|
import collections |
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_HOMEPAGE = "https://universe.roboflow.com/uai-63qde/instance-segmentation-kgvep/dataset/1" |
|
_LICENSE = "CC BY 4.0" |
|
_CITATION = """\ |
|
@misc{ instance-segmentation-kgvep_dataset, |
|
title = { Instance Segmentation Dataset }, |
|
type = { Open Source Dataset }, |
|
author = { UAI }, |
|
howpublished = { \\url{ https://universe.roboflow.com/uai-63qde/instance-segmentation-kgvep } }, |
|
url = { https://universe.roboflow.com/uai-63qde/instance-segmentation-kgvep }, |
|
journal = { Roboflow Universe }, |
|
publisher = { Roboflow }, |
|
year = { 2023 }, |
|
month = { nov }, |
|
note = { visited on 2023-11-04 }, |
|
} |
|
""" |
|
_CATEGORIES = ['copiapoa', 'copiapoa-v2'] |
|
_ANNOTATION_FILENAME = "_annotations.coco.json" |
|
|
|
|
|
class AERIALSEMANTICSEGMENTATIONCACTISConfig(datasets.BuilderConfig): |
|
"""Builder Config for Aerial-Semantic-Segmentation-Cactis""" |
|
|
|
def __init__(self, data_urls, **kwargs): |
|
""" |
|
BuilderConfig for Aerial-Semantic-Segmentation-Cactis. |
|
|
|
Args: |
|
data_urls: `dict`, name to url to download the zip file from. |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(AERIALSEMANTICSEGMENTATIONCACTISConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs) |
|
self.data_urls = data_urls |
|
|
|
|
|
class AERIALSEMANTICSEGMENTATIONCACTIS(datasets.GeneratorBasedBuilder): |
|
"""Aerial-Semantic-Segmentation-Cactis instance segmentation dataset""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
BUILDER_CONFIGS = [ |
|
AERIALSEMANTICSEGMENTATIONCACTISConfig( |
|
name="full", |
|
description="Full version of Aerial-Semantic-Segmentation-Cactis dataset.", |
|
data_urls={ |
|
"train": "https://huggingface.co/datasets/aghent/Aerial-Semantic-Segmentation-Cactis/resolve/main/data/train.zip", |
|
"validation": "https://huggingface.co/datasets/aghent/Aerial-Semantic-Segmentation-Cactis/resolve/main/data/valid.zip", |
|
"test": "https://huggingface.co/datasets/aghent/Aerial-Semantic-Segmentation-Cactis/resolve/main/data/test.zip", |
|
}, |
|
), |
|
AERIALSEMANTICSEGMENTATIONCACTISConfig( |
|
name="mini", |
|
description="Mini version of Aerial-Semantic-Segmentation-Cactis dataset.", |
|
data_urls={ |
|
"train": "https://huggingface.co/datasets/aghent/Aerial-Semantic-Segmentation-Cactis/resolve/main/data/valid-mini.zip", |
|
"validation": "https://huggingface.co/datasets/aghent/Aerial-Semantic-Segmentation-Cactis/resolve/main/data/valid-mini.zip", |
|
"test": "https://huggingface.co/datasets/aghent/Aerial-Semantic-Segmentation-Cactis/resolve/main/data/valid-mini.zip", |
|
}, |
|
) |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"image_id": datasets.Value("int64"), |
|
"image": datasets.Image(), |
|
"width": datasets.Value("int32"), |
|
"height": datasets.Value("int32"), |
|
"objects": datasets.Sequence( |
|
{ |
|
"id": datasets.Value("int64"), |
|
"area": datasets.Value("int64"), |
|
"bbox": datasets.Sequence(datasets.Value("float32"), length=4), |
|
"segmentation": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))), |
|
"category": datasets.ClassLabel(names=_CATEGORIES), |
|
} |
|
), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
license=_LICENSE, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_files = dl_manager.download_and_extract(self.config.data_urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"folder_dir": data_files["train"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"folder_dir": data_files["validation"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"folder_dir": data_files["test"], |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, folder_dir): |
|
def process_annot(annot, category_id_to_category): |
|
return { |
|
"id": annot["id"], |
|
"area": annot["area"], |
|
"bbox": annot["bbox"], |
|
"segmentation": annot["segmentation"], |
|
"category": category_id_to_category[annot["category_id"]], |
|
} |
|
|
|
image_id_to_image = {} |
|
idx = 0 |
|
|
|
annotation_filepath = os.path.join(folder_dir, _ANNOTATION_FILENAME) |
|
with open(annotation_filepath, "r") as f: |
|
annotations = json.load(f) |
|
category_id_to_category = {category["id"]: category["name"] for category in annotations["categories"]} |
|
image_id_to_annotations = collections.defaultdict(list) |
|
for annot in annotations["annotations"]: |
|
image_id_to_annotations[annot["image_id"]].append(annot) |
|
filename_to_image = {image["file_name"]: image for image in annotations["images"]} |
|
|
|
for filename in os.listdir(folder_dir): |
|
filepath = os.path.join(folder_dir, filename) |
|
if filename in filename_to_image: |
|
image = filename_to_image[filename] |
|
objects = [ |
|
process_annot(annot, category_id_to_category) for annot in image_id_to_annotations[image["id"]] |
|
] |
|
with open(filepath, "rb") as f: |
|
image_bytes = f.read() |
|
yield idx, { |
|
"image_id": image["id"], |
|
"image": {"path": filepath, "bytes": image_bytes}, |
|
"width": image["width"], |
|
"height": image["height"], |
|
"objects": objects, |
|
} |
|
idx += 1 |
|
|