Aerial-Semantic-Segmentation-Cactis / Aerial-Semantic-Segmentation-Cactis.py
aghent's picture
dataset uploaded by roboflow2huggingface package
3f3fbc8
import collections
import json
import os
import datasets
_HOMEPAGE = "https://universe.roboflow.com/uai-63qde/instance-segmentation-kgvep/dataset/1"
_LICENSE = "CC BY 4.0"
_CITATION = """\
@misc{ instance-segmentation-kgvep_dataset,
title = { Instance Segmentation Dataset },
type = { Open Source Dataset },
author = { UAI },
howpublished = { \\url{ https://universe.roboflow.com/uai-63qde/instance-segmentation-kgvep } },
url = { https://universe.roboflow.com/uai-63qde/instance-segmentation-kgvep },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2023 },
month = { nov },
note = { visited on 2023-11-04 },
}
"""
_CATEGORIES = ['copiapoa', 'copiapoa-v2']
_ANNOTATION_FILENAME = "_annotations.coco.json"
class AERIALSEMANTICSEGMENTATIONCACTISConfig(datasets.BuilderConfig):
"""Builder Config for Aerial-Semantic-Segmentation-Cactis"""
def __init__(self, data_urls, **kwargs):
"""
BuilderConfig for Aerial-Semantic-Segmentation-Cactis.
Args:
data_urls: `dict`, name to url to download the zip file from.
**kwargs: keyword arguments forwarded to super.
"""
super(AERIALSEMANTICSEGMENTATIONCACTISConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
self.data_urls = data_urls
class AERIALSEMANTICSEGMENTATIONCACTIS(datasets.GeneratorBasedBuilder):
"""Aerial-Semantic-Segmentation-Cactis instance segmentation dataset"""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
AERIALSEMANTICSEGMENTATIONCACTISConfig(
name="full",
description="Full version of Aerial-Semantic-Segmentation-Cactis dataset.",
data_urls={
"train": "https://huggingface.co/datasets/aghent/Aerial-Semantic-Segmentation-Cactis/resolve/main/data/train.zip",
"validation": "https://huggingface.co/datasets/aghent/Aerial-Semantic-Segmentation-Cactis/resolve/main/data/valid.zip",
"test": "https://huggingface.co/datasets/aghent/Aerial-Semantic-Segmentation-Cactis/resolve/main/data/test.zip",
},
),
AERIALSEMANTICSEGMENTATIONCACTISConfig(
name="mini",
description="Mini version of Aerial-Semantic-Segmentation-Cactis dataset.",
data_urls={
"train": "https://huggingface.co/datasets/aghent/Aerial-Semantic-Segmentation-Cactis/resolve/main/data/valid-mini.zip",
"validation": "https://huggingface.co/datasets/aghent/Aerial-Semantic-Segmentation-Cactis/resolve/main/data/valid-mini.zip",
"test": "https://huggingface.co/datasets/aghent/Aerial-Semantic-Segmentation-Cactis/resolve/main/data/valid-mini.zip",
},
)
]
def _info(self):
features = datasets.Features(
{
"image_id": datasets.Value("int64"),
"image": datasets.Image(),
"width": datasets.Value("int32"),
"height": datasets.Value("int32"),
"objects": datasets.Sequence(
{
"id": datasets.Value("int64"),
"area": datasets.Value("int64"),
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
"segmentation": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
"category": datasets.ClassLabel(names=_CATEGORIES),
}
),
}
)
return datasets.DatasetInfo(
features=features,
homepage=_HOMEPAGE,
citation=_CITATION,
license=_LICENSE,
)
def _split_generators(self, dl_manager):
data_files = dl_manager.download_and_extract(self.config.data_urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"folder_dir": data_files["train"],
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"folder_dir": data_files["validation"],
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"folder_dir": data_files["test"],
},
),
]
def _generate_examples(self, folder_dir):
def process_annot(annot, category_id_to_category):
return {
"id": annot["id"],
"area": annot["area"],
"bbox": annot["bbox"],
"segmentation": annot["segmentation"],
"category": category_id_to_category[annot["category_id"]],
}
image_id_to_image = {}
idx = 0
annotation_filepath = os.path.join(folder_dir, _ANNOTATION_FILENAME)
with open(annotation_filepath, "r") as f:
annotations = json.load(f)
category_id_to_category = {category["id"]: category["name"] for category in annotations["categories"]}
image_id_to_annotations = collections.defaultdict(list)
for annot in annotations["annotations"]:
image_id_to_annotations[annot["image_id"]].append(annot)
filename_to_image = {image["file_name"]: image for image in annotations["images"]}
for filename in os.listdir(folder_dir):
filepath = os.path.join(folder_dir, filename)
if filename in filename_to_image:
image = filename_to_image[filename]
objects = [
process_annot(annot, category_id_to_category) for annot in image_id_to_annotations[image["id"]]
]
with open(filepath, "rb") as f:
image_bytes = f.read()
yield idx, {
"image_id": image["id"],
"image": {"path": filepath, "bytes": image_bytes},
"width": image["width"],
"height": image["height"],
"objects": objects,
}
idx += 1