ahalin commited on
Commit
14137b3
·
verified ·
1 Parent(s): d6484b0

Upload 2 files

Browse files
Files changed (2) hide show
  1. ReadMe.md +156 -0
  2. Town12.png +3 -0
ReadMe.md ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # DADE Dataset
2
+
3
+ ## Overview
4
+ The **DADE** dataset, short for "Driving Agents in Dynamic Environments", is a synthetic dataset designed for the training and evaluation of methods for the task of semantic segmentation in the context of autonomous driving agents navigating dynamic environments and weather conditions. This dataset was generated using the CARLA simulator (version 0.9.14) to provide perfect sensor synchronization and calibration, as well as precise semantic segmentation ground truths. All data were collected within the Town12 map in CARLA.
5
+
6
+ ## Dataset Composition
7
+ The DADE dataset is divided into two sub-datasets:
8
+
9
+ ### Subset 1: Static Weather Conditions (Clear Day)
10
+ - Number of Video Sequences: 100
11
+ - Sequence Length: Varies from 271 to 7200 frames
12
+ - Average Sequence Length: 45 minutes
13
+ - Total Number of Frames: 270,527
14
+ - Total Duration: Over 75 hours of video
15
+ - Weather Conditions: Clear sunny weather during the day
16
+
17
+ ### Subset 2: Dynamic Weather Conditions
18
+ - Number of Video Sequences: 300
19
+ - Sequence Length: Varies from 188 to 7200 frames
20
+ - Average Sequence Length: 40 minutes
21
+ - Total Number of Frames: 719,742
22
+ - Total Duration: 200 hours of video
23
+ - Weather Conditions: Dynamically changing weather conditions, transitioning every 10 minutes between clear, rainy, and foggy conditions, with smooth transitions of 10 seconds. The 5-hour period includes approximately 2 hours of night conditions and 3 hours of day conditions.
24
+
25
+ ## Dataset Contents
26
+ The DADE dataset is composed of temporal frames (video sequences) and includes the following information:
27
+ - RGB images
28
+ - Semantic segmentation ground truths
29
+ - GNSS (Global Navigation Satellite System) position data
30
+ - Weather information
31
+
32
+ ### Data Details
33
+ - Frame Rate: 1 frame per second (1 fps)
34
+ - Image Resolution: 720p (1280x720 pixels, high definition, HD)
35
+
36
+ ### Data Structure
37
+ <pre>
38
+ DADE/
39
+ ├── static_weather
40
+ │ ├── <i>sequence</i>/ (name of folder: date of the acquisition, e.g. "2023-07-11_17-35-48")
41
+ │ │ ├── semantic_masks/
42
+ │ │ │ ├── 001/ (1000 frames per folder)
43
+ │ │ │ │ ├── 000001.png
44
+ │ │ │ │ ├── 000002.png
45
+ │ │ │ │ └── ...
46
+ │ │ │ ├── 002
47
+ │ │ │ │ ├── 001000.png
48
+ │ │ │ │ ├── 001001.png
49
+ │ │ │ │ └── ...
50
+ │ │ │ └── ...
51
+ │ │ ├── semantic_masks_npz/
52
+ │ │ │ ├── 001/
53
+ │ │ │ │ ├── 000001.npz
54
+ │ │ │ │ ├── 000002.npz
55
+ │ │ │ │ └── ...
56
+ │ │ │ ├── 002
57
+ │ │ │ │ ├── 001000.npz
58
+ │ │ │ │ ├── 001001.npz
59
+ │ │ │ │ └── ...
60
+ │ │ │ └── ...
61
+ │ │ ├── semantic_masks_carla/
62
+ │ │ │ ├── 001/
63
+ │ │ │ │ ├── 000001.png
64
+ │ │ │ │ ├── 000002.png
65
+ │ │ │ │ └── ...
66
+ │ │ │ ├── 002
67
+ │ │ │ │ ├── 001000.png
68
+ │ │ │ │ ├── 001001.png
69
+ │ │ │ │ └── ...
70
+ │ │ │ └── ...
71
+ │ │ ├── <i>sequence</i>.mp4
72
+ │ │ ├── <i>sequence</i>.json
73
+ │ │ └── gnss.json
74
+ │ └── ...
75
+ ├── dynamic_weather
76
+ │ ├── <i>sequence</i>/
77
+ │ │ ├── semantic_masks/
78
+ │ │ ├── semantic_masks_npz/
79
+ │ │ ├── semantic_masks_carla/
80
+ │ │ ├── <i>sequence</i>.mp4
81
+ │ │ ├── <i>sequence</i>.json
82
+ │ │ ├── gnss.json
83
+ │ │ └── weather.json
84
+ ├── Town12.png
85
+ └── ReadMe.md
86
+ </pre>
87
+
88
+ The `semantic_masks_carla` folder contains the semantic segmentation ground truths as directly collected with the CARLA simulator. For a definiton of class labels, see the [CARLA documentation](https://carla.readthedocs.io/en/0.9.14/ref_sensors/#semantic-segmentation-camera).
89
+
90
+ The `semantic_masks` and `semantic_masks_npz` folders contains the same data, but respectively in png format with RGB data and in numpy format with one channel containing the class label ID. Compared to the semantic segmentation ground truths from CARLA, we reduced the number of class labels by keeping those that were common with those in the Cityscapes dataset and ignored the hood of the ego car.
91
+ The class definition is the following one:
92
+
93
+ <div align="center">
94
+ <div></div>
95
+
96
+ | ID | Name | RGB color |
97
+ |:---:|---|:---:|
98
+ | 0 | unlabeled | (0,0,0) |
99
+ | 1 | static | (0,0,0) |
100
+ | 2 | dynamic | (111,74,0) |
101
+ | 3 | ground | (81,0,81) |
102
+ | 4 | road | (128,64,128) |
103
+ | 5 | sidewalk | (244,35,232) |
104
+ | 6 | rail track | (230,150,140) |
105
+ | 7 | building | (70,70,70) |
106
+ | 8 | wall | (102,102,156) |
107
+ | 9 | fence | (190,153,153) |
108
+ | 10 | guard rail | (180,165,180) |
109
+ | 11 | bridge | (150,100,100) |
110
+ | 12 | pole | (153,153,153) |
111
+ | 13 | traffic light | (250,170,30) |
112
+ | 14 | traffic sign | (220,220,0) |
113
+ | 15 | vegetation | (107,142,35) |
114
+ | 16 | terrain | (152,251,152) |
115
+ | 17 | sky | (70,130,180) |
116
+ | 18 | person | (220,20,60) |
117
+ | 19 | rider | (255,0,0) |
118
+ | 20 | car | (0,0,142) |
119
+ | 21 | truck | (0,0,70) |
120
+ | 22 | bus | (0,60,100) |
121
+ | 23 | motorcycle | (0,0,230) |
122
+ | 24 | bicycle | (119,11,32) |
123
+
124
+ </div>
125
+
126
+ The `sequence.mp4` holds the RGB images.
127
+
128
+ The `sequence.json` holds a dictionary with the timestamp randomly attributed to the sequence and the metadata related to this particular sequence.
129
+
130
+ The `gnss.json` holds a dictionary where the key is the frame number and the value is another dictionary giving the altitude, latitude, longitude, x, y, z values.
131
+
132
+ The `weather.json` is only present in the dynamic_weather folder and holds a dictionary where the key is the frame number and the value is another dictionary giving the weather parameters values. It gives the cloudiness, fog density, fog distance, fog falloff, mie scattering scale, precipitation, precipitation deposits, rayleigh scattering scale, scattering intensity, sun altitude angle, sun azimuth angle, wetness, and wind intensity. For a definiton of these weather parameters, see the [CARLA documentation](https://carla.readthedocs.io/en/0.9.14/python_api/#carlaweatherparameters).
133
+
134
+ The `Town12.png` gives based on the x,y coordinates the zone in which the vehicle is.
135
+ The color code is the following one:
136
+
137
+ <div align="center">
138
+ <div></div>
139
+
140
+ | Zone identifier | Zone name | HEX | RGB |
141
+ |:---:|---|:---:|:---:|
142
+ | 0 | Forest | 555b19 | (85,91,25) |
143
+ | 1 | Countryside | 6fa31b | (111,163,27) |
144
+ | 2 | Rural farmland | edc500 | (237,197,0) |
145
+ | 3 | Highway | 696e6a | (105,110,106) |
146
+ | 4 | Low density residential | 0dd594 | (13,213,148) |
147
+ | 5 | Community buildings | 0093e6 | (0,147,230) |
148
+ | 6 | High density residential | d52a00 | (213,42,0) |
149
+
150
+ </div>
151
+
152
+ ## Citing the Dataset
153
+ If you use the DADE dataset in your research, please cite the dataset using the following DOI: 10.58119/ULG/H5SP5P (https://doi.org/10.58119/ULG/H5SP5P), as well as the associated paper.
154
+
155
+ ## License
156
+ Creative Commons CC BY 4.0
Town12.png ADDED

Git LFS Details

  • SHA256: aad454d381a9d3e4a65d07d4632bdc573fc762f3ed64e7da370f4d4d36039579
  • Pointer size: 131 Bytes
  • Size of remote file: 231 kB