set the article data 44 article_info.link = link 45 article_info.text = text 46 article_info.votes = 0 47 article_info.posted = datetime.datetime.now() 48 article_info.owner = owner 49 #store it! 50 article_info.put() 51 52 ''' 53 Function: Get Article List 54 Properties: 55 input: 56 None 57 output: 58 Articles -> list 59 [0] = database index id 60 [1] = article link (URL) 61 [2] = article text 62 [3] = article vote amount 63 required: 64 None 65 ''' 66 def Get_Articles(): 67 articles = [] 68 result = [] 69 for i in Articles.all().order('-posted'): 70 result = [i.key().id(),i.link,i.text,i.votes] 71 articles.append(result) 72 return(articles) 73 74 ''' 75 Function: Post Comment 76 Properties: 77 input: 78 article_id = entity id of article from script 79 commentor = comment author (username) 80 comment_text = comment text body passed from script 81 output: 82 None 83 required: 84 None 85 ''' 86 def Post_Comment(article_id,commentor,comment_text): 87 #note that article_id is actually an entity id which can be pulled when we load the comments 88 new_comment = Comments(Articles().get_by_id(ids = article_id).key()) 89 90 #setup the comment data 91 new_comment.article_id = article_id 92 new_comment.comment_owner = commentor 93 new_comment.comment_text = comment_text 94 new_comment.posted = datetime.datetime.now() 95 new_comment.put() 96 97 ''' 98 Function: Article Vote 99 Properties: 100 input: 101 102 output: 103 104 required: 105 106 ''' 107 def Vote_Article(username,article_id,vote): 108 ''' 109 note, vote can only be -1 or 1, 0 IS NOT acceptable 110 also note this is a two prong function, we must make sure the user has not voted prior; if they have not voted than 111 we must add the vote to the Articles() table and then also add an entry to the Votes() table. 112 ''' 113 new_vote = Votes().all().filter("article_id =",int(article_id)) 114 #we should always have an article that matches its ID, if not than we are in serious trouble! 115 article_add_vote = Articles().get_by_id(ids = int(article_id)) 116 email_address = db.Email(username) 117 118 #make sure the votes for this article exist, if not create a new entry for them. 119 if new_vote.get() is None: 120 #WARNING: we are redefining new_vote! 121 new_vote = Votes(Articles().get_by_id(ids = int(article_id)).key()) 122 new_vote.article_id = int(article_id) 123 new_vote.users = [email_address] 124 125 article_add_vote.votes = int(vote) 126 #add the vote to the article first 127 article_add_vote.put() 128 #now add the votes entity 129 new_vote.put() 130 return 131 else: 132 #check to see if we have already voted for this article! 133 already_voted = Votes.all().filter("article_id =",article_id).filter("users in",[email_address]).get() 134 if already_voted is None: 135 return 1 136 137 new_vote = Votes().all().filter("article_id =",int(article_id)).get() 138 new_vote = Votes(Articles().get_by_id(ids = int(article_id)).key()).get_by_id(ids = new_vote.key().id()) 139 new_vote.users.append(email_address) 140 141 article_add_vote.votes = int(article_add_vote.votes) + int(vote) 142 143 new_vote.put() 144 article_add_vote.put()
9 - warning: bad-indentation 10 - warning: bad-indentation 11 - warning: bad-indentation 12 - warning: bad-indentation 13 - warning: bad-indentation 16 - warning: bad-indentation 17 - warning: bad-indentation 21 - warning: bad-indentation 22 - warning: bad-indentation 23 - warning: bad-indentation 24 - warning: bad-indentation 41 - warning: bad-indentation 44 - warning: bad-indentation 45 - warning: bad-indentation 46 - warning: bad-indentation 47 - warning: bad-indentation 48 - warning: bad-indentation 50 - warning: bad-indentation 67 - warning: bad-indentation 68 - warning: bad-indentation 69 - warning: bad-indentation 70 - warning: bad-indentation 71 - warning: bad-indentation 72 - warning: bad-indentation 88 - warning: bad-indentation 91 - warning: bad-indentation 92 - warning: bad-indentation 93 - warning: bad-indentation 94 - warning: bad-indentation 95 - warning: bad-indentation 108 - warning: bad-indentation 113 - warning: bad-indentation 115 - warning: bad-indentation 116 - warning: bad-indentation 119 - warning: bad-indentation 121 - warning: bad-indentation 122 - warning: bad-indentation 123 - warning: bad-indentation 125 - warning: bad-indentation 127 - warning: bad-indentation 129 - warning: bad-indentation 130 - warning: bad-indentation 131 - warning: bad-indentation 133 - warning: bad-indentation 134 - warning: bad-indentation 135 - warning: bad-indentation 137 - warning: bad-indentation 138 - warning: bad-indentation 139 - warning: bad-indentation 141 - warning: bad-indentation 143 - warning: bad-indentation 144 - warning: bad-indentation 2 - error: no-name-in-module 3 - error: no-name-in-module 5 - warning: pointless-string-statement 8 - refactor: too-few-public-methods 15 - refactor: too-few-public-methods 20 - refactor: too-few-public-methods 26 - warning: pointless-string-statement 29 - warning: pointless-string-statement 52 - warning: pointless-string-statement 74 - warning: pointless-string-statement 97 - warning: pointless-string-statement 119 - refactor: no-else-return 107 - refactor: inconsistent-return-statements 3 - warning: unused-import
1 import webapp2 2 import os 3 import datastore 4 import config 5 import vote 6 import articles 7 import comment 8 import jinja2 9 from google.appengine.ext import db 10 from google.appengine.api import users 11 12 # jinja2 file loading copied from 13 # https://github.com/fRuiApps/cpfthw/blob/master/webapp2/views.py 14 TEMPLATE_DIR = os.path.join(os.path.dirname(__file__), 'templates') 15 j_env = jinja2.Environment(loader=jinja2.FileSystemLoader(TEMPLATE_DIR)) 16 17 18 class MainHandler(webapp2.RequestHandler): 19 def get(self): 20 template = j_env.get_template(config.main_page) 21 self.response.write(''' 22 <a href="/article">Post new article</a> 23 ''') 24 articles = datastore.Get_Articles() 25 self.response.write(template.render(title=config.main_title,data = articles)) 26 27 app = webapp2.WSGIApplication([ 28 ('/', MainHandler), 29 ('/vote/(.*)', vote.RequestHandler), 30 ('/article', articles.PostPage), 31 ('/comment/(.*)', comment.RequestHandler) 32 ], 33 debug=True)
21 - error: syntax-error
1 import cgi 2 import datetime 3 import urllib 4 import webapp2 5 import datastore 6 7 from google.appengine.ext import db 8 from google.appengine.api import users 9 10 class RequestHandler(webapp2.RequestHandler): 11 def get(self, article_id): 12 self.response.out.write('<html><body>') 13 14 #article_key = self.request.get('article_key') 15 16 my_article = datastore.Articles().get_by_id(ids = int(article_id)) 17 article_name = my_article.text 18 19 #user login check 20 user = users.get_current_user() 21 if not user: 22 self.redirect(users.create_login_url(self.request.uri)) 23 24 #article name 25 self.response.out.write('Article Name: <b>%s</b>' % article_name) 26 self.response.out.write('<br><a href="/">Back</a>') 27 28 #comment query 29 comment_list = datastore.Comments().all().filter("article_id =",int(article_id)) 30 31 #comment submission form 32 self.response.out.write(""" 33 <form method="post"> 34 <div><textarea name="comment_text" rows="3" cols="60"></textarea></div> 35 <div><input type="submit" value="Post"></div> 36 </form>""") 37 38 39 for comments in comment_list: 40 #sub-note - comments will always have an author 41 self.response.out.write('<b>%s</b> wrote:' % comments.comment_owner) 42 self.response.out.write('<blockquote>%s</blockquote>' % cgi.escape(comments.comment_text)) 43 44 self.response.out.write("""</body></html>""" ) 45 46 def post(self, article_id): 47 48 comment_text = self.request.get('comment_text') 49 datastore.Post_Comment(int(article_id),users.get_current_user().email(),cgi.escape(comment_text)) 50 51 self.redirect('/comment/%s'% (article_id))
16 - error: syntax-error
1 #!/usr/bin/env python 2 3 from __future__ import print_function 4 5 import argparse 6 import socket 7 import sys 8 9 parser = argparse.ArgumentParser() 10 parser.add_argument('--socket', help="Socket to connect to", type=str, 11 default="/var/run/pdns.controlsocket") 12 parser.add_argument('--timeout', help="Socket timeout", type=int, default=5) 13 args = parser.parse_args() 14 15 s = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) 16 s.settimeout(args.timeout) 17 18 try: 19 s.connect(args.socket) 20 s.send('PING\n') 21 data = s.recv(1024) 22 except socket.timeout: 23 print ("CRITICAL: Socket timeout, please investigate!") 24 sys.exit(2) 25 except socket.error, e: 26 print ("CRITICAL: %s" % e) 27 sys.exit(2) 28 29 s.close() 30 31 if data != 'PONG': 32 print('CRITICAL: Ping error, didn\' receive PONG!') 33 sys.exit(2) 34 else: 35 print("OK: Socket is responding with PONG") 36 sys.exit(0)
25 - error: syntax-error
1 import json 2 import sys 3 import random 4 import os 5 import numpy as np 6 from collections import deque 7 from keras.models import Sequential 8 from keras.layers import * 9 from keras.optimizers import * 10 11 12 class KerasAgent: 13 14 def __init__(self, shape, action_size): 15 self.weight_backup = "bombergirl_weight.model" 16 self.shape = shape 17 self.action_size = action_size 18 self.memory = deque(maxlen=2000) 19 self.learning_rate = 0.001 20 self.gamma = 0.95 21 self.exploration_rate = 1.0 22 self.exploration_min = 0.01 23 self.exploration_decay = 0.995 24 self.model = self._build_model() 25 26 def _build_model(self): 27 model = Sequential() 28 29 # Convolutions. 30 model.add(Conv2D( 31 16, 32 kernel_size=(3, 3), 33 strides=(1, 1), 34 #data_format='channels_first', 35 input_shape=self.shape 36 )) 37 model.add(Activation('relu')) 38 model.add(Conv2D( 39 32, 40 kernel_size=(3, 3), 41 strides=(1, 1), 42 data_format='channels_first' 43 )) 44 model.add(Activation('relu')) 45 46 # Dense layers.² 47 model.add(Flatten()) 48 model.add(Dense(256)) 49 model.add(Activation('relu')) 50 model.add(Dense(self.action_size)) 51 52 model.summary() 53 model.compile(loss='mse', optimizer=Adam(lr=self.learning_rate)) 54 #model.compile(RMSprop(), 'MSE') 55 56 if os.path.isfile(self.weight_backup): 57 model.load_weights(self.weight_backup) 58 self.exploration_rate = self.exploration_min 59 60 return model 61 62 def save_model(self, name): 63 self.model.save(self.weight_backup) 64 self.model.save(name) 65 66 def act(self, state): 67 if np.random.rand() <= self.exploration_rate: 68 return random.randrange(self.action_size) 69 act_values = self.model.predict(state) 70 return np.argmax(act_values[0]) 71 72 def remember(self, state, action, reward, next_state, done): 73 self.memory.append((state, action, reward, next_state, done)) 74 75 def replay(self, sample_batch_size=256): 76 if len(self.memory) < sample_batch_size: 77 sample_batch_size=len(self.memory) 78 sample_batch = random.sample(self.memory, sample_batch_size) 79 for state, action, reward, next_state, done in sample_batch: 80 target = reward 81 if not done: 82 target = (reward + self.gamma * 83 np.amax(self.model.predict(next_state)[0])) 84 target_f = self.model.predict(state) 85 target_f[0][action] = target 86 self.model.fit(state, target_f, epochs=1, verbose=0) 87 if self.exploration_rate > self.exploration_min: 88 self.exploration_rate *= self.exploration_decay
8 - warning: wildcard-import 9 - warning: wildcard-import 12 - refactor: too-many-instance-attributes 30 - error: undefined-variable 37 - error: undefined-variable 38 - error: undefined-variable 44 - error: undefined-variable 47 - error: undefined-variable 48 - error: undefined-variable 49 - error: undefined-variable 50 - error: undefined-variable 53 - error: undefined-variable 72 - refactor: too-many-arguments 72 - refactor: too-many-positional-arguments 76 - refactor: consider-using-min-builtin 1 - warning: unused-import 2 - warning: unused-import
1 #from .memreader import MemoryReader 2 import time 3 4 class Game: 5 enemies = [] #{x,y} 6 bombs = [] #{x,y} 7 bonus = [] 8 girl = {"x": 0, "y": 0} 9 start_time = 0 10 time = 0 11 game_inputs = { 12 0: "MoveUp", 13 1: "MoveDown", 14 2: "MoveLeft", 15 3: "MoveRight", 16 4: "LeaveBomb", 17 5: "None" 18 } 19 girl_alive = True 20 done = False 21 lose = False 22 victory = False 23 24 ##const 25 TIME_NORM = 10 26 MOVEMENT_RW = 5 27 BONUS_RW = 10 28 ALIVE_RW = 20 29 ENEMIES_NORM = 5 30 REWARD_BOMB = 25 31 REWARD_VICTORY = 100 32 REWARD_LOSE = 50 33 34 MAX_DISTANCE = 8 35 36 def restartState(self): 37 self.girl_alive = True 38 self.done = False 39 self.lose = False 40 self.victory = False 41 self.time = 0 42 self.start_time = time.time() 43 44 def getCurrentTimeNormalized(self): 45 return self.time / self.TIME_NORM 46 47 def getDistanceNormalized(self, elem1, elem2): 48 return abs(elem1['x'] - elem2['x']) + abs(elem1['y'] - elem2['y']) 49 50 def updateTime(self): 51 self.time = time.time() - self.start_time 52 53 def getReward(self, action): 54 reward = 0 55 # Para castigar por el numero de enemigos 56 reward -= self.ENEMIES_NORM*len(self.enemies) 57 # Para casticar con el paso del tiempo 58 reward -= self.getCurrentTimeNormalized() 59 60 # Para castigar/ premiar si la chica está cerca/lejos a una bomba 61 for bomb in self.bombs: 62 distance = self.getDistanceNormalized(bomb, self.girl) 63 if distance < self.MAX_DISTANCE: 64 reward -= distance 65 else 66 reward += distance 67 68 if(action == 4): 69 # Para premiar que esté colocando una bomba 70 reward += self.REWARD_BOMB 71 for enemy in self.enemies: 72 # Para premiar que la bomba está más cerca a un enemigo 73 distance = self.getDistanceNormalized(enemy, self.girl) 74 if distance< self.MAX_DISTANCE: 75 reward += self.REWARD_BOMB/distance 76 77 if(action < 4): 78 # Para premiar que se mueve 79 reward += self.MOVEMENT_RW 80 # Para premiar que esté más cerca a un bonus 81 for bonus in self.bonus: 82 reward += self.BONUS_RW / self.getDistanceNormalized(bonus, self.girl) 83 84 # Para premiar que está jugando 85 if(self.girl_alive): 86 reward += self.ALIVE_RW 87 88 # Para castigar que ha perdido 89 if self.lose: 90 reward -= self.REWARD_LOSE 91 92 # Para premiar que ha ganado 93 if self.victory: 94 reward += self.REWARD_VICTORY 95 96 return reward
65 - error: syntax-error
1 from serpent.game import Game 2 3 from .api.api import BombermanAPI 4 5 from serpent.utilities import Singleton 6 7 from serpent.game_launchers.web_browser_game_launcher import WebBrowser 8 9 10 class SerpentBombermanGame(Game, metaclass=Singleton): 11 12 def __init__(self, **kwargs): 13 kwargs["platform"] = "web_browser" 14 15 kwargs["window_name"] = "Safari" 16 17 kwargs["url"] = "http://0.0.0.0:8000" 18 kwargs["browser"] = WebBrowser.DEFAULT 19 20 super().__init__(**kwargs) 21 22 self.api_class = BombermanAPI 23 self.api_instance = None 24 25 @property 26 def screen_regions(self): 27 28 #t 29 dic_offset = { 30 "WINDOWS_CHROME": { 31 # "top": 81, 32 # "left": 5 33 "top": 0, 34 "left": 0 35 } 36 } 37 38 offset = dic_offset["WINDOWS_CHROME"] 39 40 regions = { 41 "GAME_REGION": (offset["top"], offset["left"], 416 + offset["top"], 544 + offset["left"]), #544x416 42 "GAME_OVER_REGION": (118 + offset["top"], 163 + offset["left"], 151 + offset["top"], 383 + offset["left"]), #220x33 - 163,118 43 "WIN_REGION": (118 + offset["top"], 171 + offset["left"], 149 + offset["top"], 372 + offset["left"]), # 201x31 - 171,118 44 } 45 46 return regions 47 48 @property 49 def ocr_presets(self): 50 presets = { 51 "SAMPLE_PRESET": { 52 "extract": { 53 "gradient_size": 1, 54 "closing_size": 1 55 }, 56 "perform": { 57 "scale": 10, 58 "order": 1, 59 "horizontal_closing": 1, 60 "vertical_closing": 1 61 } 62 } 63 } 64 65 return presets 66 67 # from serpent.game import Game 68 # 69 # from .api.api import BombermanAPI 70 # 71 # from serpent.utilities import Singleton 72 # 73 # from serpent.game_launchers.web_browser_game_launcher import WebBrowser 74 # 75 # 76 # class SerpentBombermanGame(Game, metaclass=Singleton): 77 # 78 # def __init__(self, **kwargs): 79 # kwargs["platform"] = "web_browser" 80 # 81 # kwargs["window_name"] = "Safari" 82 # 83 # kwargs["url"] = "http://0.0.0.0:8000" 84 # kwargs["browser"] = WebBrowser.DEFAULT 85 # 86 # super().__init__(**kwargs) 87 # 88 # self.api_class = BombermanAPI 89 # self.api_instance = None 90 # 91 # @property 92 # def screen_regions(self): 93 # regions = { 94 # "GAME_REGION": (0, 0, 480, 549), ##545x416 95 # "GAME_OVER_REGION": (160,160, 225, 404), 96 # "WIN_REGION": (175,130, 220, 421), 97 # } 98 # 99 # return regions 100 # 101 # @property 102 # def ocr_presets(self): 103 # presets = { 104 # "SAMPLE_PRESET": { 105 # "extract": { 106 # "gradient_size": 1, 107 # "closing_size": 1 108 # }, 109 # "perform": { 110 # "scale": 10, 111 # "order": 1, 112 # "horizontal_closing": 1, 113 # "vertical_closing": 1 114 # } 115 # } 116 # } 117 # 118 # return presets
12 - warning: bad-indentation 13 - warning: bad-indentation 15 - warning: bad-indentation 17 - warning: bad-indentation 18 - warning: bad-indentation 20 - warning: bad-indentation 22 - warning: bad-indentation 23 - warning: bad-indentation 25 - warning: bad-indentation 26 - warning: bad-indentation 29 - warning: bad-indentation 38 - warning: bad-indentation 40 - warning: bad-indentation 46 - warning: bad-indentation 48 - warning: bad-indentation 49 - warning: bad-indentation 50 - warning: bad-indentation 65 - warning: bad-indentation 3 - error: relative-beyond-top-level
1 from tensorforce.agents import PPOAgent 2 3 from serpent.utilities import SerpentError 4 5 import numpy as np 6 import os 7 8 # This file is borrowed from SerpentAIsaacGameAgentPlugin: 9 # https://github.com/SerpentAI/SerpentAIsaacGameAgentPlugin/blob/master/files/helpers/ppo.py 10 class SerpentPPO: 11 12 def __init__(self, frame_shape=None, game_inputs=None): 13 14 if frame_shape is None: 15 raise SerpentError("A 'frame_shape' tuple kwarg is required...") 16 17 states_spec = {"type": "float", "shape": frame_shape} 18 19 if game_inputs is None: 20 raise SerpentError("A 'game_inputs' dict kwarg is required...") 21 22 self.game_inputs = game_inputs 23 self.game_inputs_mapping = self._generate_game_inputs_mapping() 24 25 actions_spec = {"type": "int", "num_actions": len(self.game_inputs)} 26 27 network_spec = [ 28 {"type": "conv2d", "size": 1, "window": 2, "stride": 1}, 29 {"type": "flatten"}, 30 # {"type": "dense", "size": 64}, 31 {"type": "dense", "size": 6} 32 ] 33 34 self.agent = PPOAgent( 35 states=states_spec, 36 actions=actions_spec, 37 network=network_spec, 38 39 batched_observe=256, 40 batching_capacity=1000, 41 # BatchAgent 42 #keep_last_timestep=True, 43 # PPOAgent 44 step_optimizer=dict( 45 type='adam', 46 learning_rate=1e-4 47 ), 48 optimization_steps=10, 49 # Model 50 scope='ppo' 51 #discount=0.97, 52 # DistributionModel 53 #distributions=None, 54 #entropy_regularization=0.01, 55 # PGModel 56 #baseline_mode=None, 57 #baseline=None, 58 #baseline_optimizer=None, 59 #gae_lambda=None, 60 # PGLRModel 61 #likelihood_ratio_clipping=None, 62 #summary_spec=summary_spec, 63 #distributed_spec=None, 64 # More info 65 #device=None, 66 #session_config=None, 67 #saver=None, 68 #variable_noise=None, 69 #states_preprocessing_spec=None, 70 #explorations_spec=None, 71 #reward_preprocessing_spec=None, 72 #execution=None, 73 #actions_exploration=None, 74 #update_mode=None, 75 #memory=None, 76 #subsampling_fraction=0.1 77 ) 78 79 def generate_action(self, game_frame_buffer): 80 states = np.stack( 81 game_frame_buffer, 82 axis=2 83 ) 84 85 # Get prediction from agent, execute 86 action = self.agent.act(states) 87 label = self.game_inputs_mapping[action] 88 89 return action, label, self.game_inputs[label] 90 91 def observe(self, reward=0, terminal=False): 92 self.agent.observe(reward=reward, terminal=terminal) 93 94 def _generate_game_inputs_mapping(self): 95 mapping = dict() 96 97 for index, key in enumerate(self.game_inputs): 98 mapping[index] = key 99 100 return mapping 101 102 def save_model(self): 103 self.agent.save_model(directory=os.path.join(os.getcwd(), "datasets", "bomberman", "ppo_model"), append_timestep=False) 104 105 def restore_model(self): 106 self.agent.restore_model(directory=os.path.join(os.getcwd(), "datasets", "bomberman"))
44 - refactor: use-dict-literal 95 - refactor: use-dict-literal
1 import smtplib, re, socket, optparse, sys 2 import os.path 3 import pickle 4 from email.mime.text import MIMEText 5 import utilitaires 6 7 parser = optparse.OptionParser() 8 parser.add_option("-a", "--address", action="store", dest="address", default="localhost") 9 parser.add_option("-p", "--port", action="store", dest="port", type=int, default=1337) 10 opts = parser.parse_args(sys.argv[1:])[0] 11 12 destination = (opts.address, opts.port) 13 #Création du socket 14 serversocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 15 serversocket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) 16 serversocket.bind(destination) 17 serversocket.listen(5) 18 print("Listening on port " + str(serversocket.getsockname()[1])) 19 nbConnexions = 0 20 nbDeconnexions = 0 21 22 while True: 23 #Un client se connecte au serveur 24 (s, address) = serversocket.accept() 25 nbConnexions += 1 26 print(str(nbConnexions) + "e connexion au serveur") 27 28 #Réception du choix d'option du menu connexion. 29 option = s.recv(1024).decode() 30 31 #Si l'utilisateur choisit de se connecter 32 if option == "1": 33 34 #On vérifie que le compte existe et que le mot de passe est valide 35 id = s.recv(1024).decode() 36 mdp = s.recv(1024).decode() 37 verificationID = utilitaires.verifierID(id) 38 s.send(verificationID.encode()) 39 if verificationID != "0": 40 verificationMDP = utilitaires.connexion(id, mdp) 41 s.send(verificationMDP.encode()) 42 43 while verificationID != "1" or verificationMDP != "1": 44 id = s.recv(1024).decode() 45 mdp = s.recv(1024).decode() 46 verificationID = utilitaires.verifierID(id) 47 s.send(verificationID.encode()) 48 if verificationID != "0": 49 verificationMDP = utilitaires.connexion(id, mdp) 50 s.send(verificationMDP.encode()) 51 if verificationMDP == "-1": 52 continue 53 54 55 #Si l'utilisateur choisit de se créer un compte 56 elif option == "2": 57 #Création de l'identifiant 58 id = s.recv(1024).decode() 59 mdp = s.recv(1024).decode() 60 verificationID = utilitaires.verifierID(id) 61 s.send(verificationID.encode()) 62 if verificationID != "1": 63 verificationMDP = utilitaires.veififierMDP(mdp) 64 s.send(verificationMDP.encode()) 65 while verificationID != "0" or verificationMDP != "1": 66 id = s.recv(1024).decode() 67 mdp = s.recv(1024).decode() 68 verificationID = utilitaires.verifierID(id) 69 s.send(verificationID.encode()) 70 if verificationID != "1": 71 verificationMDP = utilitaires.veififierMDP(mdp) 72 s.send(verificationMDP.encode()) 73 verificationErreur = utilitaires.creerCompte(id, mdp) 74 s.send(verificationErreur.encode()) 75 if verificationErreur == "0": 76 continue 77 78 79 80 while True: 81 # Réception du choix d'option du menu connexion. 82 option = s.recv(1024).decode() 83 84 #Envoie d'un courriel 85 if option == "1": 86 # reception du courriel et verification qu’il est valide 87 emailFrom = s.recv(1024).decode() 88 emailAddress = s.recv(1024).decode() 89 while not re.search(r"^[^@]+@[^@]+\.[^@]+$", emailAddress): 90 msg = "-1" 91 s.send(msg.encode()) 92 emailAddress = s.recv(1024).decode() 93 msg = "0" 94 s.send(msg.encode()) 95 96 # creation du courriel 97 subject = s.recv(1024).decode() 98 data = s.recv(1024).decode() 99 courriel = MIMEText(data) 100 courriel["From"] = emailFrom 101 courriel["To"] = emailAddress 102 courriel["Subject"] = subject 103 104 #Externe 105 use_smtp_ulaval = False 106 if(re.match(r"^[^@]+@reseauglo\.ca$", emailAddress) == None): 107 use_smtp_ulaval = True 108 109 if use_smtp_ulaval == True: 110 111 # envoi du courriel par le smtp de l'ecole 112 try: 113 smtpConnection = smtplib.SMTP(host="smtp.ulaval.ca", timeout=10) 114 smtpConnection.sendmail(courriel["From"], courriel["To"], courriel.as_string()) 115 smtpConnection.quit() 116 msg = "0" 117 s.send(msg.encode()) 118 except: 119 msg = "-1" 120 s.send(msg.encode()) 121 else: 122 chemin_dossier = emailAddress.replace("@reseauglo.ca", "") 123 verification = utilitaires.courrielLocal(chemin_dossier, courriel['Subject'], courriel.as_string()) 124 if(verification != "0"): 125 utilitaires.courrielDump(courriel['Subject'], courriel.as_string()) 126 s.send(verification.encode()) 127 128 elif option == "2": 129 id = s.recv(1024).decode() 130 files = os.listdir(id) 131 files.remove("config.txt") 132 files = utilitaires.sortDate(id, files) 133 mails = [] 134 135 for file in files: 136 file = file.replace(".txt", "") 137 mails.append(file) 138 139 data_string = pickle.dumps(mails) 140 s.send(data_string) 141 142 email_id = int(s.recv(1024).decode()) - 1 143 email_content = utilitaires.ouvrirLocal(id, files[email_id]) 144 s.send(email_content.encode()) 145 146 elif option == "3": 147 id = s.recv(1024).decode() 148 filesize = utilitaires.getSize(id) 149 s.send(str(filesize).encode()) 150 files = os.listdir(id) 151 files.remove("config.txt") 152 files = sorted(files, key=str) 153 mails = [] 154 155 for file in files: 156 file = file.replace(".txt", "") 157 print(file) 158 mails.append(file) 159 160 data_string = pickle.dumps(mails) 161 s.send(data_string) 162 163 elif option == "4": 164 nbDeconnexions += 1 165 print(str(nbDeconnexions) + "e deconnexion au serveur") 166 break
35 - warning: redefined-builtin 1 - warning: deprecated-module 118 - warning: bare-except
1 import os.path 2 import re 3 from hashlib import sha256 4 from os.path import getsize 5 6 #Méthode qui crée un nouveau compte dans le répertoire du serveur 7 #id : nom du dossier 8 #mdp : mot de passe 9 #return : "0" si un problème est survenu avec le fichier, "1" si le compte a été créé 10 def creerCompte(id, mdp): 11 state = "1" 12 try: 13 os.makedirs(id) 14 file = open(id + "/config.txt", "w") 15 file.write(sha256(mdp.encode()).hexdigest()) 16 file.close() 17 except: 18 state = "0" 19 return state 20 21 #Méthode qui vérifie si le compte existe 22 #id : Nom du dossier du compte 23 #return: "1" si le compte existe, "0" sinon 24 def verifierID(id): 25 state = "0" 26 if os.path.exists(id + "/config.txt"): 27 state = "1" 28 return state 29 30 #Méthode qui vérifie si le mot de passe respecte les conditions 31 #mdp : le mot de passe 32 #return : "1" si le mot de passe respecte les conditions, "0" sinon. 33 def veififierMDP(mdp): 34 state = "0" 35 if (re.search(r"^[a-zA-Z0-9]{6,12}$", mdp) and re.search(r".*[0-9].*", mdp) and re.search(r".*[a-zA-Z].*",mdp)): 36 state = "1" 37 return state 38 39 #Méthode qui permet d'ouvrir le dossier d'un utilisateur 40 #id, mdp : L'identifiant et le mot de passe de l'utilisateur 41 #Return : "-1" s'il y a un problème avec lors de l'ouverture du fichier 42 # "0" si le mot de passe de correspond pas 43 # "1" si la connexion est un succès 44 def connexion(id, mdp): 45 state = "1" 46 try: 47 file = open(id + "/config.txt", "r") 48 password = file.readline() 49 file.close() 50 if sha256(mdp.encode()).hexdigest() != password: 51 state = "0" 52 except: 53 state = "-1" 54 55 return state 56 57 #Méthode qui permet d'ouvrir le dossier d'un utilisateur 58 #id, subject, data: L'identifiant de l'utilisateur, le sujet et corps du message 59 #Return : "-1" s'il y a un problème avec lors de l'ouverture du fichier 60 # "0" si tout se passe bien 61 def courrielLocal(id, subject, data): 62 state = "0" 63 try: 64 file = open(id + "/" + subject + ".txt", "w") 65 file.write(data) 66 file.close() 67 state = "0" 68 except: 69 state = "-1" 70 71 return state 72 73 #Méthode qui permet d'ouvrir un courriel local 74 #subject, data: Sujet et corps du courriel 75 def ouvrirLocal(id, filename): 76 try: 77 file = open( id + "/" + filename, "r") 78 str_content = file.read(); 79 file.close() 80 return str_content 81 except: 82 print("Fichier introuvable.") 83 84 85 86 #Méthode qui permet d'enregistrer un courriel vers un utilisateur inexistant 87 #subject, data: Sujet et corps du courriel 88 def courrielDump(subject, data): 89 try: 90 if not os.path.exists("DESTERREUR"): 91 os.makedirs("DESTERREUR") 92 file = open("DESTERREUR/" + subject + ".txt", "w") 93 file.write(data) 94 file.close() 95 except: 96 print("Guess somebody fucked up good.") 97 98 99 #Méthode qui retourne la grosseur d'un directory 100 #id: le directory 101 def getSize(id): 102 try: 103 size = getsize(id) 104 return size 105 except: 106 print("Mauvais nom de repertoire") 107 108 109 #Méthode qui retourne la liste trié par date 110 #id, liste: la liste a trier 111 def sortDate(id, liste): 112 liste.sort(key=lambda x: os.path.getmtime(id + "/" + x)) 113 return liste 114 115 #Méthode qui retourne la liste trié alphabetiquement 116 #id, liste: la liste a trier 117 def sortAlpha(liste): 118 liste = liste.sort() 119 return liste
78 - warning: unnecessary-semicolon 10 - warning: redefined-builtin 17 - warning: bare-except 14 - warning: unspecified-encoding 14 - refactor: consider-using-with 24 - warning: redefined-builtin 44 - warning: redefined-builtin 52 - warning: bare-except 47 - warning: unspecified-encoding 47 - refactor: consider-using-with 61 - warning: redefined-builtin 68 - warning: bare-except 64 - warning: unspecified-encoding 64 - refactor: consider-using-with 75 - warning: redefined-builtin 81 - warning: bare-except 77 - warning: unspecified-encoding 75 - refactor: inconsistent-return-statements 77 - refactor: consider-using-with 95 - warning: bare-except 92 - warning: unspecified-encoding 92 - refactor: consider-using-with 101 - warning: redefined-builtin 105 - warning: bare-except 101 - refactor: inconsistent-return-statements 111 - warning: redefined-builtin
1 import smtplib, re, socket, optparse, sys 2 import os.path 3 from email.mime.text import MIMEText 4 from hashlib import sha256 5 import getpass 6 import pickle 7 8 parser = optparse.OptionParser() 9 parser.add_option("-a", "--address", action="store", dest="address", default="localhost") 10 parser.add_option("-p", "--port", action="store", dest="port", type=int, default=1337) 11 opts = parser.parse_args(sys.argv[1:])[0] 12 13 destination = (opts.address, opts.port) 14 #Connexion au serveur 15 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 16 s.settimeout(10) 17 s.connect(destination) 18 s.settimeout(None) 19 20 while True: 21 #Menu de connexion, choix d'une option 22 option = input("Menu de connexion \n1. Se connecter \n2. Creer un compte \n") 23 while option != "1" and option != "2": 24 option = input("Veuillez saisir une option valide:\n") 25 s.send(option.encode()) 26 27 #Se connecter 28 if option == "1": 29 id = input("Veuillez saisir votre identifiant:\n") 30 mdp = getpass.getpass("Veuillez saisir votre mot de passe:\n") 31 s.send(id.encode()) 32 s.send(mdp.encode()) 33 reponseID = s.recv(1024).decode() 34 if reponseID != "0": 35 reponseMDP = s.recv(1024).decode() 36 while reponseID != "1" or reponseMDP != "1": 37 if reponseID != "1": 38 id = input("Veuillez saisir un identifiant valide:\n") 39 mdp = getpass.getpass("Veuillez saisir votre mot de passe:\n") 40 elif reponseMDP == "-1": 41 print("Desole, un probleme est survenu.") 42 continue 43 else: 44 print("Ce n'est pas le bon mot de passe. Veuillez reessayer.") 45 id = input("Veuillez saisir votre identifiant:\n") 46 mdp = getpass.getpass("Veuillez saisir votre mot de passe:\n") 47 s.send(id.encode()) 48 s.send(mdp.encode()) 49 reponseID = s.recv(1024).decode() 50 if reponseID != "0": 51 reponseMDP = s.recv(1024).decode() 52 53 54 55 #Créer un compte 56 elif option == "2": 57 id = input("Veuillez choisir un identifiant:\n") 58 mdp = getpass.getpass("Veuillez choisir un mot de passe contenant de 6 à 12 carateres, dont au moins une lettre et un chiffre:\n") 59 s.send(id.encode()) 60 s.send(mdp.encode()) 61 reponseID = s.recv(1024).decode() 62 if reponseID != "1": 63 reponseMDP = s.recv(1024).decode() 64 while reponseID != "0" or reponseMDP != "1": 65 if reponseID != "0": 66 id = input("Cet identifiant est deja pris, veuillez en choisir un autre:\n") 67 mdp = getpass.getpass("Veuillez saisir votre mot de passe:\n") 68 else: 69 print("Ce mot de passe ne respecte pas les conditions, veuilelz en choisir un autre.") 70 id = input("Veuillez saisir votre identifiant a nouveau:\n") 71 mdp = getpass.getpass("Veuillez saisir votre nouveau mot de passe:\n") 72 s.send(id.encode()) 73 s.send(mdp.encode()) 74 reponseID = s.recv(1024).decode() 75 if reponseID != "1": 76 reponseMDP = s.recv(1024).decode() 77 reponseCreationCompte = s.recv(1024).decode() 78 if reponseCreationCompte == "0": 79 print("Desole, un probleme est survenu") 80 continue 81 82 83 while True: 84 option = input("\nMenu principale\n1. Envoi de courriels\n2. Consultation de courriels\n3. Statistiques\n4. Quitter\n") 85 while option not in ["1", "2", "3", "4"]: 86 option = input("Veuillez saisir une option valide:\n") 87 88 s.send(option.encode()) 89 90 if option == "1": 91 email_from = id + "@reseauglo.ca" 92 s.send(email_from.encode()) 93 94 response = "-1" 95 while(response == "-1"): 96 email_to = input("\nÀ: ") 97 s.send(email_to.encode()) 98 response = s.recv(1024).decode() 99 100 subject = input("\nSujet: ") 101 s.send(subject.encode()) 102 data = input("\nMessage: ") 103 s.send(data.encode()) 104 105 response = s.recv(1024).decode() 106 if(response == "-1"): 107 print("\nErreur lors de l'envoie du courriel.") 108 continue 109 else: 110 print("\nCourriel envoyé avec succès!") 111 elif option == "2": 112 s.send(id.encode()) 113 data_string = s.recv(1024) 114 mails = pickle.loads(data_string) 115 116 print("\nListe de vos courriels: \n") 117 118 compteur = 1; 119 for mail in mails: 120 print("\n" + str(compteur) + ". " + mail) 121 compteur += 1 122 123 email_id = input("\nQuel courriel souhaitez-vous visionner? \n") 124 125 s.send(email_id.encode()) 126 127 email_content = s.recv(1024).decode() 128 print("\n" + email_content) 129 input("\nAppuyez sur Enter pour continuer...") 130 continue 131 elif option == "3": 132 s.send(id.encode()) 133 134 filesize = s.recv(1024).decode() 135 136 data_string = s.recv(1024) 137 mails = pickle.loads(data_string) 138 139 print("\nNombre de messages: " + str(len(mails)) + "\n") 140 print("\nTaille du repertoire personnel (en octets): " + filesize + "\n") 141 print("\nListe de vos courriels: \n") 142 143 compteur = 1; 144 for mail in mails: 145 print("\n" + str(compteur) + ". " + mail) 146 compteur += 1 147 input("\nAppuyez sur Enter pour continuer...") 148 continue 149 elif option == "4": 150 break; 151 s.close() 152 exit()
118 - warning: unnecessary-semicolon 143 - warning: unnecessary-semicolon 150 - warning: unnecessary-semicolon 29 - warning: redefined-builtin 1 - warning: deprecated-module 23 - refactor: consider-using-in 36 - error: possibly-used-before-assignment 106 - refactor: no-else-continue 152 - refactor: consider-using-sys-exit 1 - warning: unused-import 1 - warning: unused-import 2 - warning: unused-import 3 - warning: unused-import 4 - warning: unused-import
1 import os 2 from collections import OrderedDict 3 4 import torch 5 import torch.nn as nn 6 import torchvision.models as models 7 8 class LinearEvalModel(nn.Module): 9 def __init__(self, arch='vgg19', dim=512, num_classes=10): 10 super().__init__() 11 12 if arch == 'vgg19': 13 self.features = models.vgg19().features 14 if arch == 'vgg19_bn': 15 self.features = models.vgg19_bn().features 16 elif arch == 'resnet18': 17 resnet18 = models.resnet18(pretrained=False) 18 self.features = nn.Sequential(*list(resnet18.children())[:-1]) 19 20 self.avg_pool = nn.AdaptiveAvgPool2d((1,1)) 21 22 self.fc = nn.Linear(dim, num_classes) 23 24 def weight_init(self, weight_path, device, arch): 25 state_dict = torch.load(os.path.join(weight_path, 'best_model.pth'), device) 26 new_state_dict = OrderedDict() 27 28 if 'resnet' in arch: 29 for k, v in state_dict.items(): 30 if 'encoder' in k: 31 k = k.replace('encoder.', '') 32 new_state_dict[k] = v 33 34 self.features.load_state_dict(new_state_dict) 35 elif 'vgg' in arch: 36 for k, v in state_dict.items(): 37 if 'encoder' in k: 38 k = k.replace('encoder.0.', '') 39 new_state_dict[k] = v 40 41 self.features.load_state_dict(new_state_dict) 42 43 for m in self.features.parameters(): 44 m.requires_grad = False 45 46 def forward(self, x): 47 x = self.features(x) 48 x = self.avg_pool(x) 49 x = x.squeeze() 50 out = self.fc(x) 51 52 return out
5 - refactor: consider-using-from-import 6 - refactor: consider-using-from-import
1 import os 2 import sys 3 import time 4 import logging 5 6 import numpy as np 7 8 import torch 9 from torch import optim 10 from torch.optim import lr_scheduler 11 from torch.utils.data import DataLoader 12 import torchvision.models as models 13 import torchvision.datasets as datasets 14 15 from models.simple_siamese_net import SiameseNetwork 16 from models.cosine_contrastive_loss import CosineContrastiveLoss 17 from utils.trainer import Trainer 18 from utils.helper import Save_Handle, AverageMeter, worker_init_fn 19 from utils.visualizer import ImageDisplayer, LossGraphPloter 20 from datasets.spatial import SpatialDataset 21 from datasets.cifar10 import PosNegCifar10, get_simsiam_dataset 22 23 class SimSiamTrainer(Trainer): 24 def setup(self): 25 """initialize the datasets, model, loss and optimizer""" 26 args = self.args 27 self.vis = ImageDisplayer(args, self.save_dir) 28 self.tr_graph = LossGraphPloter(self.save_dir) 29 self.vl_graph = LossGraphPloter(self.save_dir) 30 31 if torch.cuda.is_available(): 32 self.device = torch.device("cuda") 33 self.device_count = torch.cuda.device_count() 34 logging.info('using {} gpus'.format(self.device_count)) 35 else: 36 raise Exception("gpu is not available") 37 38 if args.cifar10: 39 self.datasets = {x: get_simsiam_dataset(args, x) for x in ['train', 'val']} 40 41 else: 42 self.datasets = {x: SpatialDataset(x, 43 args.data_dir, 44 args.crop_size, 45 (args.div_row, args.div_col), 46 args.aug) for x in ['train', 'val']} 47 48 self.dataloaders = {x: DataLoader(self.datasets[x], 49 batch_size=args.batch_size, 50 shuffle=(True if x == 'train' else False), 51 num_workers=args.num_workers*self.device_count, 52 pin_memory=(True if x == 'train' else False), 53 worker_init_fn=worker_init_fn) for x in ['train', 'val']} 54 55 # Define model, loss, optim 56 self.model = SiameseNetwork(args) 57 self.model.to(self.device) 58 59 self.criterion = CosineContrastiveLoss() 60 self.criterion.to(self.device) 61 62 self.optimizer = optim.SGD(self.model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay) 63 64 #self.scheduler = lr_scheduler.MultiStepLR(self.optimizer, milestones=[80, 120, 160, 200, 250], gamma=0.1) 65 self.scheduler = lr_scheduler.CosineAnnealingLR(self.optimizer, T_max=args.max_epoch) 66 67 self.start_epoch = 0 68 self.best_loss = np.inf 69 if args.resume: 70 suf = args.resume.rsplit('.', 1)[-1] 71 if suf == 'tar': 72 checkpoint = torch.load(args.resume, self.device) 73 self.model.load_state_dict(checkpoint['model_state_dict']) 74 self.optimizer.load_state_dict(checkpoint['optimizer_state_dict']) 75 self.start_epoch = checkpoint['epoch'] + 1 76 elif suf == 'pth': 77 self.model.load_state_dict(torch.load(args.resume, self.device)) 78 79 self.save_list = Save_Handle(max_num=args.max_model_num) 80 81 def train(self): 82 """training process""" 83 args = self.args 84 for epoch in range(self.start_epoch, args.max_epoch): 85 logging.info('-'*5 + 'Epoch {}/{}'.format(epoch, args.max_epoch - 1) + '-'*5) 86 self.epoch = epoch 87 self.train_epoch(epoch) 88 if epoch % args.val_epoch == 0 and epoch >= args.val_start: 89 self.val_epoch(epoch) 90 91 def train_epoch(self, epoch): 92 epoch_loss = AverageMeter() 93 epoch_start = time.time() 94 self.model.train() # Set model to training mode 95 96 for step, ((input1, input2), label) in enumerate(self.dataloaders['train']): 97 input1 = input1.to(self.device) 98 input2 = input2.to(self.device) 99 100 with torch.set_grad_enabled(True): 101 (z1, z2), (p1, p2) = self.model(input1, input2) 102 loss = self.criterion(z1, z2, p1, p2) 103 epoch_loss.update(loss.item(), input1.size(0)) 104 self.optimizer.zero_grad() 105 loss.backward() 106 self.optimizer.step() 107 self.scheduler.step() 108 109 # visualize 110 if step == 0: 111 self.vis(epoch, 'train', input1, input2, label) 112 pass 113 114 logging.info('Epoch {} Train, Loss: {:.5f}, lr: {:.5f}, Cost {:.1f} sec' 115 .format(self.epoch, epoch_loss.get_avg(), self.optimizer.param_groups[0]['lr'], time.time()-epoch_start)) 116 117 self.tr_graph(self.epoch, epoch_loss.get_avg(), 'tr') 118 119 if epoch % self.args.check_point == 0: 120 model_state_dic = self.model.state_dict() 121 save_path = os.path.join(self.save_dir, '{}_ckpt.tar'.format(self.epoch)) 122 torch.save({ 123 'epoch': self.epoch, 124 'optimizer_state_dict': self.optimizer.state_dict(), 125 'model_state_dict': model_state_dic 126 }, save_path) 127 self.save_list.append(save_path) # control the number of saved models 128 129 def val_epoch(self, epoch): 130 epoch_start = time.time() 131 self.model.eval() # Set model to evaluate mode 132 epoch_loss = AverageMeter() 133 134 for step, ((input1, input2), label) in enumerate(self.dataloaders['val']): 135 input1 = input1.to(self.device) 136 input2 = input2.to(self.device) 137 138 with torch.set_grad_enabled(False): 139 (z1, z2), (p1, p2) = self.model(input1, input2) 140 loss = self.criterion(z1, z2, p1, p2) 141 epoch_loss.update(loss.item(), input1.size(0)) 142 143 # visualize 144 if step == 0: 145 self.vis(epoch, 'val', input1, input2, label) 146 pass 147 148 logging.info('Epoch {} Val, Loss: {:.5f}, Cost {:.1f} sec' 149 .format(self.epoch, epoch_loss.get_avg(), time.time()-epoch_start)) 150 151 self.vl_graph(self.epoch, epoch_loss.get_avg(), 'vl') 152 153 model_state_dic = self.model.state_dict() 154 if self.best_loss > epoch_loss.get_avg(): 155 self.best_loss = epoch_loss.get_avg() 156 logging.info("save min loss {:.2f} model epoch {}".format(self.best_loss, self.epoch)) 157 torch.save(model_state_dic, os.path.join(self.save_dir, 'best_model.pth'))
12 - refactor: consider-using-from-import 13 - refactor: consider-using-from-import 20 - error: no-name-in-module 21 - error: no-name-in-module 23 - refactor: too-many-instance-attributes 34 - warning: logging-format-interpolation 36 - warning: broad-exception-raised 50 - refactor: simplifiable-if-expression 52 - refactor: simplifiable-if-expression 85 - warning: logging-not-lazy 112 - warning: unnecessary-pass 146 - warning: unnecessary-pass 27 - warning: attribute-defined-outside-init 28 - warning: attribute-defined-outside-init 29 - warning: attribute-defined-outside-init 32 - warning: attribute-defined-outside-init 33 - warning: attribute-defined-outside-init 39 - warning: attribute-defined-outside-init 42 - warning: attribute-defined-outside-init 48 - warning: attribute-defined-outside-init 56 - warning: attribute-defined-outside-init 59 - warning: attribute-defined-outside-init 62 - warning: attribute-defined-outside-init 65 - warning: attribute-defined-outside-init 67 - warning: attribute-defined-outside-init 75 - warning: attribute-defined-outside-init 68 - warning: attribute-defined-outside-init 155 - warning: attribute-defined-outside-init 79 - warning: attribute-defined-outside-init 86 - warning: attribute-defined-outside-init 2 - warning: unused-import 12 - warning: unused-import 13 - warning: unused-import 21 - warning: unused-import
1 import torch 2 import torch.nn as nn 3 4 class projection_MLP(nn.Module): 5 def __init__(self, in_dim=512, hidden_dim=512, out_dim=512): # bottleneck structure 6 super().__init__() 7 8 self.layers = nn.Sequential( 9 nn.Linear(in_dim, hidden_dim), 10 nn.ReLU(), 11 nn.Linear(hidden_dim, hidden_dim), 12 nn.ReLU(), 13 nn.Linear(hidden_dim, out_dim) 14 ) 15 16 def forward(self, x): 17 if x.dim() != 2: 18 x = x.squeeze() 19 x = self.layers(x) 20 return x 21 22 class prediction_MLP(nn.Module): 23 def __init__(self, in_dim=512, hidden_dim=256, out_dim=512): # bottleneck structure 24 super().__init__() 25 self.layer1 = nn.Sequential( 26 nn.Linear(in_dim, hidden_dim), 27 nn.ReLU(inplace=True) 28 ) 29 self.layer2 = nn.Linear(hidden_dim, out_dim) 30 31 def forward(self, x): 32 if x.dim() != 2: 33 x = x.squeeze() 34 x = self.layer1(x) 35 x = self.layer2(x) 36 return x 37 38 class SiameseNetwork(nn.Module): 39 def __init__(self, model, pattern_feature = 'conv-512x1x1', projection=False, prediction=False): 40 super(SiameseNetwork, self).__init__() 41 self.projection = projection 42 self.prediction = prediction 43 44 if pattern_feature == 'conv-512x1x1': 45 features = model().features 46 max_pool = nn.AdaptiveAvgPool2d((1,1)) 47 self.encoder = nn.Sequential(features, max_pool) 48 49 if projection: 50 self.projector = projection_MLP(in_dim=512, hidden_dim=512, out_dim=512) 51 52 if prediction: 53 self.predictor = prediction_MLP(in_dim=512, out_dim=512) 54 55 elif pattern_feature == 'fc-4096': 56 features = model() 57 self.encoder = nn.Sequential(*[self.encoder.classifier[0]]) 58 59 if projection: 60 self.projector = projection_MLP(in_dim=4096, hidden_dim=4096, out_dim=4096) 61 62 if prediction: 63 self.predictor = prediction_MLP(in_dim=4096, out_dim=4096) 64 65 66 def forward(self, input1, input2): 67 if self.prediction: 68 f, h = self.encoder, self.predictor 69 z1, z2 = f(input1), f(input2) 70 71 if self.projection: 72 z1, z2 = self.projection(input1), self.projection(input2) 73 74 p1, p2 = h(z1), h(z2) 75 76 else: 77 f = self.encoder 78 z1, z2 = f(input1), f(input2) 79 80 if self.projection: 81 z1, z2 = self.projection(input1), self.projection(input2) 82 83 p1, p2 = None, None 84 85 return (z1, z2), (p1, p2) 86
2 - refactor: consider-using-from-import 40 - refactor: super-with-arguments 1 - warning: unused-import
1 from typing import Callable, Optional 2 import random 3 4 from PIL import Image 5 import numpy as np 6 7 import torch 8 import torchvision 9 from torchvision import transforms 10 from torchvision.datasets import CIFAR10 11 12 np.random.seed(765) 13 random.seed(765) 14 15 class SupervisedPosNegCifar10(torch.utils.data.Dataset): 16 def __init__(self, dataset, phase): 17 # split by some thresholds here 80% anchors, 20% for posnegs 18 lengths = [int(len(dataset)*0.8), int(len(dataset)*0.2)] 19 self.anchors, self.posnegs = torch.utils.data.random_split(dataset, lengths) 20 21 if phase == 'train': 22 self.anchor_transform = transforms.Compose([transforms.Resize(64), 23 transforms.RandomResizedCrop(scale=(0.16, 1), ratio=(0.75, 1.33), size=64), 24 transforms.RandomHorizontalFlip(0.5), 25 transforms.ToTensor(), 26 transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) 27 self.posneg_transform = transforms.Compose([transforms.Resize(64), 28 transforms.RandomResizedCrop(scale=(0.16, 1), ratio=(0.75, 1.33), size=64), 29 transforms.RandomHorizontalFlip(0.5), 30 transforms.ToTensor(), 31 transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) 32 else: 33 self.anchor_transform = transforms.Compose([transforms.Resize(64), 34 transforms.ToTensor(), 35 transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) 36 self.posneg_transform = transforms.Compose([transforms.Resize(64), 37 transforms.ToTensor(), 38 transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) 39 40 def __len__(self): 41 return len(self.anchors) 42 43 def __getitem__(self, index): 44 anchor, label = self.anchors[index] 45 if self.anchor_transform is not None: 46 anchor = self.anchor_transform(anchor) 47 48 # now pair this up with an image from the same class in the second stream 49 if random.random() > 0.5: 50 A = np.where(np.array(self.posnegs.dataset.targets) == label)[0] 51 posneg_idx = np.random.choice(A[np.in1d(A, self.posnegs.indices)]) 52 posneg, label = self.posnegs[np.where(self.posnegs.indices==posneg_idx)[0][0]] 53 target = torch.tensor([1]).long() 54 else: 55 A = np.where(np.array(self.posnegs.dataset.targets) != label)[0] 56 posneg_idx = np.random.choice(A[np.in1d(A, self.posnegs.indices)]) 57 posneg, label = self.posnegs[np.where(self.posnegs.indices==posneg_idx)[0][0]] 58 target = torch.tensor([0]).long() 59 60 if self.posneg_transform is not None: 61 posneg = self.posneg_transform(posneg) 62 63 return anchor, posneg, target, label 64 65 class PosNegCifar10(torch.utils.data.Dataset): 66 def __init__(self, dataset, phase): 67 # split by some thresholds here 80% anchors, 20% for posnegs 68 self.dataset = dataset 69 70 if phase == 'train': 71 self.anchor_transform = transforms.Compose([transforms.Resize(64), 72 transforms.RandomResizedCrop(scale=(0.16, 1), ratio=(0.75, 1.33), size=64), 73 transforms.RandomHorizontalFlip(0.5), 74 transforms.ToTensor(), 75 transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) 76 self.posneg_transform = transforms.Compose([transforms.Resize(64), 77 transforms.RandomResizedCrop(scale=(0.16, 1), ratio=(0.75, 1.33), size=64), 78 transforms.RandomHorizontalFlip(0.5), 79 transforms.ToTensor(), 80 transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) 81 else: 82 self.anchor_transform = transforms.Compose([transforms.Resize(64), 83 transforms.ToTensor(), 84 transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) 85 self.posneg_transform = transforms.Compose([transforms.Resize(64), 86 transforms.ToTensor(), 87 transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) 88 89 def __len__(self): 90 return len(self.dataset) 91 92 def __getitem__(self, index): 93 anchor, label = self.dataset[index] 94 95 # now pair this up with an image from the same class in the second stream 96 if random.random() > 0.5: 97 posneg = anchor 98 target = torch.tensor([1]).long() 99 else: 100 while True: 101 neg_idx = random.randint(0, len(self.dataset)-1) 102 if neg_idx != index: 103 break 104 posneg, label = self.dataset[neg_idx] 105 target = torch.tensor([0]).long() 106 107 if self.anchor_transform is not None: 108 anchor = self.anchor_transform(anchor) 109 110 if self.posneg_transform is not None: 111 posneg = self.posneg_transform(posneg) 112 113 return anchor, posneg, target, label 114 115 ### Simple Siamese code 116 117 imagenet_mean_std = [[0.485, 0.456, 0.406],[0.229, 0.224, 0.225]] 118 119 class SimSiamTransform(): 120 def __init__(self, image_size, train, mean_std=imagenet_mean_std): 121 self.train = train 122 if self.train: 123 image_size = 224 if image_size is None else image_size # by default simsiam use image size 224 124 p_blur = 0.5 if image_size > 32 else 0 # exclude cifar 125 # the paper didn't specify this, feel free to change this value 126 # I use the setting from simclr which is 50% chance applying the gaussian blur 127 # the 32 is prepared for cifar training where they disabled gaussian blur 128 self.transform = transforms.Compose([ 129 transforms.RandomResizedCrop(image_size, scale=(0.2, 1.0)), 130 transforms.RandomHorizontalFlip(), 131 transforms.RandomApply([transforms.ColorJitter(0.4,0.4,0.4,0.1)], p=0.8), 132 transforms.RandomGrayscale(p=0.2), 133 transforms.RandomApply([transforms.GaussianBlur(kernel_size=image_size//20*2+1, sigma=(0.1, 2.0))], p=p_blur), 134 transforms.ToTensor(), 135 transforms.Normalize(*mean_std) 136 ]) 137 138 else: 139 self.transform = transforms.Compose([ 140 transforms.Resize(int(image_size*(8/7)), interpolation=Image.BICUBIC), # 224 -> 256 141 transforms.CenterCrop(image_size), 142 transforms.ToTensor(), 143 transforms.Normalize(*mean_std) 144 ]) 145 146 def __call__(self, x): 147 x1 = self.transform(x) 148 x2 = self.transform(x) 149 return x1, x2 150 151 152 def get_simsiam_dataset(args, phase, download=True, debug_subset_size=None): 153 if phase == 'train': 154 train = True 155 transform = SimSiamTransform(args.crop_size, train) 156 elif phase == 'val': 157 train = False 158 transform = SimSiamTransform(args.crop_size, train) 159 elif phase == 'linear_train': 160 train = True 161 transform = transforms.Compose([ 162 transforms.RandomResizedCrop(args.crop_size, scale=(0.08, 1.0), ratio=(3.0/4.0,4.0/3.0), interpolation=Image.BICUBIC), 163 transforms.RandomHorizontalFlip(), 164 transforms.ToTensor(), 165 transforms.Normalize(*imagenet_mean_std) 166 ]) 167 elif phase == 'linear_val': 168 train = False 169 transform = transforms.Compose([ 170 transforms.Resize(int(args.crop_size*(8/7)), interpolation=Image.BICUBIC), # 224 -> 256 171 transforms.CenterCrop(args.crop_size), 172 transforms.ToTensor(), 173 transforms.Normalize(*imagenet_mean_std) 174 ]) 175 176 dataset = torchvision.datasets.CIFAR10(root="CIFAR10_Dataset", train=train, transform=transform, download=download) 177 178 if debug_subset_size is not None: 179 dataset = torch.utils.data.Subset(dataset, range(0, debug_subset_size)) # take only one batch 180 dataset.classes = dataset.dataset.classes 181 dataset.targets = dataset.dataset.targets 182 183 return dataset
120 - warning: dangerous-default-value 140 - error: no-member 119 - refactor: too-few-public-methods 162 - error: no-member 170 - error: no-member 176 - error: possibly-used-before-assignment 1 - warning: unused-import 1 - warning: unused-import 10 - warning: unused-import
1 import os 2 import numpy as np 3 import torch 4 5 def worker_init_fn(worker_id): 6 np.random.seed(np.random.get_state()[1][0] + worker_id) 7 8 class Save_Handle(object): 9 """handle the number of """ 10 def __init__(self, max_num): 11 self.save_list = [] 12 self.max_num = max_num 13 14 def append(self, save_path): 15 if len(self.save_list) < self.max_num: 16 self.save_list.append(save_path) 17 else: 18 remove_path = self.save_list[0] 19 del self.save_list[0] 20 self.save_list.append(save_path) 21 if os.path.exists(remove_path): 22 os.remove(remove_path) 23 24 25 class AverageMeter(object): 26 """Computes and stores the average and current value""" 27 def __init__(self): 28 self.reset() 29 30 def reset(self): 31 self.val = 0 32 self.avg = 0 33 self.sum = 0 34 self.count = 0 35 36 def update(self, val, n=1): 37 self.val = val 38 self.sum += val * n 39 self.count += n 40 self.avg = 1.0 * self.sum / self.count 41 42 def get_avg(self): 43 return self.avg 44 45 def get_count(self): 46 return self.count 47 48 ## cannot use in training 49 @torch.no_grad() 50 def accuracy(meter, output1, output2, target): 51 """Computes the accuracy overthe predictions""" 52 53 for logit in [output1, output2]: 54 corrects = (torch.max(logit, 1)[1].data == target.squeeze().long().data).sum() 55 accu = float(corrects) / float(target.size()[0]) 56 meter.update(accu) 57 58 return meter
8 - refactor: useless-object-inheritance 8 - refactor: too-few-public-methods 25 - refactor: useless-object-inheritance 37 - warning: attribute-defined-outside-init 40 - warning: attribute-defined-outside-init
1 # in : original image 2 # out : cropped img1 (anchor) 3 # cropped img2 (compete) 4 # target (positive img1 - img2 : 1, negative img1 - img2 : 0) 5 6 import os 7 from glob import glob 8 import random 9 10 import numpy as np 11 from PIL import Image 12 from PIL import ImageFilter 13 14 import torch 15 import torch.utils.data as data 16 import torchvision.transforms.functional as F 17 from torchvision import transforms 18 19 random.seed(765) 20 21 def divide_patches(img, row, col): 22 patche_size_w = int(img.size[0] / col) 23 patche_size_h = int(img.size[1] / row) 24 25 patches = [] 26 for cnt_i, i in enumerate(range(0, img.size[1], patche_size_h)): 27 if cnt_i == row: 28 break 29 for cnt_j, j in enumerate(range(0, img.size[0], patche_size_w)): 30 if cnt_j == col: 31 break 32 box = (j, i, j+patche_size_w, i+patche_size_h) 33 patches.append(img.crop(box)) 34 35 return patches 36 37 def create_pos_pair(patches): 38 idx = random.randint(0, len(patches)-1) 39 img1 = patches[idx] 40 img2 = patches[idx] 41 target = np.array([1]) 42 return img1, img2, target 43 44 def create_neg_pair(patches): 45 idx = random.sample(range(0, len(patches)-1), k=2) 46 img1 = patches[idx[0]] 47 img2 = patches[idx[1]] 48 target = np.array([0]) 49 return img1, img2, target 50 51 def random_crop(im_h, im_w, crop_h, crop_w): 52 res_h = im_h - crop_h 53 res_w = im_w - crop_w 54 i = random.randint(0, res_h) 55 j = random.randint(0, res_w) 56 return i, j, crop_h, crop_w 57 58 class GaussianBlur(object): 59 """Gaussian blur augmentation in SimCLR https://arxiv.org/abs/2002.05709""" 60 61 def __init__(self, sigma=[.1, 2.]): 62 self.sigma = sigma 63 64 def __call__(self, x): 65 sigma = random.uniform(self.sigma[0], self.sigma[1]) 66 x = x.filter(ImageFilter.GaussianBlur(radius=sigma)) 67 return x 68 69 class PosNegSpatialDataset(data.Dataset): 70 # divide_num : 3 -> 3x3= 9 paches 71 def __init__(self, data_path, crop_size, divide_num=(3,3), aug=True): 72 self.data_path = data_path 73 self.im_list = sorted(glob(os.path.join(self.data_path, '*.jpg'))) 74 75 self.c_size = crop_size 76 self.d_row = divide_num[0] 77 self.d_col = divide_num[1] 78 79 if aug: 80 self.aug = transforms.Compose([ 81 transforms.CenterCrop(self.c_size), 82 transforms.RandomApply([transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.8), 83 transforms.RandomGrayscale(p=0.2), 84 transforms.RandomApply([GaussianBlur([.1, 2.])], p=0.5), 85 transforms.RandomHorizontalFlip() 86 ]) 87 else: 88 self.aug = transforms.CenterCrop(self.c_size) 89 90 self.trans = transforms.Compose([ 91 transforms.ToTensor(), 92 transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) 93 ]) 94 95 def __len__(self): 96 return len(self.im_list) 97 98 def __getitem__(self, index): 99 img_path = self.im_list[index] 100 img = Image.open(img_path).convert('RGB') 101 patches = divide_patches(img, self.d_row, self.d_col) 102 103 if random.random() > 0.5: 104 img1, img2, target = create_pos_pair(patches) 105 else: 106 img1, img2, target = create_neg_pair(patches) 107 108 img1 = self.aug(img1) 109 img2 = self.aug(img2) 110 111 target = torch.from_numpy(target).long() 112 113 img1 = self.trans(img1) 114 img2 = self.trans(img2) 115 116 return img1, img2, target, None 117 118 class SpatialDataset(data.Dataset): 119 # divide_num : 3 -> 3x3= 9 paches 120 def __init__(self, phase, data_path, crop_size, divide_num=(3,3), aug=True): 121 122 with open(os.path.join(data_path, '{}.txt'.format(phase)), 'r') as f: 123 im_list = f.readlines() 124 125 self.im_list = [im_name.replace('\n', '') for im_name in im_list] 126 127 self.c_size = crop_size 128 self.d_row = divide_num[0] 129 self.d_col = divide_num[1] 130 131 self.trans = transforms.Compose([ 132 transforms.RandomApply([transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.8), 133 transforms.RandomGrayscale(p=0.2), 134 transforms.RandomApply([GaussianBlur([.1, 2.])], p=0.5), 135 transforms.RandomHorizontalFlip(), 136 transforms.ToTensor(), 137 transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) 138 ]) 139 140 141 def __len__(self): 142 return len(self.im_list) 143 144 def __getitem__(self, index): 145 img_path = self.im_list[index] 146 img = Image.open(img_path).convert('RGB') 147 patches = divide_patches(img, self.d_row, self.d_col) 148 149 img1, img2, label = create_pos_pair(patches) 150 151 assert img1.size == img2.size 152 wd, ht = img1.size 153 i, j, h, w = random_crop(ht, wd, self.c_size, self.c_size) 154 img1 = F.crop(img1, i, j, h, w) 155 img2 = F.crop(img2, i, j, h, w) 156 157 img1 = self.trans(img1) 158 img2 = self.trans(img2) 159 160 imgs = (img1, img2) 161 162 return imgs, label
15 - refactor: consider-using-from-import 58 - refactor: useless-object-inheritance 61 - warning: dangerous-default-value 58 - refactor: too-few-public-methods 120 - refactor: too-many-arguments 120 - refactor: too-many-positional-arguments 122 - warning: unspecified-encoding 120 - warning: unused-argument
1 import torch 2 import torch.nn as nn 3 import torch.nn.functional as F 4 5 class L2ContrastiveLoss(nn.Module): 6 """ 7 Contrastive loss 8 Takes embeddings of two samples and a target label == 1 if samples are from the same class and label == 0 otherwise 9 Args : 10 output1 & output2 : [N, dim] 11 target : [N] 12 """ 13 14 def __init__(self, margin=1.0): 15 super().__init__() 16 self.margin = margin 17 self.eps = 1e-9 18 19 def forward(self, output1, output2, target, size_average=True): 20 target = target.squeeze() 21 distances = (output2 - output1).pow(2).sum(1) # squared distances 22 losses = 0.5 * (target.float() * distances + 23 (1 + -1 * target).float() * F.relu(self.margin - (distances + self.eps).sqrt()).pow(2)) 24 return losses.mean() if size_average else losses.sum()
2 - refactor: consider-using-from-import 1 - warning: unused-import
1 import torch 2 import torch.nn as nn 3 4 class SiameseNetwork(nn.Module): 5 def __init__(self, model, pretrained=False, simple_model=False): 6 super(SiameseNetwork, self).__init__() 7 self.simple_model = simple_model 8 if simple_model: 9 self.features = nn.Sequential(nn.Conv2d(3, 32, 5), nn.PReLU(), 10 nn.MaxPool2d(2, stride=2), 11 nn.Conv2d(32, 64, 5), nn.PReLU(), 12 nn.MaxPool2d(2, stride=2), 13 nn.Conv2d(64, 64, 5), nn.PReLU(), 14 nn.MaxPool2d(2, stride=2)) 15 16 self.classifier = nn.Sequential(nn.Linear(64 * 4 * 4, 256), 17 nn.PReLU(), 18 nn.Linear(256, 256), 19 nn.PReLU(), 20 nn.Linear(256, 2)) 21 22 else: 23 if pretrained: 24 self.encoder = model(pretrained=True) 25 self.encoder.classifier = nn.Sequential(*[self.encoder.classifier[i] for i in range(6)]) 26 self.encoder.classifier.add_module('out', nn.Linear(4096, 2)) 27 else: 28 self.encoder = model(num_classes=2) 29 30 def forward_once(self, x): 31 if self.simple_model: 32 output = self.features(x) 33 output = output.view(output.size()[0], -1) 34 output = self.classifier(output) 35 36 else: 37 output = self.encoder(x) 38 39 return output 40 41 def forward(self, input1, input2): 42 output1 = self.forward_once(input1) 43 output2 = self.forward_once(input2) 44 return output1, output2
2 - refactor: consider-using-from-import 6 - refactor: super-with-arguments 1 - warning: unused-import
1 import os 2 import argparse 3 import logging 4 import numpy as np 5 6 import torch 7 import torch.nn as nn 8 import torch.nn.functional as F 9 import torch.optim as optim 10 from torch.optim import lr_scheduler 11 from torch.utils.data import DataLoader 12 import torchvision.models as models 13 14 from datasets.cifar10 import get_simsiam_dataset 15 from models.create_linear_eval_model import LinearEvalModel 16 from utils.visualizer import AccLossGraphPloter 17 from utils.logger import setlogger 18 19 args = None 20 21 def parse_args(): 22 parser = argparse.ArgumentParser(description='Test ') 23 parser.add_argument('--save-dir', default='/mnt/hdd02/contrastive-learn/0113-193048', 24 help='model directory') 25 parser.add_argument('--device', default='0', help='assign device') 26 parser.add_argument('--arch', default='vgg19', help='model architecture') 27 28 parser.add_argument('--max-epoch', default=100, type=int, help='train epoch') 29 parser.add_argument('--crop-size', default=224, type=int, help='input size') 30 parser.add_argument('--batch-size', default=512, type=int, help='input size') 31 parser.add_argument('--lr', default=1e-1, type=float, help='learning rate') 32 parser.add_argument('--momentum', default=0.9, type=float, help='momentum') 33 34 args = parser.parse_args() 35 return args 36 37 if __name__ == '__main__': 38 args = parse_args() 39 os.environ['CUDA_VISIBLE_DEVICES'] = args.device.strip() # set vis gpu 40 plotter = AccLossGraphPloter(args.save_dir) 41 setlogger(os.path.join(args.save_dir, 'eval.log')) # set logger 42 43 datasets = {x: get_simsiam_dataset(args, x) for x in ['linear_train', 'linear_val']} 44 45 dataloaders = {x: DataLoader(datasets[x], 46 batch_size=(args.batch_size), 47 shuffle=(True if x == 'linear_train' else False), 48 num_workers=8, 49 pin_memory=(True if x == 'linear_train' else False)) for x in ['linear_train', 'linear_val']} 50 51 device = torch.device('cuda') 52 53 model = LinearEvalModel(arch=args.arch) 54 model.weight_init(args.save_dir, device, args.arch) ## initialize & freeze 55 56 criterion = nn.CrossEntropyLoss() 57 58 optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum) 59 scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[40, 60, 80], gamma=0.1) 60 61 ## Training & Test Roop 62 model.to(device) 63 for epoch in range(args.max_epoch): 64 model.train() 65 losses, acc, step, total = 0., 0., 0., 0. 66 for data, target in dataloaders['linear_train']: 67 data, target = data.to(device), target.to(device) 68 69 logits = model(data) 70 71 optimizer.zero_grad() 72 loss = criterion(logits, target) 73 loss.backward() 74 losses += loss.item() 75 optimizer.step() 76 scheduler.step() 77 78 pred = F.softmax(logits, dim=-1).max(-1)[1] 79 acc += pred.eq(target).sum().item() 80 81 step += 1 82 total += target.size(0) 83 84 tr_loss = losses / step 85 tr_acc = acc / total * 100. 86 logging.info('[Train Epoch: {0:2d}], loss: {1:.3f}, acc: {2:.3f}'.format(epoch, tr_loss, tr_acc)) 87 88 model.eval() 89 losses, acc, step, total = 0., 0., 0., 0. 90 with torch.no_grad(): 91 for data, target in dataloaders['linear_val']: 92 data, target = data.to(device), target.to(device) 93 94 logits = model(data) 95 loss = criterion(logits, target) 96 losses += loss.item() 97 98 pred = F.softmax(logits, dim=-1).max(-1)[1] 99 acc += pred.eq(target).sum().item() 100 101 step += 1 102 total += target.size(0) 103 104 vl_loss = losses / step 105 vl_acc = acc / total * 100. 106 logging.info('[Test Epoch: {0:2d}], loss: {1:.3f} acc: {2:.2f}'.format(epoch, vl_loss, vl_acc)) 107 108 plotter(epoch, tr_acc, vl_acc, tr_loss, vl_loss, args.arch)
7 - refactor: consider-using-from-import 9 - refactor: consider-using-from-import 12 - refactor: consider-using-from-import 14 - error: no-name-in-module 34 - warning: redefined-outer-name 47 - refactor: simplifiable-if-expression 49 - refactor: simplifiable-if-expression 4 - warning: unused-import 12 - warning: unused-import
1 from utils.contrastive_trainer import CoTrainer 2 from utils.simsiam_trainer import SimSiamTrainer 3 import argparse 4 import os 5 import math 6 import torch 7 args = None 8 9 def parse_args(): 10 parser = argparse.ArgumentParser(description='Train ') 11 parser.add_argument('--data-dir', default='/mnt/hdd02/process-ucf', 12 help='training data directory') 13 parser.add_argument('--save-dir', default='D:/exp_results', 14 help='directory to save models.') 15 parser.add_argument('--cifar10', action='store_true', 16 help='use cifar10 dataset') 17 18 parser.add_argument('--SimSiam', action='store_true', 19 help='try Simple Siamese Net') 20 21 parser.add_argument('--arch', type=str, default='vgg19', 22 help='the model architecture [vgg19, vgg19_bn, resnet18]') 23 parser.add_argument('--pattern-feature', type=str, default='conv-512x1x1', 24 help='the feature to contrast [conv-512x1x1, fc-4096]') 25 parser.add_argument('--projection', action='store_true', 26 help='use MLP projection') 27 parser.add_argument('--prediction', action='store_true', 28 help='use MLP prediction') 29 parser.add_argument('--mlp-bn', action='store_true', 30 help='use MLP Batch Normalization') 31 32 parser.add_argument('--lr', type=float, default=1e-2, 33 help='the initial learning rate') 34 parser.add_argument('--weight-decay', type=float, default=1e-4, 35 help='the weight decay') 36 parser.add_argument('--momentum', type=float, default=0.9, 37 help='the momentum') 38 39 parser.add_argument('--div-row', type=int, default=3, 40 help='one side`s number of pathes') 41 parser.add_argument('--div-col', type=int, default=3, 42 help='one side`s number of pathes') 43 parser.add_argument('--aug', action='store_true', 44 help='the weight decay') 45 parser.add_argument('--margin', type=float, default=1.0, 46 help='the margin of loss function') 47 48 parser.add_argument('--resume', default='', 49 help='the path of resume training model') 50 parser.add_argument('--max-model-num', type=int, default=30, 51 help='max models num to save ') 52 parser.add_argument('--check_point', type=int, default=100, 53 help='milestone of save model checkpoint') 54 55 parser.add_argument('--max-epoch', type=int, default=300, 56 help='max training epoch') 57 parser.add_argument('--val-epoch', type=int, default=10, 58 help='the num of steps to log training information') 59 parser.add_argument('--val-start', type=int, default=0, 60 help='the epoch start to val') 61 62 parser.add_argument('--batch-size', type=int, default=8, 63 help='train batch size') 64 parser.add_argument('--device', default='0', help='assign device') 65 parser.add_argument('--num-workers', type=int, default=8, 66 help='the num of training process') 67 68 parser.add_argument('--crop-size', type=int, default=224, 69 help='the crop size of the train image') 70 71 parser.add_argument('--visual-num', type=int, default=4, 72 help='the number of visualize images') 73 74 args = parser.parse_args() 75 return args 76 77 if __name__ == '__main__': 78 args = parse_args() 79 torch.backends.cudnn.benchmark = True 80 os.environ['CUDA_VISIBLE_DEVICES'] = args.device.strip('-') # set vis gpu 81 if args.SimSiam: 82 trainer = SimSiamTrainer(args) 83 else: 84 trainer = CoTrainer(args) 85 trainer.setup() 86 trainer.train()
74 - warning: redefined-outer-name 5 - warning: unused-import
1 import os 2 from glob import glob 3 4 import numpy as np 5 import argparse 6 7 def parse_args(): 8 parser = argparse.ArgumentParser(description='Test ') 9 parser.add_argument('--data-dir', default='/mnt/hdd02/shibuya_scramble', 10 help='original data directory') 11 args = parser.parse_args() 12 return args 13 14 if __name__ == '__main__': 15 args = parse_args() 16 17 ## Random Train-Val split 18 19 im_list = sorted(glob(os.path.join(args.data_dir, '*.jpg'))) 20 im_list = [im_name for im_name in im_list] 21 22 tr_im_list = list(np.random.choice(im_list, size=int(len(im_list)*0.8), replace=False)) 23 vl_im_list = list(set(im_list) - set(tr_im_list)) 24 25 for phase in ['train', 'val']: 26 with open(os.path.join(args.data_dir, './{}.txt'.format(phase)), mode='w') as f: 27 if phase == 'train': 28 f.write('\n'.join(tr_im_list)) 29 elif phase == 'val': 30 f.write('\n'.join(vl_im_list))
11 - warning: redefined-outer-name 20 - refactor: unnecessary-comprehension 26 - warning: unspecified-encoding
1 import os 2 import sys 3 import time 4 import logging 5 6 import numpy as np 7 8 import torch 9 from torch import optim 10 from torch.optim import lr_scheduler 11 from torch.utils.data import DataLoader 12 import torchvision.models as models 13 import torchvision.datasets as datasets 14 15 from models.siamese_net import SiameseNetwork 16 from models.l2_contrastive_loss import L2ContrastiveLoss 17 from utils.trainer import Trainer 18 from utils.helper import Save_Handle, AverageMeter, worker_init_fn 19 from utils.visualizer import ImageDisplayer, EmbeddingDisplayer 20 from datasets.spatial import SpatialDataset 21 from datasets.cifar10 import PosNegCifar10 22 23 class CoTrainer(Trainer): 24 def setup(self): 25 """initialize the datasets, model, loss and optimizer""" 26 args = self.args 27 self.vis = ImageDisplayer(args, self.save_dir) 28 self.emb = EmbeddingDisplayer(args, self.save_dir) 29 30 if torch.cuda.is_available(): 31 self.device = torch.device("cuda") 32 self.device_count = torch.cuda.device_count() 33 logging.info('using {} gpus'.format(self.device_count)) 34 else: 35 raise Exception("gpu is not available") 36 37 if args.cifar10: 38 # Download and create datasets 39 or_train = datasets.CIFAR10(root="CIFAR10_Dataset", train=True, transform=None, download=True) 40 or_val = datasets.CIFAR10(root="CIFAR10_Dataset", train=False, transform=None, download=True) 41 42 # splits CIFAR10 into two streams 43 self.datasets = {x: PosNegCifar10((or_train if x == 'train' else or_val), 44 phase=x) for x in ['train', 'val']} 45 else: 46 self.datasets = {x: SpatialDataset(os.path.join(args.data_dir, x), 47 args.crop_size, 48 args.div_num, 49 args.aug) for x in ['train', 'val']} 50 51 self.dataloaders = {x: DataLoader(self.datasets[x], 52 batch_size=args.batch_size, 53 shuffle=(True if x == 'train' else False), 54 num_workers=args.num_workers*self.device_count, 55 pin_memory=(True if x == 'train' else False), 56 worker_init_fn=worker_init_fn) for x in ['train', 'val']} 57 58 # Define model, loss, optim 59 self.model = SiameseNetwork(models.__dict__[args.arch], pattern_feature = args.pattern_feature) 60 self.model.to(self.device) 61 62 self.criterion = L2ContrastiveLoss(args.margin) 63 self.criterion.to(self.device) 64 65 self.optimizer = optim.SGD(self.model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay) 66 67 self.scheduler = lr_scheduler.MultiStepLR(self.optimizer, milestones=[80, 120, 160, 200, 250], gamma=0.1) 68 69 self.start_epoch = 0 70 self.best_loss = np.inf 71 if args.resume: 72 suf = args.resume.rsplit('.', 1)[-1] 73 if suf == 'tar': 74 checkpoint = torch.load(args.resume, self.device) 75 self.model.load_state_dict(checkpoint['model_state_dict']) 76 self.optimizer.load_state_dict(checkpoint['optimizer_state_dict']) 77 self.start_epoch = checkpoint['epoch'] + 1 78 elif suf == 'pth': 79 self.model.load_state_dict(torch.load(args.resume, self.device)) 80 81 self.save_list = Save_Handle(max_num=args.max_model_num) 82 83 def train(self): 84 """training process""" 85 args = self.args 86 for epoch in range(self.start_epoch, args.max_epoch): 87 logging.info('-'*5 + 'Epoch {}/{}'.format(epoch, args.max_epoch - 1) + '-'*5) 88 self.epoch = epoch 89 self.train_epoch(epoch) 90 if epoch % args.val_epoch == 0 and epoch >= args.val_start: 91 self.val_epoch(epoch) 92 93 def train_epoch(self, epoch): 94 epoch_loss = AverageMeter() 95 epoch_start = time.time() 96 self.model.train() # Set model to training mode 97 98 for step, (input1, input2, target, label) in enumerate(self.dataloaders['train']): 99 input1 = input1.to(self.device) 100 input2 = input2.to(self.device) 101 target = target.to(self.device) 102 103 with torch.set_grad_enabled(True): 104 output1, output2 = self.model(input1, input2) 105 loss = self.criterion(output1, output2, target) 106 epoch_loss.update(loss.item(), input1.size(0)) 107 self.optimizer.zero_grad() 108 loss.backward() 109 self.optimizer.step() 110 self.scheduler.step() 111 112 # visualize 113 if step == 0: 114 self.vis(epoch, 'train', input1, input2, target) 115 self.emb(output1, label, epoch, 'train') 116 117 logging.info('Epoch {} Train, Loss: {:.5f}, Cost {:.1f} sec' 118 .format(self.epoch, epoch_loss.get_avg(), time.time()-epoch_start)) 119 120 model_state_dic = self.model.state_dict() 121 save_path = os.path.join(self.save_dir, '{}_ckpt.tar'.format(self.epoch)) 122 torch.save({ 123 'epoch': self.epoch, 124 'optimizer_state_dict': self.optimizer.state_dict(), 125 'model_state_dict': model_state_dic 126 }, save_path) 127 self.save_list.append(save_path) # control the number of saved models 128 129 def val_epoch(self, epoch): 130 epoch_start = time.time() 131 self.model.eval() # Set model to evaluate mode 132 epoch_loss = AverageMeter() 133 134 for step, (input1, input2, target, label) in enumerate(self.dataloaders['val']): 135 input1 = input1.to(self.device) 136 input2 = input2.to(self.device) 137 target = target.to(self.device) 138 with torch.set_grad_enabled(False): 139 output1, output2 = self.model(input1, input2) 140 loss = self.criterion(output1, output2, target) 141 epoch_loss.update(loss.item(), input1.size(0)) 142 143 # visualize 144 if step == 0: 145 self.vis(epoch, 'val', input1, input2, target) 146 self.emb(output1, label, epoch, 'val') 147 148 logging.info('Epoch {} Val, Loss: {:.5f}, Cost {:.1f} sec' 149 .format(self.epoch, epoch_loss.get_avg(), time.time()-epoch_start)) 150 151 model_state_dic = self.model.state_dict() 152 if self.best_loss > epoch_loss.get_avg(): 153 self.best_loss = epoch_loss.get_avg() 154 logging.info("save min loss {:.2f} model epoch {}".format(self.best_loss, self.epoch)) 155 torch.save(model_state_dic, os.path.join(self.save_dir, 'best_model.pth'))
12 - refactor: consider-using-from-import 13 - refactor: consider-using-from-import 20 - error: no-name-in-module 21 - error: no-name-in-module 23 - refactor: too-many-instance-attributes 33 - warning: logging-format-interpolation 35 - warning: broad-exception-raised 53 - refactor: simplifiable-if-expression 55 - refactor: simplifiable-if-expression 87 - warning: logging-not-lazy 27 - warning: attribute-defined-outside-init 28 - warning: attribute-defined-outside-init 31 - warning: attribute-defined-outside-init 32 - warning: attribute-defined-outside-init 43 - warning: attribute-defined-outside-init 46 - warning: attribute-defined-outside-init 51 - warning: attribute-defined-outside-init 59 - warning: attribute-defined-outside-init 62 - warning: attribute-defined-outside-init 65 - warning: attribute-defined-outside-init 67 - warning: attribute-defined-outside-init 69 - warning: attribute-defined-outside-init 77 - warning: attribute-defined-outside-init 70 - warning: attribute-defined-outside-init 153 - warning: attribute-defined-outside-init 81 - warning: attribute-defined-outside-init 88 - warning: attribute-defined-outside-init 2 - warning: unused-import
1 import os 2 import numpy as np 3 from PIL import Image 4 5 import torch 6 7 import matplotlib 8 matplotlib.use('Agg') 9 from matplotlib import pyplot as plt 10 11 ### torch テンソル(バッチ)を受け取って、args.div_numに応じて、描画する 12 13 mean = np.array([0.485, 0.456, 0.406]) 14 std = np.array([0.229, 0.224, 0.225]) 15 16 def invnorm(img, N): 17 img = img[N,:,:,:].to('cpu').detach().numpy().copy() 18 img = img.transpose(1,2,0) 19 img = img*std+mean 20 return img 21 22 class ImageDisplayer: 23 def __init__(self, args, save_fir): 24 # N is number of batch to display 25 self.args = args 26 self.save_dir = save_fir 27 self.N = args.visual_num 28 29 @torch.no_grad() 30 def __call__(self, epoch, prefix, img1, img2, target): 31 imgs1 = [] 32 imgs2 = [] 33 targets = [] 34 for n in range(self.N): 35 imgs1.append(invnorm(img1,n)) 36 imgs2.append(invnorm(img2,n)) 37 if target is not None: 38 targets.append(target[n].item()) 39 else: 40 targets = None 41 42 self.display_images(epoch, prefix, imgs1, imgs2, targets) 43 44 def display_images(self, epoch, prefix, images1: [Image], images2: [Image], targets, 45 columns=2, width=8, height=8, label_wrap_length=50, label_font_size=8): 46 47 if not (images1 and images2): 48 print("No images to display.") 49 return 50 51 height = max(height, int(len(images1)/columns) * height) 52 plt.figure(figsize=(width, height)) 53 i = 1 54 if targets is not None: 55 for (im1, im2, tar) in zip(images1, images2, targets): 56 im1 = Image.fromarray(np.uint8(im1*255)) 57 im2 = Image.fromarray(np.uint8(im2*255)) 58 59 plt.subplot(self.N, 2, i) 60 plt.title(tar, fontsize=20) 61 plt.imshow(im1) 62 i += 1 63 plt.subplot(self.N, 2, i) 64 plt.title(tar, fontsize=20) 65 plt.imshow(im2) 66 i += 1 67 else: 68 for (im1, im2) in zip(images1, images2): 69 im1 = Image.fromarray(np.uint8(im1*255)) 70 im2 = Image.fromarray(np.uint8(im2*255)) 71 72 plt.subplot(self.N, 2, i) 73 plt.imshow(im1) 74 i += 1 75 plt.subplot(self.N, 2, i) 76 plt.imshow(im2) 77 i += 1 78 79 plt.tight_layout() 80 output_img_name = 'imgs_{}_{}.png'.format(prefix, epoch) 81 plt.savefig(os.path.join(self.save_dir, 'images', output_img_name)) 82 plt.close() 83 84 class EmbeddingDisplayer: 85 def __init__(self, args, save_fir): 86 87 self.args = args 88 self.save_dir = save_fir 89 self.cifar10_classes = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] 90 self.colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', 91 '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', 92 '#bcbd22', '#17becf'] 93 94 @torch.no_grad() 95 def __call__(self, embeddings, targets, epoch, prefix, xlim=None, ylim=None): 96 embeddings = embeddings.to('cpu').detach().numpy().copy() 97 targets = targets.to('cpu').detach().numpy().copy() 98 plt.figure(figsize=(10,10)) 99 for i in range(10): 100 inds = np.where(targets==i)[0] 101 plt.scatter(embeddings[inds,0], embeddings[inds,1], alpha=0.5, color=self.colors[i]) 102 if xlim: 103 plt.xlim(xlim[0], xlim[1]) 104 if ylim: 105 plt.ylim(ylim[0], ylim[1]) 106 plt.legend(self.cifar10_classes) 107 output_img_name = 'emb_{}_{}.png'.format(prefix, epoch) 108 plt.savefig(os.path.join(self.save_dir, 'images', output_img_name)) 109 plt.close() 110 111 class LossGraphPloter: 112 def __init__(self, save_fir): 113 self.save_dir = save_fir 114 self.epochs = [] 115 self.losses = [] 116 117 def __call__(self, epoch, loss, prefix): 118 self.epochs.append(epoch) 119 self.losses.append(loss) 120 output_img_name = '{}_loss.svg'.format(prefix) 121 122 plt.plot(self.epochs, self.losses) 123 plt.title('Loss') 124 plt.savefig(os.path.join(self.save_dir, 'images', output_img_name)) 125 plt.close() 126 127 class AccLossGraphPloter: 128 def __init__(self, save_fir): 129 self.save_dir = save_fir 130 self.tr_accs = [] 131 self.vl_accs = [] 132 self.tr_losses = [] 133 self.vl_losses = [] 134 self.epochs = [] 135 136 def __call__(self, epoch, tr_acc, vl_acc, tr_loss, vl_loss, prefix): 137 self.tr_accs.append(tr_acc) 138 self.vl_accs.append(vl_acc) 139 self.tr_losses.append(tr_loss) 140 self.vl_losses.append(vl_loss) 141 142 self.epochs.append(epoch) 143 output_img_name = '{}_eval.svg'.format(prefix) 144 145 fig, (axL, axR) = plt.subplots(ncols=2, figsize=(10,4)) 146 147 axL.plot(self.epochs, self.tr_accs, label='train') 148 axL.plot(self.epochs, self.vl_accs, label='val') 149 axL.set_title('Top-1 Accuracy') 150 axL.set_xlabel('epoch') 151 axL.set_ylabel('acc [%]') 152 axL.legend(loc="lower right") 153 154 axR.plot(self.epochs, self.tr_losses, label='train') 155 axR.plot(self.epochs, self.vl_losses, label='val') 156 axR.set_title('Loss') 157 axR.set_xlabel('epoch') 158 axR.set_ylabel('loss') 159 axR.legend(loc="upper right") 160 161 plt.savefig(os.path.join(self.save_dir, 'images', output_img_name)) 162 plt.close()
30 - refactor: too-many-arguments 30 - refactor: too-many-positional-arguments 44 - refactor: too-many-arguments 44 - refactor: too-many-positional-arguments 44 - refactor: too-many-locals 45 - warning: unused-argument 45 - warning: unused-argument 95 - refactor: too-many-arguments 95 - refactor: too-many-positional-arguments 84 - refactor: too-few-public-methods 111 - refactor: too-few-public-methods 136 - refactor: too-many-arguments 136 - refactor: too-many-positional-arguments 145 - warning: unused-variable 127 - refactor: too-few-public-methods
1 import torch 2 import torch.nn as nn 3 import torch.nn.functional as F 4 5 6 def D(p, z, version='simplified'): # negative cosine similarity 7 if version == 'original': 8 z = z.detach() # stop gradient 9 p = F.normalize(p, dim=1) # l2-normalize 10 z = F.normalize(z, dim=1) # l2-normalize 11 return -(p*z).sum(dim=1).mean() 12 13 elif version == 'simplified': 14 return - F.cosine_similarity(p, z.detach(), dim=-1).mean() 15 else: 16 raise Exception 17 18 class CosineContrastiveLoss(nn.Module): 19 def __init__(self): 20 super().__init__() 21 22 def forward(self, z1, z2, p1, p2): 23 if z1.dim() != 2: 24 z1 = z1.squeeze() 25 if z2.dim() != 2: 26 z2 = z2.squeeze() 27 28 if p1 is not None or p2 is not None: 29 loss = D(p1, z2) / 2 + D(p2, z1) / 2 30 else: 31 loss = D(z1, z2) 32 33 return loss
2 - refactor: consider-using-from-import 7 - refactor: no-else-return 14 - error: not-callable 16 - warning: broad-exception-raised 1 - warning: unused-import
1 import torch 2 import torchvision 3 from PIL import Image 4 from matplotlib import pyplot as plt 5 import random 6 7 model = torchvision.models.__dict__['vgg19']() 8 print(model) 9 10 img = torch.rand(1,3,256,256) 11 out = model.features(img) 12 print(out.size()) 13 14 import torchvision.transforms as trans 15 16 crop = trans.RandomCrop(224) 17 img = torch.rand(1,3,256,256) 18 19 out = crop(img) 20 print(out.size()) 21 22 def divide_patches(img, row, col): 23 patche_size_w = int(img.size[0] / col) 24 patche_size_h = int(img.size[1] / row) 25 26 patches = [] 27 for cnt_i, i in enumerate(range(0, img.size[1], patche_size_h)): 28 if cnt_i == row: 29 break 30 for cnt_j, j in enumerate(range(0, img.size[0], patche_size_w)): 31 if cnt_j == col: 32 break 33 box = (j, i, j+patche_size_w, i+patche_size_h) 34 patches.append(img.crop(box)) 35 36 return patches 37 38 def display_images( 39 images: [Image], 40 row=3, col=3, width=10, height=4, max_images=15, 41 label_wrap_length=50, label_font_size=8): 42 43 if not images: 44 print("No images to display.") 45 return 46 47 if len(images) > max_images: 48 print(f"Showing {max_images} images of {len(images)}:") 49 images=images[0:max_images] 50 51 height = max(height, int(len(images)/col) * height) 52 plt.figure(figsize=(width, height)) 53 for i, image in enumerate(images): 54 55 plt.subplot(row, col, i + 1) 56 plt.imshow(image) 57 58 plt.show() 59 60 image = Image.open("/mnt/hdd02/shibuya_scramble/image_000294.jpg").convert("RGB") 61 62 p = divide_patches(image, 2, 3) 63 print(len(p)) 64 65 display_images(p, row=2, col=3) 66 67 def create_pos_pair(patches): 68 idx = random.randint(0, len(patches)-1) 69 img1 = patches[idx] 70 img2 = patches[idx] 71 label = 1 72 return img1, img2, label 73 74 def create_neg_pair(patches): 75 idx = random.sample(range(0, len(patches)-1), k=2) 76 img1 = patches[idx[0]] 77 img2 = patches[idx[1]] 78 label = 0 79 return img1, img2, label 80 81 def get_img(img): 82 patches = divide_patches(img, 3, 2) 83 84 if random.random() > 0.5: 85 img1, img2, label = create_pos_pair(patches) 86 else: 87 img1, img2, label = create_neg_pair(patches) 88 89 return img1, img2, label 90 91 res = [] 92 for i in range(10): 93 img1, img2, label = get_img(image) 94 flag = False 95 if img1 == img2: 96 flag = True 97 res.append([flag, label]) 98 99 print(res)
22 - warning: redefined-outer-name 27 - warning: redefined-outer-name 38 - refactor: too-many-arguments 38 - refactor: too-many-positional-arguments 53 - warning: redefined-outer-name 53 - warning: redefined-outer-name 41 - warning: unused-argument 41 - warning: unused-argument 69 - warning: redefined-outer-name 70 - warning: redefined-outer-name 71 - warning: redefined-outer-name 76 - warning: redefined-outer-name 77 - warning: redefined-outer-name 78 - warning: redefined-outer-name 81 - warning: redefined-outer-name 85 - warning: redefined-outer-name 85 - warning: redefined-outer-name 85 - warning: redefined-outer-name
1 functionalities = { 2 'Login': 'Login page', 3 'Feedback': 'This feedback form', 4 'Todo': 'To do module', 5 'Projects': 'Anything related to projects', 6 'Code': 'Code editor', 7 'Forum': 'The forum', 8 'Profile': 'Your profile page', 9 }
Clean Code: No Issues Detected
1 from flask_testing import TestCase 2 3 from models.shared import db 4 from models.model import User, Task, Project, Question, Response, Questionnaire 5 from turing import create_app 6 7 import unittest 8 9 10 class MyTest(TestCase): 11 def create_app(self): 12 config = { 13 'SQLALCHEMY_DATABASE_URI': 'sqlite:///test.db', 14 'TESTING': True, 15 'SECRET_KEY': 'secret', 16 'SQLALCHEMY_TRACK_MODIFICATIONS': True 17 } 18 return create_app(config) 19 20 def setUp(self): 21 db.create_all() 22 23 def tearDown(self): 24 db.session.remove() 25 db.drop_all() 26 27 def test_nothing(self): 28 assert True 29 30 def test_user(self): 31 user = User(email='em', name='us', password='pass') 32 db.session.add(user) 33 db.session.commit() 34 assert user in db.session 35 36 def test_project(self): 37 project = Project(name='n',description='desc') 38 db.session.add(project) 39 db.session.commit() 40 assert project in db.session 41 42 def test_task(self): 43 task = Task(name='n', description='desc') 44 db.session.add(task) 45 db.session.commit() 46 assert task in db.session 47 48 def test_usr_add_tsk2_prj(self): 49 user = User(email='em', name='us', password='pass') 50 db.session.add(user) 51 db.session.commit() 52 53 project = Project(name='n',description='desc') 54 db.session.add(project) 55 user.project.append(project) 56 db.session.commit() 57 58 project: Project= User.query.filter_by(email='em').first().project[0] 59 60 task = Task(name='n', description='desc') 61 db.session.add(task) 62 63 project.tasks.append(task) 64 db.session.commit() 65 66 assert user.project[0].tasks[0] == task 67 68 69 def test_sub_tasks(self): 70 task = Task(name='n', description='desc') 71 db.session.add(task) 72 assert task in db.session 73 74 s_task = Task(name='n', description='desc') 75 db.session.add(s_task) 76 assert task in db.session 77 78 db.session.commit() 79 task.tasks.append(s_task) 80 81 82 db.session.commit() 83 assert task.tasks[0] == s_task 84 85 def test_questionnaire(self): 86 questionnaire = Questionnaire(name='Questions') 87 db.session.add(questionnaire) 88 89 question0 = Question(text="ola ?", questionnaire=questionnaire) 90 question1 = Question(text="tudo bem ?", questionnaire=questionnaire) 91 92 questionnaire.questions.append(question0) 93 questionnaire.questions.append(question1) 94 95 for i in range(10): 96 question0.responses.append(Response(rating=5,question=question0)) 97 98 for i in range(10): 99 question1.responses.append(Response(rating=5,question=question1)) 100 101 rs = [x.rating for x in questionnaire.questions[0].responses] 102 assert sum(rs)/len(rs) == 5 103 104 rs = [x.rating for x in questionnaire.questions[1].responses] 105 assert sum(rs)/len(rs) == 5 106 107 108 109 110 111 112 if __name__ == '__main__': 113 unittest.main()
95 - warning: unused-variable
1 import requests 2 import json 3 import time 4 from sqlalchemy import create_engine 5 from sqlalchemy.orm import sessionmaker 6 7 from poolModels import pool, poolBase 8 9 engine = create_engine('sqlite:///poolData.db') 10 # Bind the engine to the metadata of the Base class so that the 11 # declaratives can be accessed through a DBSession instance 12 poolBase.metadata.bind = engine 13 14 DBSession = sessionmaker(bind=engine) 15 # A DBSession() instance establishes all conversations with the database 16 # and represents a "staging zone" for all the objects loaded into the 17 # database session object. Any change made against the objects in the 18 # session won't be persisted into the database until you call 19 # session.commit(). If you're not happy about the changes, you can 20 # revert all of them back to the last commit by calling 21 # session.rollback() 22 session = DBSession() 23 24 # Insert a Person in the person table 25 new_pool = pool(url='http://pool.conceal.network/api/live_stats', name='Official Pool', type="normal", poolurl='https://pool.conceal.network') 26 session.add(new_pool) 27 new_pool = pool(url='https://ccx.scecf.org:21001/live_stats', name='SCECF', type="normal", poolurl='https://ccx.scecf.org') 28 session.add(new_pool) 29 new_pool = pool(url='https://ccx.bluerockpools.net:8119/live_stats', name='Blue Rock Pool', type="normal", poolurl='https://ccx.bluerockpools.net') 30 session.add(new_pool) 31 new_pool = pool(url='http://minexmr24.ru:8124/live_stats', name='CCX Майнинг пул', type="normal", poolurl='http://ccx.minexmr24.ru') 32 session.add(new_pool) 33 new_pool = pool(url='https://ccx.go-mine.it/api/pool/stats', name='go mine it!', type="node", poolurl='https://ccx.go-mine.it') 34 session.add(new_pool) 35 new_pool = pool(url='https://api.ccx.heigh-ho.funkypenguin.co.nz/live_stats', name='Funky Penguin', type="normal", poolurl='https://ccx.heigh-ho.funkypenguin.co.nz') 36 session.add(new_pool) 37 new_pool = pool(url='https://conceal.herominers.com/api/stats', name='herominers', type="normal", poolurl='https://conceal.herominers.com') 38 session.add(new_pool) 39 new_pool = pool(url='https://ccx.thepiratemine.nl:2890/live_stats', name='ThePirateMine', type="normal", poolurl='https://ccx.thepiratemine.nl') 40 session.add(new_pool) 41 session.commit() 42
1 - warning: unused-import 2 - warning: unused-import 3 - warning: unused-import
1 import random 2 import requests 3 import sys 4 import discord 5 import binascii 6 import json 7 from collections import deque 8 from jsonrpc_requests import Server 9 10 from models import Transaction, TipJar 11 12 config = json.load(open('config.json')) 13 14 class CCXServer(Server): 15 def dumps(self, data): 16 data['password'] = config['rpc_password'] 17 return json.dumps(data) 18 19 rpc = CCXServer("http://{}:{}/json_rpc".format(config['rpc_host'], config['rpc_port'])) 20 daemon = CCXServer("http://{}:{}/json_rpc".format(config['daemon_host'], config['daemon_port'])) 21 CONFIRMED_TXS = [] 22 23 24 def get_supply(): 25 lastblock = daemon.getlastblockheader() 26 bo = daemon.f_block_json(hash=lastblock["block_header"]["hash"]) 27 return float(bo["block"]["alreadyGeneratedCoins"])/1000000 28 29 30 def format_hash(hashrate): 31 i = 0 32 byteUnits = [" H", " KH", " MH", " GH", " TH", " PH"] 33 while (hashrate > 1000): 34 hashrate = hashrate / 1000 35 i = i+1 36 return "{0:,.2f} {1}".format(hashrate, byteUnits[i]) 37 38 39 def gen_paymentid(address): 40 rng = random.Random(address+config['token']) 41 length = 32 42 chunk_size = 65535 43 chunks = [] 44 while length >= chunk_size: 45 chunks.append(rng.getrandbits(chunk_size * 8).to_bytes(chunk_size, sys.byteorder)) 46 length -= chunk_size 47 if length: 48 chunks.append(rng.getrandbits(length * 8).to_bytes(length, sys.byteorder)) 49 result = b''.join(chunks) 50 51 return "".join(map(chr, binascii.hexlify(result))) 52 53 54 def get_deposits(session): 55 # get the current block height 56 # we only want to insert tx after 10 blocks from the tx 57 data = daemon.getlastblockheader() 58 height = int(data["block_header"]["height"]) 59 print("INFO: Current blockchain height is {}".format(height)) 60 # scan for deposits 61 print("scanning the blockchain for deposits") 62 print("getting list of payment id's in the tipjar database") 63 allPID = session.query(TipJar).all() 64 thePID = 0 65 totalPID = len(allPID) 66 for thePID in range(0,totalPID): 67 currentPID = allPID[thePID].paymentid 68 print("INFO: checking PID {}".format(currentPID)) 69 params = {"payment_id": currentPID} 70 data = rpc.get_payments(params) 71 #go through each transaction and them to the confirmed transactions array 72 for tx in data['payments']: 73 unlockWindow = int(tx["block_height"]) + 10 74 if tx['tx_hash'] in CONFIRMED_TXS: # if its already there, ignore it 75 continue 76 if unlockWindow < height: # its a confirmed and unlocked transaction 77 CONFIRMED_TXS.append({'transactionHash': tx['tx_hash'],'amount': tx['amount'], 'ready':True, 'pid':currentPID}) 78 print("CONF: confirmed tx {} for {} ccx at block {}".format(tx['tx_hash'],tx['amount'],tx['block_height'])) 79 else : 80 toUnlock = unlockWindow - height 81 print("UNCF: unconfirmed tx {} for {} ccx will unlock in {} blocks".format(tx['tx_hash'],tx['amount'],toUnlock)) 82 for i,trs in enumerate(CONFIRMED_TXS): #now we go through the array of all transactions from our registered users 83 processed = session.query(Transaction).filter(Transaction.tx == trs['transactionHash']).first() 84 amount = 0 85 print("INFO: looking at tx: " + trs['transactionHash']) 86 if processed: # done already, lets ignore and remove it from the array 87 print("INFO: already processed: " + trs['transactionHash']) 88 CONFIRMED_TXS.pop(i) 89 continue 90 likestring = trs['pid'] 91 balance = session.query(TipJar).filter(TipJar.paymentid.contains(likestring)).first() #get the balance from that PID 92 print("INFO: Balance for pid {} is: {}".format(likestring,balance)) 93 if not balance: 94 print("user does not exist!") 95 continue 96 amount = trs['amount'] 97 change = 0 98 if trs['pid']==balance.paymentid: # money entering tipjar, add to user balance 99 print("UPDATE: deposit of {} to PID {}".format(amount,balance.paymentid)) 100 change += amount 101 try: 102 balance.amount += change 103 except: 104 print("no balance, setting balance to: {}".format(change)) 105 balance.amount = change 106 print("new balance: {}".format(balance.amount)) 107 session.commit() 108 if balance: 109 nt = Transaction(trs['transactionHash'], change, trs['pid']) 110 CONFIRMED_TXS.pop(i) 111 yield nt 112 113 114 def get_fee(amount): 115 return 100 116 117 118 def build_transfer(amount, transfers, balance): 119 print("SEND PID: {}".format(balance.paymentid[0:58] + balance.withdraw)) 120 params = { 121 'fee': get_fee(amount), 122 'paymentId': balance.paymentid[0:58] + balance.withdraw, 123 'mixin': 3, 124 'destinations': transfers 125 } 126 return params 127 128 129 REACTION_AMP_CACHE = deque([], 500) 130 131 132 def reaction_tip_lookup(message): 133 for x in REACTION_AMP_CACHE: 134 if x['msg'] == message: 135 return x 136 137 138 def reaction_tip_register(message, user): 139 msg = reaction_tip_lookup(message) 140 if not msg: 141 msg = {'msg': message, 'tips': []} 142 REACTION_AMP_CACHE.append(msg) 143 144 msg['tips'].append(user) 145 146 return msg 147 148 149 def reaction_tipped_already(message, user): 150 msg = reaction_tip_lookup(message) 151 if msg: 152 return user in msg['tips']
12 - refactor: consider-using-with 12 - warning: unspecified-encoding 14 - refactor: too-few-public-methods 54 - refactor: too-many-locals 103 - warning: bare-except 54 - refactor: too-many-statements 114 - warning: unused-argument 132 - refactor: inconsistent-return-statements 149 - refactor: inconsistent-return-statements 2 - warning: unused-import 4 - warning: unused-import
1 #coding: utf-8 2 ''' 3 HW2.py is used to solve eight queens puzzle, 4 you can change the size number to resize the board. 5 6 change: 7 1,draw pieces with special operator not XOR but SOURCE 8 2,long string can write like """...."" 9 3,format for str have symbol{} so use %d 10 11 ''' 12 import itertools,cairo,math 13 14 size=8 #the size of the board 15 cnt=0 #number of right answer 16 17 #check whether it is a right step or not 18 def conflict(state, nextX): 19 nextY = len(state) 20 for i in range(nextY): 21 if abs(nextX-state[i])== nextY-i: 22 return True 23 return False 24 25 def drawqueen(solution): 26 surface = cairo.ImageSurface(cairo.FORMAT_ARGB32,size*100,size*100) 27 ctx=cairo.Context(surface) 28 29 #draw the board 30 for i in range(0,size): 31 for j in range(0,size): 32 if (i+j)%2==1: 33 ctx.rectangle(i*100,j*100,100,100) 34 ctx.fill() 35 36 #draw the pieces 37 ctx.set_line_width(10) 38 ctx.set_source_rgb(1, 1, 0.2) 39 #change1 40 ctx.set_operator(cairo.OPERATOR_SOURCE) 41 for i in range(size): 42 ctx.arc(solution[i]*100+50,i*100+50,35,0,2*math.pi) 43 ctx.stroke() 44 45 filename="chess"+str(cnt)+".png" 46 surface.write_to_png(filename) 47 48 49 50 #remove the solutions in same cols 51 for solve in itertools.permutations(range(size)): 52 flag=0 53 for i in range(1,size): 54 if conflict(solve[0:i],solve[i]): 55 break 56 else: 57 flag+=1 58 if flag==size-1: 59 cnt+=1 60 drawqueen(solve) 61 62 63 64 #make a tex ducument to generate pdf 65 f=open("mkreport.tex",'w') 66 67 #change2 68 f.write("""\documentclass[twocolumn]{article} 69 \usepackage{graphicx} 70 \\title{A Report About Eight Queens Puzzle}\n 71 \\begin{document} 72 \maketitle\n 73 """) 74 75 #change3 76 for i in range(1,cnt+1): 77 f.write(""" 78 \\begin{figure}[t] 79 \centering 80 \includegraphics[width=0.3\\textwidth]{chess%d.png} 81 \caption{Sulution %d of Eight Queens Puzzle} 82 \end{figure}\n""" % (i,i) ) 83 84 if i%6==0: 85 f.write('\n\clearpage\n') 86 87 f.write('\n\end{document}') 88 f.close()
73 - error: syntax-error
1 #coding=utf-8 2 ''' 3 use re to 4 caul the num of the words 5 alice=ALICE 6 7 change: 8 use these function 9 1,with open(...) as f: 10 2,content = f.read() 11 3,allwords = finditer( ... content ... ) 12 finditer is iter, findall is list 13 4,all_lower_words = imap(str.lower, allwords) 14 5,count = Counter(all_lower_words) 15 much butter than build a empty dict 16 ''' 17 import re,math 18 import itertools 19 import collections 20 from operator import itemgetter 21 22 23 with open('alice.txt',"rt") as f: 24 content=f.read() 25 26 allwords=re.findall(r'[a-zA-Z]+',content) 27 #if i use find finditer ,i cannot use imap,allwords is a list 28 all_lower_words = itertools.imap(str.lower, allwords) 29 count = collections.Counter(all_lower_words) 30 31 32 #dict sort method 1: change key and value 33 #cntSorted=dict((v,k) for k,v in cnt.iteritems()) 34 #cntSorted.sort() 35 #important and not be neglected 36 #print list(cntSorted.iteritems())[-10:] 37 38 #dict sort method 2: use lambda 39 #cntSorted=sorted(count.iteritems(),key=lambda d:d[1],reverse=True) 40 #print cntSorted[0:10] 41 42 #dict sort method 3: use operator 43 cntSorted=sorted(count.iteritems(),key=itemgetter(1),reverse=True) 44 print cntSorted[0:10] 45 46 47 48 #draw a pic 49 import matplotlib.pyplot as plt 50 51 #plt.bar(range(20), [cntSorted[i][1] for i in range(20)]) 52 #plt.xticks(range(20), [cntSorted[i][0] for i in range(20)],rotation=30) 53 54 length=len(cntSorted) 55 plt.plot(range(length), [math.log(cntSorted[i][1],10) for i in range(length)]) 56 plt.title(u"WordFrequencyAnalysis-zipf") 57 plt.show()
44 - error: syntax-error
1 # Generated by Django 3.0.3 on 2020-06-04 18:56 2 3 from django.db import migrations, models 4 5 6 class Migration(migrations.Migration): 7 8 dependencies = [ 9 ('dimensoes', '0013_remove_dimensaomodel_profundidade_media'), 10 ] 11 12 operations = [ 13 migrations.AddField( 14 model_name='dimensaomodel', 15 name='profundidade_media', 16 field=models.CharField(default=0, max_length=25), 17 ), 18 ]
6 - refactor: too-few-public-methods
1 # Generated by Django 3.0.3 on 2020-06-18 18:20 2 3 from django.db import migrations, models 4 5 6 class Migration(migrations.Migration): 7 8 dependencies = [ 9 ('dimensoes', '0018_auto_20200611_1905'), 10 ] 11 12 operations = [ 13 migrations.AlterField( 14 model_name='clientemodel', 15 name='numero_casa', 16 field=models.CharField(blank=True, max_length=10), 17 ), 18 ]
6 - refactor: too-few-public-methods
1 # Generated by Django 3.0.3 on 2020-06-04 20:10 2 3 from django.db import migrations 4 5 6 class Migration(migrations.Migration): 7 8 dependencies = [ 9 ('dimensoes', '0014_dimensaomodel_profundidade_media'), 10 ] 11 12 operations = [ 13 migrations.RemoveField( 14 model_name='dimensaomodel', 15 name='construcao', 16 ), 17 migrations.RemoveField( 18 model_name='dimensaomodel', 19 name='contra_piso', 20 ), 21 migrations.RemoveField( 22 model_name='dimensaomodel', 23 name='escavacao', 24 ), 25 migrations.RemoveField( 26 model_name='dimensaomodel', 27 name='instalacao_vinil', 28 ), 29 migrations.RemoveField( 30 model_name='dimensaomodel', 31 name='isomanta_m2', 32 ), 33 migrations.RemoveField( 34 model_name='dimensaomodel', 35 name='perfil_fixo_m', 36 ), 37 migrations.RemoveField( 38 model_name='dimensaomodel', 39 name='preco', 40 ), 41 migrations.RemoveField( 42 model_name='dimensaomodel', 43 name='produto', 44 ), 45 migrations.RemoveField( 46 model_name='dimensaomodel', 47 name='remocao_terra', 48 ), 49 migrations.RemoveField( 50 model_name='dimensaomodel', 51 name='vinil_m2', 52 ), 53 ]
6 - refactor: too-few-public-methods
1 # Generated by Django 3.0.3 on 2020-03-17 17:11 2 3 from django.db import migrations, models 4 5 6 class Migration(migrations.Migration): 7 8 dependencies = [ 9 ('dimensoes', '0004_auto_20200317_0933'), 10 ] 11 12 operations = [ 13 migrations.AddField( 14 model_name='dimensaomodel', 15 name='data', 16 field=models.DateTimeField(blank=True, null=True), 17 ), 18 ]
6 - refactor: too-few-public-methods
1 # Generated by Django 3.0.3 on 2020-05-16 18:18 2 3 from django.db import migrations, models 4 5 6 class Migration(migrations.Migration): 7 8 dependencies = [ 9 ('dimensoes', '0010_auto_20200511_1521'), 10 ] 11 12 operations = [ 13 migrations.AlterField( 14 model_name='clientemodel', 15 name='telefone', 16 field=models.IntegerField(blank=True, max_length=15), 17 ), 18 ]
6 - refactor: too-few-public-methods