abdullah's picture
Add files using upload-large-folder tool
8a3822f verified
1
00:00:20,820 --> 00:00:25,800
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุนุฏู†ุง ุนู„ู‰ ุจุฏุก ุณุงุจู‚ุง ู‚ุจู„
2
00:00:25,800 --> 00:00:30,380
ุญูˆุงู„ูŠ ุนุดุฑุฉ ุฃูŠุงู… ุฃูˆ ู…ุง ูŠุฒูŠุฏ ูƒู†ุง ู†ุชูƒู„ู… ุนู† ุฑุณู… ุงู„ุจู†ูŠ
3
00:00:30,380 --> 00:00:35,220
ู„ู„ู…ู†ุญู†ูŠุงุช ุจู†ุฐูƒุฑ ุชุฐูƒูŠุฑ ูƒูŠู ูƒู†ุง ู†ุฑุณู… ู‡ุฐู‡ ุงู„ู…ู†ุญู†ูŠุงุช
4
00:00:35,220 --> 00:00:40,840
ุจู†ุนู…ู„ ู‚ุฏุฑ ุฎุทูˆุงุชุŒ ุงู„ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰ ุจู†ุดูˆู ุชู‚ุงุทุน ุงู„ู…ู†ุญู†ู‰
5
00:00:40,840 --> 00:00:45,800
ู…ุน ุงู„ู…ุญุงูˆุฑ ุงู„ุฅุญุฏุงุซูŠุฉ ุนู† ุทุฑูŠู‚ ู…ุฑุฉ ู†ุญุท X ุจู€ Zero ู†ุดูˆู
6
00:00:45,800 --> 00:00:49,840
ู‚ุฏุงุด ู‚ูŠู…ุฉ YุŒ ู†ุญุท Y ุจู€ Zero ู†ุดูˆู ู‚ุฏุงุด ู‚ูŠู…ุฉ X ูˆุจุงู„ุชุงู„ูŠ
7
00:00:49,840 --> 00:00:55,220
ุจู†ุฌูŠุจ ู†ู‚ุงุท ุชู‚ุงุทุน ุงู„ู…ู†ุญู†ู‰ ู…ุน ู…ุญุงูˆุฑ ุงู„ุฅุญุฏุงุซูŠุงุช.
8
00:00:55,220 --> 00:01:01,180
ุซุงู†ูŠุฉุŒ ู†ุฌูŠุจ ุงู„ู€ AsymptotesุŒ ุฎุทูˆุท ุงู„ุชู‚ุงุฑุจุŒ ู…ู‡ู…ุฉ ู„ู„ู…ู†ุญู†ู‰
9
00:01:01,180 --> 00:01:06,900
ูˆุฎุทูˆุท ุงู„ุชู‚ุงุฑุจ ู„ุง ุชูƒูˆู† ุฅู„ุง ู„ู€ Function ููŠู‡ุง ุจุณุท ูˆู…ู‚ุงู…
10
00:01:06,900 --> 00:01:10,620
ูŠุนู†ูŠ Rational Function ุฒูŠ ู…ู‡ู…ุฉ ุฒูŠ ุงู„ู€ Function
11
00:01:10,620 --> 00:01:14,800
ุจุชุนุทูŠู†ุง ู‡ุฐู‡ุŒ ูŠุจู‚ู‰ ู‡ุฐู‡ ููŠู‡ุง ููŠู‡ุง ุงู„ู€ Asymptotes ูŠุจู‚ู‰
12
00:01:14,800 --> 00:01:18,400
ู‚ุจู„ู†ุง ู†ุฌูŠุจู‡ุง ุงู„ู€ Asymptotes ุจุนุฏ ู‡ูŠูƒ ุจู†ุฌูŠุจ ุงู„ู…ุดุชู‚ุฉ
13
00:01:18,400 --> 00:01:21,680
ุงู„ุฃูˆู„ู‰ ู…ู†ู‡ุงุŒ ุจู†ุญุณุจ ุญุงุฌุชูŠู† ุงู„ู€ Local Maximum ูˆ ุงู„ู€
14
00:01:21,680 --> 00:01:24,900
Local Minimum ูˆ ุงู„ู€ Increasing ูˆ ุงู„ู€ Decreasing ูŠุนู†ูŠ
15
00:01:24,900 --> 00:01:29,340
ูุชุฑุฉ ุงู„ุชุฒุงูŠุฏ ูˆูุชุฑุฉ ุงู„ุชู†ุงู‚ุตุŒ ูˆูƒุฐู„ูƒ ู…ูˆู‚ุน ู†ู‡ุงูŠุฉ
16
00:01:29,340 --> 00:01:34,060
ุงู„ุนู…ูˆุฏูŠุฉ ุงู„ู…ุญู„ูŠุฉ ุจุนุฏ ู‡ูŠูƒ ุจู†ุฑูˆุญ ู†ุฌูŠุจ ุงู„ู…ุดุชู‚ุฉ ุงู„ุซุงู†ูŠุฉ
17
00:01:34,060 --> 00:01:37,300
ูˆู…ู†ู‡ุง ุจู†ุฌูŠุจ ุงู„ู€ Concave Up ูˆ ุงู„ู€ Concave Down
18
00:01:37,600 --> 00:01:42,200
ุงู„ุงู†ุญู†ุงุก ุฅู„ู‰ ุฃุณูู„ ูˆุงู„ุงู†ุญู†ุงุก ุฅู„ู‰ ุฃุนู„ู‰ ุฃูˆ ุงู„ุชู‚ูˆุณ ุฅู„ู‰
19
00:01:42,200 --> 00:01:46,660
ุฃุนู„ู‰ ูˆุงู„ุชู‚ูˆุณ ุฅู„ู‰ ุฃุณูู„ุŒ ูˆูƒุฐู„ูƒ ุจู†ุฌูŠุจ ุงู„ู€ Inflection
20
00:01:46,660 --> 00:01:52,240
Points ุฅู† ู…ูˆุฌูˆุฏุฉ ุจุนุฏ ู‡ูŠูƒ ุจู†ุฑูˆุญ ู†ุฑุณู… ุงู„ุฑุณู… ุงู„ู„ูŠ ู„ู†ุง
21
00:01:52,240 --> 00:01:57,140
ู…ู† ุฎู„ุงู„ ุงู„ู…ุนู„ูˆู…ุงุช ุงู„ุชูŠ ุญุตู„ู†ุง ุนู„ูŠู‡ุงุŒ ู‡ูŠูƒ ูƒู†ุง ุจู†ุนู…ู„
22
00:01:57,140 --> 00:02:01,980
ูŠุจู‚ู‰ ู„ุงุฒู„ู†ุง ุจู†ุนู…ู„ ู†ูุณ ุงู„ุชูƒุชูŠูƒ ูˆู‡ูŠ ู…ุซุงู„ ุจูŠู† ูŠุฏูŠู†ุง
23
00:02:02,370 --> 00:02:06,710
ุจู‚ูˆู„ ู„ูŠ ุงุฑุณู… ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ู†ุญู†ู‰ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ุŒ ุจุงุฌูŠ
24
00:02:06,710 --> 00:02:09,910
ุจู‚ูˆู„ ู„ู‡ X ู„ุง ูŠุณุงูˆูŠ ุงุซู†ูŠู†ุŒ ูŠุจู‚ู‰ ุณุงูˆูŠ ุฃู‚ู„ ูˆุงู„ู„ู‡ ู…ุง ุฌุงู„ูŠุด
25
00:02:09,910 --> 00:02:14,170
ุฃู†ุง ุจู‚ูˆู„ ู„ู‡ ุงู„ุฏุงู„ุฉ ุบูŠุฑ ู…ุนุฑูุฉ ุฅู† X ูŠุณุงูˆูŠ ุงุซู†ูŠู†ุŒ ูŠุจู‚ู‰
26
00:02:14,170 --> 00:02:18,590
ุงู„ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰ ุจุฃู† ู†ุดูˆู ู†ู‚ุงุท ุงู„ุชู‚ุงุทุน ู…ุน ู…ุญูˆุฑูŠ
27
00:02:18,590 --> 00:02:25,330
ุงู„ุฅุญุฏุงุซูŠุงุชุŒ ูŠุจู‚ู‰ ุจุฏู‡ ุฃุญุท X ุจู€ Zero ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ ู„ู‡ ู„ูˆ
28
00:02:25,330 --> 00:02:32,170
ูƒุงู†ุช ุงู„ู€ X ุชุณุงูˆูŠ ZeroุŒ Y ูŠุณุงูˆูŠ ู†ุงู‚ุต ุซู„ุงุซุฉ ุนู„ู‰ ู†ุงู‚ุต
29
00:02:32,170 --> 00:02:42,310
ุงุซู†ูŠู†ุŒ ูˆูŠุณุงูˆูŠ ุซู„ุงุซุฉ ุนู„ู‰ ุงุซู†ูŠู†ุŒ ูˆูŠุณุงูˆูŠ ู†ุงู‚ุต
30
00:02:42,310 --> 00:02:43,190
ุซู„ุงุซุฉ ุนู„ู‰ ู†ุงู‚ุต ุงุซู†ูŠู†ุŒ ูˆูŠุณุงูˆูŠ ู†ุงู‚ุต ุซู„ุงุซุฉ ุนู„ู‰ ู†ุงู‚ุต
31
00:02:43,190 --> 00:02:46,450
ุงุซู†ูŠู†ุŒ ูˆูŠุณุงูˆูŠ ู†ุงู‚ุต ุซู„ุงุซุฉ ุนู„ู‰ ู†ุงู‚ุต ุงุซู†ูŠู†ุŒ ูˆูŠุณุงูˆูŠ
32
00:02:46,450 --> 00:02:47,990
ู†ุงู‚ุต ุซู„ุงุซุฉ ุนู„ู‰ ู†ุงู‚ุต ุงุซู†ูŠู†ุŒ ูˆูŠุณุงูˆูŠ ู†ุงู‚ุต ุซู„ุงุซุฉ ุนู„ู‰
33
00:02:47,990 --> 00:02:51,970
ู†ุงู‚ุต ุงุซู†ูŠู†ุŒ ูˆูŠุณุงูˆูŠ ู†ุงู‚ุต ุซู„ุงุซุฉ ุนู„ู‰ ู†ุงู‚ุต ุงุซู†ูŠู†ุŒ ูˆ
34
00:02:51,970 --> 00:02:56,610
ูŠุณุงูˆูŠ ู†ุงู‚ุต ุซู„ุงุซุฉ ุนู„ู‰ ู†ุงู‚ุต ุงุซู†ูŠู†ุŒ ูˆูŠุณุงูˆูŠ ู†ุงู‚ุต ุซู„ุงุซุฉ
35
00:02:56,610 --> 00:03:05,670
ุนู„ู‰ ู†ุงู‚ุต ุงุซู†ูŠู†ุŒ ูˆ of intersections with the
36
00:03:05,670 --> 00:03:11,970
coordinate axes
37
00:03:11,970 --> 00:03:14,610
R
38
00:03:16,980 --> 00:03:34,400
ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ูˆุงู†ุชู‡ูŠู†ุง
39
00:03:34,400 --> 00:03:39,020
ู…ู† ุงู„ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰ุŒ ุจุฏู†ุง ู†ุฑูˆุญ ู„ู„ุฎุทูˆุฉ ุงู„ุซุงู†ูŠุฉ ุจูุถู„ ู…ู†
40
00:03:39,020 --> 00:03:44,490
ุญุฏ ู…ุง ู†ุดูˆู ุงู„ู…ุนุงุฏู„ุฉ ู„ุฃู† ุจุตู ู…ู‚ุงู…ุŒุฏุฑุฌุฉ ุงู„ุจุณุท ุฃูƒุจุฑ ู…ู†
41
00:03:44,490 --> 00:03:50,110
ุฃูˆ ุชุณุงูˆูŠ ุฏุฑุฌุฉ ุงู„ู…ู‚ุงู…ุŒ ุฃู†ู‡ ู†ู‚ุณู… ู‚ุณู…ุฉ ู…ุทูˆู„ุฉุŒ ูŠุจู‚ู‰
42
00:03:50,110 --> 00:03:55,730
ุจุชุฑูˆุญ ุชู‚ุณู… ุงู„ู€ X ุชุฑุจูŠุน ู†ุงู‚ุต ุซู„ุงุซุฉ ุชู‚ุณูŠู… ุงู„ู€ X ู†ุงู‚ุต
43
00:03:55,730 --> 00:04:01,740
ุงุซู†ูŠู†ุŒ ููŠู‡ุง ุงู„ู€ X ุจู€ X ุชุฑุจูŠุน ู†ุงู‚ุต ุงุซู†ูŠู† XุŒ ุฒุงุฏ ุจูŠุตูŠุฑ
44
00:04:01,740 --> 00:04:07,860
ู†ุงู‚ุต ุจูŠุตูŠุฑ ุฒุงุฏุŒ ุจุชุฑูˆุญ ู‡ุงุฏูŠ ุจุธู„ 2X ู†ุงู‚ุต ุซู„ุงุซุฉ ุงู„ุจุงู‚ูŠ
45
00:04:07,860 --> 00:04:11,140
ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ุŒ ูˆุงู„ู…ู‚ุณูˆู… ุนู„ูŠู‡ ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰
46
00:04:11,140 --> 00:04:17,080
ุจูˆุงุตู„ ุนู…ู„ูŠุฉ ุงู„ู‚ุณู…ุฉุŒ ูŠุจู‚ู‰ 2X ุนู„ู‰ X ููŠู‡ุง ู‚ุฏุงุด ููŠู‡ุง
47
00:04:17,080 --> 00:04:23,180
ู„ูŠู‡ ุงุซู†ูŠู†ุŒ ุจู€ 2X ู†ุงู‚ุต ุฃุฑุจุนุฉ ุฒุงุฏ ุจูŠุตูŠุฑ ู†ุงู‚ุต ูˆู‡ุงุฏ ุฒุงุฏ
48
00:04:23,180 --> 00:04:29,470
ุจุธู„ ู‡ู†ุง ู‚ุฏุงุด ูˆุงุญุฏุŸ ุฅุฐุงู‹ ุงู„ุฏุงู„ุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง Y ุชุณุงูˆูŠ X
49
00:04:29,470 --> 00:04:34,830
ุชุฑุจูŠุน ู†ุงู‚ุต ุซู„ุงุซุฉ ุนู„ู‰ X ู†ุงู‚ุต ุงุซู†ูŠู†ุŒ ูŠุณุงูˆูŠ ุฎุงุฑุฌ ุงู„ู‚ุณู…ุฉ
50
00:04:34,830 --> 00:04:40,330
ู‡ูˆ X ุฒุงุฆุฏ ุงุซู†ูŠู†ุŒ ุงู„ุจุงู‚ูŠ ู‡ูˆ ูˆุงุญุฏ ู„ุณู‡ ุจุฏูŠ ุฃุฌุณู…ู‡ ุนู„ู‰ X
51
00:04:40,330 --> 00:04:46,250
ู†ุงู‚ุต ุงุซู†ูŠู†ุŒ ุทุจุนุง ุฎุงุฑุฌ ุงู„ู‚ุณู…ุฉ ู‡ุฐุง ู‡ูˆ ุฏุงู„ุฉ ุฎุทูŠุฉุŒ ูŠุจู‚ู‰ ู‡ุฐุง
52
00:04:46,250 --> 00:04:50,930
ุจุฏูŠ ูŠูƒูˆู† Main ู‡ูˆ ุงู„ู€ Oblique AsymptoteุŒ ูŠุจู‚ู‰ ุจุนุฏูŠ
53
00:04:50,930 --> 00:04:58,310
ุจู‚ูˆู„ ู„ู‡ Y ุชุณุงูˆูŠ X ุฒุงุฆุฏ ุงุซู†ูŠู† ู‡ุฐุง Is The Oblique
54
00:04:58,310 --> 00:05:00,450
Asymptote
55
00:05:05,380 --> 00:05:11,260
ู‡ู„ ู‡ุงู„ุฏุงู„ุฉ ู…ุนุฑูุฉ ุนู† X ูŠุณุงูˆูŠ 2ุŸ ู„ุฃุŒ ูŠุจู‚ู‰ ููŠ ุงุญุชู…ุงู„
56
00:05:11,260 --> 00:05:17,100
ู‚ูˆูŠ ุฌุฏุงู‹ ุฅู† ูŠูƒูˆู† ู‡ุฐุง Vertical AsymptoteุŒ ู…ุดุงู† ู‡ูŠูƒ
57
00:05:17,100 --> 00:05:21,180
ุจุชุฑูˆุญ ุขุฎุฐ ุงู„ู€ Limit ู„ู…ุง ุงู„ู€ X ุจุฏูŠ ุฃุฑูˆุญ ู„ู„ู€ 2 ู…ู† ุฌู‡ุฉ
58
00:05:21,180 --> 00:05:27,290
ุงู„ูŠู…ูŠู† ุฃูˆ ู…ู† ุฌู‡ุฉ ุงู„ูŠุณุงุฑุŒ ูŠุจู‚ู‰ ุจุฏูŠ ุขุฎุฐ Limit ู„ู…ุง ุงู„ู€ X
59
00:05:27,290 --> 00:05:33,150
ุจุฏูŠ ูŠุฑูˆุญ ู„ู„ู€ ุงุซู†ูŠู† ู…ุซู„ุงู‹ ู…ู† ุฌู‡ุชูŠ ุงู„ูŠุณุงุฑุŒ ู„ู…ู†ุŸ ู„ู„ู€ X
60
00:05:33,150 --> 00:05:38,650
ุฒุงุฆุฏ ุงุซู†ูŠู† ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ X ู†ุงู‚ุต ุงุซู†ูŠู† ุจุฏูŠ ุฃุดูˆู ูƒุฏู‡
61
00:05:38,650 --> 00:05:43,910
ุงู„ุดู‡ุงุฏุฉ ุจุฏู‡ุง ุชุนุทูŠู†ุง ุงู„ุฌูˆุงุจ ูƒุงู„ุชุงู„ูŠุŒ ุชุนูˆูŠุถ ู…ุจุงุดุฑ
62
00:05:43,910 --> 00:05:49,460
ุงุซู†ูŠู† ุฒุงุฆุฏ ุงุซู†ูŠู† ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ุŒ ุฃู†ุง ุฑุงูŠุญ ู„ู„ู€ ุงุซู†ูŠู† ู…ู†
63
00:05:49,460 --> 00:05:54,620
ุฌู‡ุฉ ุงู„ุดู…ุงู„ุŒ ูŠุนู†ูŠ ุฃู‚ู„ ู…ู† ุงุซู†ูŠู† ุจุญุงุฌุฉ ุจุณูŠุทุฉ ุฌุฏุงู‹ุŒ ูŠุจู‚ู‰
64
00:05:54,620 --> 00:05:59,940
ุงู„ู…ู‚ุงู… ู‡ุฐุง ุจูŠูƒูˆู† Very Small Negative QuantityุŒ ูŠุจู‚ู‰
65
00:05:59,940 --> 00:06:06,580
Very Small Negative QuantityุŒ ูŠุจู‚ู‰ ุงู„ุฌูˆุงุจ ุฃุฑุจุนุฉ
66
00:06:06,580 --> 00:06:13,940
ู†ุงู‚ุต InfinityุŒ ูŠุจู‚ู‰ ุงู„ุฌูˆุงุจ ู†ุงู‚ุต InfinityุŒ ุจุงู„ู…ุซู„ ุฃู†ุช
67
00:06:13,940 --> 00:06:17,560
ุจุฏูƒ ุชุฑูˆุญ ุชุดูˆู ููŠ ุงู„ู€ Asymptote ุงู„ุซุงู†ูŠ ูˆุงู„ู„ู‡ ุจุณ ุฃู†ุง
68
00:06:17,830 --> 00:06:23,250
ุฅุญู†ุง ู‡ูŠูƒ ูŠูƒููŠู†ุง ู„ูƒู† ุฅู†ุช ู„ูˆ ุฑูˆุญุช ุดูŠูŠุช ู„ูŠ ู‡ูŠูƒ ู…ุด ุบู„ุท
69
00:06:23,250 --> 00:06:28,190
ุขุฎุฐุช ุงู„ู€ Limit ู„ู…ู†ุŸ ู„ู…ุง ุงู„ู€ X ุจุฏูŠ ูŠุฑูˆุญ ู„ู„ู€ ุงุซู†ูŠู† ู…ู†
70
00:06:28,190 --> 00:06:33,090
ุฌู‡ุฉ ุงู„ูŠู…ูŠู†ุŒ ู„ู„ู€ X ุฒุงุฆุฏ ุงุซู†ูŠู† ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ X ู†ู‚ุต
71
00:06:33,090 --> 00:06:37,710
ุงุซู†ูŠู† ุญุชู‰ ุชู„ุงู‚ูŠู‡ ูŠุจู‚ู‰ ูŠุณุงูˆูŠ ูƒุฏู‡ุŸ Infinity ูŠุจู‚ู‰
72
00:06:37,710 --> 00:06:44,730
ุจู†ุงุก ุนู„ูŠู‡ ุงู„ู€ X ูŠุณุงูˆูŠ ุงุซู†ูŠู† ู‡ุฐุง Main Is A Vertical
73
00:06:44,730 --> 00:06:47,570
Asymptote
74
00:06:53,850 --> 00:06:58,990
ุชู…ุงู…ุŒ ูŠุจู‚ู‰ ู‡ูŠูƒ ุฎู„ุตู†ุง ู„ู„ู€ AsymptotesุŒ ุจุฏู†ุง ู†ูŠุฌูŠ ู„ู…ูŠู†ุŸ
75
00:06:58,990 --> 00:07:02,870
ู„ู„ุงุดุชู‚ุงู‚ ูˆู†ุดูˆู ุงู„ู€ Increasing ูˆ ุงู„ู€ Decreasing ูˆ ุงู„ู€
76
00:07:02,870 --> 00:07:06,610
Local Maximum ูˆ ุงู„ู€ Local MinimumุŒ ุฅุฐุง ุจุฏู†ุง ู†ูŠุฌูŠ
77
00:07:06,610 --> 00:07:13,750
ู†ู‚ูˆู„ ู„ู‡ ุงู„ู€ F of X ุนู†ุฏู†ุง ุงู„ู„ูŠ ู‡ูŠ ู…ูŠู†ุŸ X ุฒุงุฆุฏ 2 ุฒุงุฆุฏ 1
78
00:07:13,750 --> 00:07:20,230
ุนู„ู‰ X ู†ุงู‚ุต 2 ุจุฏู†ุง ู†ุดุชู‚ู‡ุงุŒ ูŠุจู‚ู‰ ุงู„ู€ F Prime of X
79
00:07:20,230 --> 00:07:31,190
ุชุณุงูˆูŠ 1ุŒ ู…ุดุชู‚ุฉ 2 ุจู€ 0ุŒ ุณุงู„ุจ 1 X ู†ุงู‚ุต 2 ู„ูƒู„ ุชุฑุจูŠุนุŒ ู…ู…ูƒู†
80
00:07:31,190 --> 00:07:37,170
ุฃุฎู„ูŠู‡ุง ุจุงู„ุดูƒู„ ู‡ุฐุงุŒ ูˆู…ู…ูƒู† ุฃุญุทู‡ุง ุจุดูƒู„ ุขุฎุฑ ู…ุดุงู† ุฃูุญุฏุฏ
81
00:07:37,170 --> 00:07:41,530
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ูˆูŠู† ุจุชุงุฎุฏ ู‚ูŠู… ู…ูˆุฌุจุฉุŒ ูˆูŠู† ุจุชุงุฎุฏ ู‚ูŠู…
82
00:07:41,530 --> 00:07:47,190
ุณุงู„ุจุฉุŒ ูู„ูˆ ุฌูŠุช ูˆุญุทูŠู‡ุง ูƒู„ ุงู„ู…ู‚ุงู…ุงุช ุจุตูŠุฑ X ู†ุงู‚ุต ุงุซู†ูŠู†
83
00:07:47,190 --> 00:07:53,480
ู„ูƒู„ ุชุฑุจูŠุน ุจู€ X ู†ุงู‚ุต ุงุซู†ูŠู† ู„ูƒู„ ุชุฑุจูŠุน ู†ุงู‚ุต ูˆุงุญุฏุŒ X ู†ุงู‚ุต
84
00:07:53,480 --> 00:07:58,800
ุงุซู†ูŠู† ู„ูƒู„ ุชุฑุจูŠุน ุจุฏุฃุช ููƒ ุชุจุนุช ุงู„ุจุณุทุŒ ู„ุฃู† ู‡ุฐู‡ุŒ ูŠุจู‚ู‰ ู‡ุฐู‡
85
00:07:58,800 --> 00:08:04,700
ู„ูˆ ููƒุชู‡ุง ุจุชุจู‚ู‰ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠุŒ X ุชุฑุจูŠุน ู†ุงู‚ุต ุฃุฑุจุนุฉ
86
00:08:04,700 --> 00:08:12,340
X ุฒุงุฆุฏ ุฃุฑุจุนุฉ ู†ุงู‚ุต ูˆุงุญุฏุŒ ุจู†ุงุก ุนู„ูŠู‡ุง ุฃุตุจุญุช ุงู„ู€ F Prime
87
00:08:12,340 --> 00:08:18,850
of X ุงู…ุง ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุงุŒ ุฃู…ุง ุจุงู„ุดูƒู„ ุงู„ุฌุฏูŠุฏ
88
00:08:18,850 --> 00:08:25,190
ุงู„ุดูƒู„ ุงู„ุฌุฏูŠุฏ ู‡ูˆ X ุชุฑุจูŠุน ู†ุงู‚ุต ุฃุฑุจุนุฉ X ุฒุงุฆุฏ ุซู„ุงุซุฉุŒ X
89
00:08:25,190 --> 00:08:30,830
ู†ุงู‚ุต ุงุซู†ูŠู† ู„ูƒู„ ุชุฑุจูŠุนุŒ ู‡ุฐู‡ ู„ูˆ ุฌูŠุชู‡ุง ุญู„ู„ุช ู‡ูŠุจู‚ู‰ X
90
00:08:30,830 --> 00:08:37,470
ู†ุงู‚ุต ูˆุงุญุฏุŒ X ู†ุงู‚ุต ุซู„ุงุซุฉุŒ X ู†ุงู‚ุต ุงุซู†ูŠู† ู„ูƒู„ ุชุฑุจูŠุนุŒ
91
00:08:37,470 --> 00:08:43,040
ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุงู‡ุฐุง ุฌูŠุฏุŒ ูŠุจู‚ู‰ ุฃุณุนุงุฑ ุงู„ู€ F Prime
92
00:08:43,040 --> 00:08:47,760
ู„ู‡ุง ุดูƒู„ุŒ ุงู„ุดูƒู„ ุงู„ุฃูˆู„ ู‡ูŠ ุงู„ู„ูŠ ููˆู‚ุŒ ูˆุงู„ุดูƒู„ ุงู„ุซุงู†ูŠ ุงู„ู„ูŠ
93
00:08:47,760 --> 00:08:52,640
ู…ู†ู‡ ุชุญุชุŒ ุทุจุนุง ุงู„ู„ูŠ ุชุญุช ุณู‡ู„ ุฌุฏุง ู…ู†ู‡ ุฃูุญุฏุฏ ุฅุดุงุฑุฉ
94
00:08:52,640 --> 00:09:00,120
ุงู„ู…ุดุชู‚ุฉ ุงู„ุฃูˆู„ู‰ุŒ ูŠุจู‚ู‰ ู„ูˆ ุฌูŠุช ุขุฎุฐ ุฅุดุงุฑุฉ X ู†ุงู‚ุต ูˆุงุญุฏ
95
00:09:00,120 --> 00:09:05,220
ุฃู‚ูˆู„ ู‡ุฐุง ุงู„ู€ Real Line ูˆู‡ุฐุง ุงู„ู†ู‚ุทุฉ ุจูŠุงุฎุฏ ุงู„ู€ Zero
96
00:09:05,220 --> 00:09:11,460
ุชุจู‚ู‰ ุนู†ุฏ X ูŠุณุงูˆูŠ ูˆุงุญุฏุŒ ุจุนุฏ ุงู„ูˆุงุญุฏ ูƒู„ู‡ุง Positive ุฒูŠ
97
00:09:11,460 --> 00:09:17,960
ู…ุง ุฅู†ุช ุดุงูŠูุŒ ูˆู‚ุจู„ู‡ ุฅูŠู‡ุŸ Negative ู„ูˆ ุฌูŠุช ุขุฎุฐ ุฅุดุงุฑุฉ
98
00:09:17,960 --> 00:09:23,380
ุงู„ู€ X ู†ุงู‚ุต ุซู„ุงุซุฉุŒ ู‡ุฐุง ุงู„ู€ Real Line ูˆุจูŠุฃุฎุฐ ุงู„ู€ Zero
99
00:09:23,380 --> 00:09:28,980
ุชุจุน ูˆูŠู†ุŸ ุนู†ุฏูŠ ุงู„ุชู„ุงุชุฉ ุจุนุฏ ุงู„ุชู„ุงุชุฉ Positive ูˆู‚ุจู„
100
00:09:28,980 --> 00:09:35,380
ุงู„ุชู„ุงุชุฉ ูƒู„ู‡ NegativeุŒ ุทุจุนุง ุจุฏูŠ ุฃุฑูˆุญ ุขุฌูŠ ุขุฎุฐ ุฅุดุงุฑุฉ ุงู„ู€
101
00:09:35,380 --> 00:09:41,300
X ู†ุงู‚ุต ุงุซู†ูŠู† ู„ูƒู„ ุชุฑุจูŠุนุŒ ุจุชุงุฎุฏ ุงู„ู€ Zero ุชุจุนู‡ุง ุนู†ุฏ
102
00:09:41,300 --> 00:09:46,680
ุงุซู†ูŠู†ุŒ ุจุนุฏ ุงุซู†ูŠู† Positive ูˆู‚ุจู„ ุงุซู†ูŠู† Positive
103
00:09:46,680 --> 00:09:53,910
ู„ุฃู†ู‡ุง ูƒู…ูŠุฉ ู…ุฑุจุนุฉุŒ ููŠุจุฏุฃ ุฅุดุงุฑุฉ ุงู„ู…ู‚ุฏุงุฑ ูƒูƒู„ุŒ X ู†ุงู‚ุต
104
00:09:53,910 --> 00:09:59,850
ูˆุงุญุฏ ููŠ X ู†ุงู‚ุต ุซู„ุงุซุฉ ุนู„ู‰ X ู†ุงู‚ุต ุงุซู†ูŠู† ู„ูƒู„ ุชุฑุจูŠุนุŒ
105
00:09:59,850 --> 00:10:05,330
ูˆู‡ุฐุง ุงู„ู€ Real Line ูˆู‡ูŠ ุงู„ุชู„ุงุชุฉ ูˆู‡ูŠ ุงุซู†ูŠู† ูˆู‡ูŠ ุงู„ูˆุงุญุฏ
106
00:10:05,330 --> 00:10:11,250
ุงุซู†ูŠู† ุชู„ุงุชุฉุŒ ู…ูˆุฌุจุฉ ุณุงู„ุจุฉ ุณุงู„ุจุฉ ู…ูˆุฌุจุฉุŒ ูŠุจู‚ู‰ ุฏู‡ ุงู„ู„ูŠ ู‡ู†ุง
107
00:10:11,250 --> 00:10:15,910
ูƒุงู†ุช Increasing ุตุงุฑุช Decreasing ุจู‚ูŠุช Decreasing
108
00:10:15,910 --> 00:10:21,630
ุตุงุฑุช Increasing ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุงุŒ ูุจุนุฏูŠู† ุจู‚ูˆู„
109
00:10:21,630 --> 00:10:30,310
ุงู„ู€ F Is Increasing ุฏู‡ ุงู„ุชุฒุงูŠุฏูŠุฉ ุนู„ู‰ ุงู„ูุชุฑุฉ ู…ู† ุฅู†
110
00:10:30,310 --> 00:10:34,610
ู…ู† ุณุงู„ุจ Infinity ู„ุบุงูŠุฉ ู…ูŠู†ุŸ ุงู„ูˆุงุญุฏ
111
00:10:37,670 --> 00:10:43,660
ุนู„ู‰ ุงู„ูุชุฑุฉ ุงู„ุซุงู†ูŠุฉ ู…ู† ุนู†ุฏ ุชู„ุงุชุฉ ู„ุบุงูŠุฉ Infinity ุงู„ุขู†
112
00:10:43,660 --> 00:10:52,780
ุงู„ู€ F Is Decreasing ุฏู‡ ุงู„ุชู†ุงู‚ุตูŠุฉ On ุงู„ูุชุฑุฉ ู…ู† ุนู†ุฏ
113
00:10:52,780 --> 00:10:58,040
ุงู„ูˆุงุญุฏ ู„ุบุงูŠุฉ ุงุซู†ูŠู† ูƒูุชุฑุฉ ู…ูุชูˆุญุฉ ู…ูุชูˆุญุฉ ู„ูŠุดุŸ ู„ุฃู† ุฏู‡
114
00:10:58,040 --> 00:11:05,500
ู„ุบูŠุฑ ู…ุนุฑูุฉ ุนู†ุฏ ุงุซู†ูŠู† And On ุงุซู†ูŠู† ู„ุบุงูŠุฉ ุชู„ุงุชุฉ ูˆ
115
00:11:05,500 --> 00:11:09,760
ู…ุบู„ู‚ุฉ ู…ู† ุนู†ุฏ ุงุซู†ูŠู†ุŒ ู…ู† ุนู†ุฏ ุงู„ุชู„ุงุชุฉ ุทุจุนุง ูˆุงุถุญ ุฅู† ุนู†ุฏูŠ
116
00:11:09,760 --> 00:11:15,440
ุงู„ูˆุงุญุฏ ููŠู‡ Local ูˆุนู†ุฏูŠ ุงู„ุชู„ุงุชุฉ ููŠู‡ Local ูˆุงุซู†ูŠู†
117
00:11:15,440 --> 00:11:20,860
ู…ุง ููŠุด ู„ุฅู†ู‡ ุธู„ุช ู†ุงุฒู„ุฉ ูˆุธู„ุช ู†ุงุฒู„ุฉุŒ ุทูŠุจ ุจุฏู†ุง ู†ุฑูˆุญ ู†ุฌูŠุจ
118
00:11:20,860 --> 00:11:27,100
ู„ู‡ F of ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูˆ ูˆุงุญุฏ ุชุฑุจูŠุน ู†ุงู‚ุต ุชู„ุงุชุฉ ุนู„ู‰
119
00:11:27,100 --> 00:11:31,940
ูˆุงุญุฏ ู†ุงู‚ุต ุงุซู†ูŠู†ุŒ ูˆูŠุณุงูˆูŠ ู†ุงู‚ุต ุงุซู†ูŠู† ุนู„ู‰ ู†ุงู‚ุต ูˆุงุญุฏุŒ
120
00:11:31,940 --> 00:11:38,470
ูŠุณุงูˆูŠ ู‚ุฏุงุดุŸ ุงุซู†ูŠู†ุŒ ุจู†ุฌูŠุจ ู„ู‡ F of ุชู„ุงุชุฉ ุงู„ู„ูŠ ู‡ูˆ ุจุฏู‡
121
00:11:38,470 --> 00:11:43,610
ูŠุณุงูˆูŠ ุชู„ุงุชุฉ ุชุฑุจูŠุน ู†ุงู‚ุต ุชู„ุงุชุฉ ุนู„ู‰ ุชู„ุงุชุฉ ู†ุงู‚ุต ุงุซู†ูŠู†
122
00:11:43,610 --> 00:11:50,680
ูˆูŠุณุงูˆูŠ ูƒุฏู‡ ุฅูŠุดุŸ ุณุชุฉุŒ ุฅุฐุง ู…ู† ู‡ุฐุง ุงู„ูƒู„ุงู… ุจู†ู‚ูˆู„ ุงู„ู€ F Has
123
00:11:50,680 --> 00:12:01,980
Local Maximum ุงุซู†ูŠู† At X ุชุณุงูˆูŠ ูˆุงุญุฏ And Local
124
00:12:01,980 --> 00:12:10,870
Minimum And Local Minimum ุณุชุฉ At X ุชุณุงูˆูŠ ุชู„ุงุชุฉ ู…ุด
125
00:12:10,870 --> 00:12:14,390
ู‡ุชุฑูˆุญ ุชุณุชุบุฑุจ ูˆุชู‚ูˆู„ ุงู„ู€ Local Maximum ุงุซู†ูŠู† ูˆ ุงู„ู€
126
00:12:14,390 --> 00:12:19,070
Local Minimum ุณุชุฉุŒ ู„ุง ุบุฑุงุจุฉ ููŠ ุฐู„ูƒ ูˆุฒูŠ ู…ุง ู‡ู†ุดูˆู
127
00:12:19,070 --> 00:12:24,870
ุงู„ุขู† ู…ู† ุฎู„ุงู„ ุงู„ู€ Main ู…ู† ุฎู„ุงู„ ุงู„ุฑุณู…ุŒ ุฎู„ุตู†ุง ู‚ุตุฉ
128
00:12:24,870 --> 00:12:29,350
ุงู„ู…ุดุชู‚ุฉ ุงู„ุฃูˆู„ู‰ุŒ ุจุฏู†ุง ู†ุฑูˆุญ ู„ู…ูŠู†ุŸ ู„ู„ู…ุดุชู‚ุฉ ุงู„ุซุงู†ูŠุฉุŒ
129
00:12:29,350 --> 00:12:35,190
ุจุฏู†ุง ู†ุฑูˆุญ ู„ู„ู€ F Double Prime of XุŒ ู…ูŠู† ุฃุณู‡ู„ุŸ ู†ุดุชู‚
130
00:12:35,190 --> 00:12:38,770
ุงู„ู„ูŠ ููŠ ุงู„ู…ุฑุจุน ู‡ุฐู‡ ูˆู„ุง ุงู„ู„ูŠ ุชุญุชุŸ ุงู„ู„ูŠ ููŠ ุงู„ู…ุฑุจุน
131
00:12:38,770 --> 00:12:44,920
ุงู„ุณุงู„ูŠ ูƒุชูŠุฑุŒ ูŠุจู‚ู‰ ู…ุดุชู‚ุฉ ุงู„ูˆุงุญุฏ ุจู€ Zero ูˆู…ุดุชู‚ุฉ ู‡ุฐุง ุจู€
132
00:12:44,920 --> 00:12:52,440
ุณุงู„ุจ ุณุงู„ุจ ุงุซู†ูŠู† ุนู„ู‰ ุงู„ู…ู‚ุฏุงุฑ ุชูƒุนูŠุจุŒ ูŠุนู†ูŠ ุงุซู†ูŠู† ุนู„ู‰
133
00:12:52,440 --> 00:12:55,620
X ู†ุงู‚ุต ุงุซู†ูŠู† ู„ูƒู„ ุชูƒุนูŠุจุŒ
134
00:12:58,610 --> 00:13:04,470
ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู…ุดุชู‚ุฉ ุงู„ุซุงู†ูŠุฉ ู…ุจุงุดุฑุฉุŒ ุทูŠุจ ู„ูˆ ู‚ู„ุช ู‡ุฐู‡
135
00:13:04,470 --> 00:13:09,310
ุชุณุงูˆูŠ Zero ูู‡ูŠ ู„ู‡ุง ุญู„ ูŠุนู†ูŠ ุงุซู†ูŠู† ุชุณุงูˆูŠ Zero ู…ู…ูƒู†
136
00:13:09,310 --> 00:13:14,590
ูŠุจู‚ู‰ ู…ุง ููŠุด ุฅู…ูƒุงู†ูŠุฉุŒ ุทูŠุจ ุงู„ู…ุดุชู‚ุฉ ุงู„ุซุงู†ูŠุฉ ุบูŠุฑ ู…ุนุฑูุฉ ูˆูŠู†ุŸ
137
00:13:14,590 --> 00:13:20,470
ุนู†ุฏ ุงุซู†ูŠู†ุŒ ููŠ ุนู†ุฏ ุงุซู†ูŠู† Inflection PointุŒ ุจู†ุดูˆู ุฅุฐุง
138
00:13:20,470 --> 00:13:24,310
ุงู„ุฏุงู„ุฉ ู…ุชุตู„ุฉ ูˆู„ุง ู„ุงุŒ ูˆููŠ Concavity ูˆู„ุง ู„ุงุŒ ูˆุงุถุญ ุฅู†ู‡
139
00:13:24,310 --> 00:13:28,640
ุนู†ุฏ ุงุซู†ูŠู† ุงู„ุฏุงู„ุฉ ุบูŠุฑุŒ ุฅุฐุง ู„ูŠู‡ ูŠู…ูƒู† ุชุจู‚ู‰ ุงู„ุงุซู†ูŠู†
140
00:13:28,640 --> 00:13:34,360
Inflection Point ุนู„ู‰ ุงู„ุฅุทู„ุงู‚ุŒ ุฅุฐุง ุจุฏู†ุง ู†ุฑูˆุญ ุขุฎุฐ ุฅุดุงุฑุฉ
141
00:13:34,360 --> 00:13:38,420
ุงู„ุงุซู†ูŠู† ุทุจุนุง ู…ูˆุฌุจุฉ ุนู„ู‰ ุทูˆู„ ุงู„ุฎุท ู…ุง ุนู†ุฏูŠ ู…ุดูƒู„ุฉุŒ ูŠุจู‚ู‰
142
00:13:38,420 --> 00:13:43,900
ุงู„ู…ุดูƒู„ุฉ ููŠ ุฅุดุงุฑุฉ ู…ูŠู†ุŸ X ู†ุงู‚ุต ุงุซู†ูŠู†ุŒ ูŠุจู‚ู‰ ุจุฏู‡ ูŠูƒูˆู†
143
00:13:43,900 --> 00:13:50,120
ูŠู‚ูˆู„ ู„ู‡ ุฅุดุงุฑุฉ ุงู„ุงุซู†ูŠู† ุนู„ู‰ X ู†ุงู‚ุต ุงุซู†ูŠู† ู„ูƒู„ ุชูƒุนูŠุจุŒ
144
00:13:50,120 --> 00:13:56,700
ูˆูŠู‚ูˆู„ ู„ู‡ ู‡ุฐุง ุงู„ุฑู‚ู… ุงู„ู„ูŠ ู‡ูˆ ุงู„ุงุซู†ูŠู†ุŒ ุฅุฐุง ู„ูˆ ุฌูŠุช ุจุนุฏ
145
00:13:56,700 --> 00:14:01,060
ุงุซู†ูŠู† ุฒูŠ ุชู„ุงุชุฉ ู…ุซู„ุงู‹ุŒ ุจุณ ูŠู‚ูˆู„ ุงู„ุจู†ุฌูˆ ุณูŠู† ู‡ุฐุง ู…ุงู„ู‡
146
00:14:01,060 --> 00:14:07,480
ู…ูˆุฌุจุŒ ูˆุงู„ู„ูŠ ููˆู‚ ู…ูˆุฌุจ ุนู„ู‰ ู…ูˆุฌุจ ุจู…ูˆุฌุจุŒ ู„ูˆ ุฌูŠุช ู‚ุจู„
147
00:14:07,480 --> 00:14:12,900
ุงุซู†ูŠู† ุฒูŠ ูˆุงุญุฏุŒ ูŠุจู‚ู‰ ุงู„ุจู†ุฌูˆ ุณูŠู† ุณุงู„ุจุŒ ูˆุงุญุฏ ุชูƒุนูŠุจ ุจุณุงู„ุจุŒ
148
00:14:12,900 --> 00:14:16,660
ุงุซู†ูŠู† ุนู„ู‰ ูƒู…ูŠุฉ ุณุงู„ุจุฉ ุจูƒู…ูŠุฉ ุณุงู„ุจุฉุŒ ูŠุจู‚ู‰ ุงู„ู„ูŠ ู‚ุจู„ู‡
149
00:14:16,660 --> 00:14:22,500
ุณุงู„ุจุฉุŒ ูŠุจู‚ู‰ Concave DownุŒ ู‡ุฐู‡ Concave UpุŒ ูŠุจู‚ู‰ ุจุงุฌูŠ
150
00:14:22,500 --> 00:14:35,850
ุจู‚ูˆู„ ู„ู‡ The Graph Is Concave Down ุนู„ู‰ ุงู„ูุชุฑุฉ ู…ู†
151
00:14:35,850 --> 00:14:46,130
ุณุงู„ุจ Infinity ู„ุบุงูŠุฉ ุงุซู†ูŠู†ุŒ And Concave Up On ุงู„ูุชุฑุฉ
152
00:14:46,130 --> 00:14:50,870
ู…ู† ุงุซู†ูŠู† ู„ุบุงูŠุฉ InfinityุŒ ุนู†ุฏ ุงุซู†ูŠู† ู…ุง ุนู†ุฏูŠุด
153
00:14:50,870 --> 00:14:56,730
Inflection Point ู„ุฃู† ุงู„ุฏุงู„ุฉ ุบูŠุฑ ู…ุนุฑูุฉุŒ No
154
00:14:56,730 --> 00:15:02,410
Inflection Point
155
00:15:02,410 --> 00:15:16,530
At X ูŠุณุงูˆูŠ ุงุซู†ูŠู† Because ุงู„ู€ F Is Discontinuous
156
00:15:16,530 --> 00:15:18,710
At
157
00:15:27,090 --> 00:15:31,750
ุชุจู‚ู‰ ุงู„ุฏุงู„ุฉ ู…ู‚ุชุตุฑุฉ ุนู†ุฏ ู‡ุฐู‡ ุงู„ู†ู‚ุทุฉ ุงุซู†ูŠู†ุŒ ุงุชุฏุงู„ุฉ
158
00:15:31,750 --> 00:15:35,790
ุชุบูŠุฑ ุงุชุฌุงู‡ ุงู„ู€ Concavity ูุนู„ุงู‹ ุบูŠุฑุช ุงุชุฌุงู‡ ุงู„ู€ Concavity
159
00:15:37,590 --> 00:15:43,210
ุงู„ุขู† ู…ู† ุฎู„ุงู„ ุงู„ู…ุนู„ูˆู…ุงุช ุงู„ู„ูŠ ุนู†ุฏู†ุงุŒ ุจู†ุงุฑูˆุญ ู†ุฑุณู… ุฑุณู…ุฉ
160
00:15:43,210 --> 00:15:49,270
ู‡ุฐู‡ ุงู„ู€ FunctionุŒ ู‡ุฐู‡ ุงู„ุดุฌุฉ ูƒู„ู‡ุง ุนู†ุฏู†ุงุŒ ุจุณ ุชู„ุช ู†ู‚ุงุท
161
00:15:49,270 --> 00:15:52,710
ู„ู„ุงุซู†ูŠู† ู‡ุฏูˆู„ ุงู„ู„ูŠ ู‡ูˆ Zero ูˆุชู„ุงุชุฉ ุนู„ู‰ ุงุซู†ูŠู† ูˆุณุงู„ุจ ุฌุฏุฑ
162
00:15:52,710 --> 00:15:56,770
ุชู„ุงุชุฉ ูˆ Zero ูˆุฌุฏุฑ ุชู„ุงุชุฉ ูˆ Zero ุนู† X ูŠุณุงูˆูŠ ุงุซู†ูŠู†
163
00:15:56,770 --> 00:16:00,230
ุงู„ู„ูŠ ู‡ูˆ Oblique Asymptote ูˆ X ูŠุณุงูˆูŠ ุงุซู†ูŠู† ุงู„ู„ูŠ ู‡ูˆ
164
00:16:00,230 --> 00:16:06,290
Vertical AsymptoteุŒ ูŠุจู‚ู‰ ู…ู† ุฎู„ุงู„ ู‡ุฐู‡ ุงู„ู…ุนู„ูˆู…ุงุช ุงู„ุชูŠ
165
00:16:06,290 --> 00:16:12,530
ุญุตู„ ุนู„ูŠู‡ุง ุฃู† ู†ุฑูˆุญ ู†ุนุฑู ู…ุง ู‡ูˆ ุดูƒู„ ุงู„ุฑุณู… ุงู„ุจูŠุงู†ูŠ
166
00:16:12,530 --> 00:16:15,210
ู„ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ
167
00:16:28,400 --> 00:16:34,080
ู„ูˆ ุฅู† ู‡ุฐุง ู…ุญูˆุฑ X ู‡ุฐุง ู…ุญูˆุฑ Y ู‡ุฐู‡ ู†ู‚ุทุฉ ุงู„ุฃุตู„ ุงู„ู„ูŠ ู‡ูŠ
168
00:16:34,080 --> 00:16:38,380
ZeroุŒ ู‚ู„ุช ู„ูƒ ู„ู…ุง ุชูŠุฌูŠ ุชุฑุณู… ุฃูˆู„ ุดุบู„ุฉ ุชุฑูˆุญ ุชุฑุณู…ู‡ุง
169
00:16:38,380 --> 00:16:42,560
ู„ูŠู‡ ุงู„ู€ AsymptoteุŸ ูŠุจู‚ู‰ ุฃู†ุง ูƒุงู† ุนู†ุฏูŠ ุฃูˆู„ Asymptote
170
00:16:4
201
00:19:37,770 --> 00:19:43,580
ู‡ูˆ ุฃูŠ ุชุณุงุคู„ ู‡ู†ุงุŸ ุทูŠุจุŒ ุงู„ุญูŠู† ู‡ุฐุง ุฃูˆ ุงู„ุฃุณุฆู„ุฉ ุงู„ู„ูŠ
202
00:19:43,580 --> 00:19:48,500
ูุงุชุชุŒ ู‡ุฐุง ู‡ุฐุง ุงู„ุณุคุงู„ ูˆุงู„ุฃุณุฆู„ุฉ ุงู„ุณุงุจู‚ุฉ ูƒู„ู‡ุง ุจู„ูˆู†
203
00:19:48,500 --> 00:19:55,480
ูˆุงุญุฏุŒ ุจุฏู†ุง ู†ุญุงูˆู„ ู†ุนุทูŠูƒ ุณุคุงู„ ุจู„ูˆู† ุขุฎุฑ ูŠุฎุชู„ู ุนู† ุดูƒู„
204
00:19:55,480 --> 00:20:02,460
ุงู„ู…ุณุงุฆู„ ุงู„ุณุงุจู‚ุฉ ูƒู„ูŠู‹ุงุŒ ุงู„ุณุคุงู„ ุจูŠู‚ูˆู„ ุฅูŠู‡ุŸ ุจูŠู‚ูˆู„ ูŠุฑุณู…
205
00:20:02,460 --> 00:20:14,400
ู„ู„ู€ functionุŒ ุณุคุงู„ ุฎู…ุณุฉุŒ ุฃูุฑุณู… ููŠ ุงู„ู€ function f of x
206
00:20:14,400 --> 00:20:21,720
ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€ cosine ุงู„ู€ x ุฒุงุฆุฏ ุฌุฐุฑ ุซู„ุงุซุฉ sine ุงู„ู€
207
00:20:21,720 --> 00:20:27,580
x ูˆุงู„ู€ x ู‡ุฐู‡ ุฃูƒุจุฑ ู…ู† ุฃูˆ ุชุณุงูˆูŠ zeroุŒ ู‡ูˆ ุฃู‚ู„ ู…ู† ุฃูˆ
208
00:20:27,580 --> 00:20:34,580
ูŠุณุงูˆูŠ ุงุซู†ูŠู† ุจุงูŠุŒ ุทุจุนู‹ุง ู„ูˆ ู†ุธุฑุช ู„ู‡ุฐุง ุงู„ุณุคุงู„ ูŠุฎุชู„ู ูƒู„ูŠู‹ุง
209
00:20:34,580 --> 00:20:39,040
ุนู† ุงู„ู…ุซุงู„ ุงู„ุณุงุจู‚ ููŠ ุดูƒู„ู‡ุŒ ุฌุงุจ ุงู„ู€ beginner ูŠู‚ูˆู„
210
00:20:39,040 --> 00:20:42,900
polynomial ูŠุง ุฅู…ุง rational functionุŒ polynomial ููŠ
211
00:20:42,900 --> 00:20:49,280
ุงู„ุจุณุท ูˆ polynomial ููŠ ุงู„ู…ู‚ุงู…ุŒ ุฅุฐุง ู‡ุฐุง ูŠุฎุชู„ูุŒ ู†ุดูˆู
212
00:20:49,280 --> 00:20:53,600
ูƒูŠู ู†ุญู„ ุงู„ุณุคุงู„ ู…ู† ู‡ุฐุง ุงู„ู‚ุจูŠู„.
213
00:21:09,690 --> 00:21:16,580
ุดูˆู ูŠุง ุฒู„ู…ูŠุŒ ุฃู†ุง ุจุฏูŠ ุฃู‚ุชุตุฑ ุงู„ุฑุณู…ุฉ ูู‚ุท ุนู„ู‰ ุงู„ู€
214
00:21:16,580 --> 00:21:21,800
interval ู…ู† ุตูุฑ ู„ุบุงูŠุฉ ุงุซู†ูŠู† ุจุงูŠุŒ ูŠุนู†ูŠ ุงู„ู€ period ุชุจุน
215
00:21:21,800 --> 00:21:25,580
ุงู„ู€ sine ูˆู†ูุณ ุงู„ู€ period ุชุจุน ุงู„ู€ cosineุŒ ุจุฏูŠ ุฃุนุฑู
216
00:21:25,580 --> 00:21:30,840
ู…ุง ู‡ูˆ ุดูƒู„ ู‡ุฐู‡ ุงู„ุฏุงู„ุฉุŒ ุจู†ู‚ูˆู„ู‡ ุจุณูŠุทุฉ ุฌุฏู‹ุงุŒ ุฅุฐุง ุฃู†ุง ุจุฏูŠ
217
00:21:30,840 --> 00:21:36,920
ุฃุดูˆู ู…ู† ูˆูŠู† ุจุฏู‡ุง ุชุจุฏุฃุŒ ุจุฏู„ ู…ุง ุขุฎุฐ ุชู‚ุงุทุน ู…ู†ุญู†ู‰ ู…ุน
218
00:21:36,920 --> 00:21:42,130
ู…ุญูˆุฑ ุงู„ุฅุญุฏุงุซูŠุงุช ุจุฏูŠ ุฃุดูˆู ู…ู† ูˆูŠู† ุจุฏู‡ุง ุชุจุฏุฃุŒ ุฅุฐุง ู„ูˆ ุฌูŠุช
219
00:21:42,130 --> 00:21:48,090
ุฃุฎุฐุช F of ZeroุŒ ูŠุจู‚ู‰ F of Zero ุจุฏู‡ ุชุณุงูˆูŠ Cos Zero
220
00:21:48,090 --> 00:21:53,110
ุฒุงุฆุฏ ุฌุฐุฑ ุซู„ุงุซุฉ Sine ZeroุŒ Sine Zero ุจู€ Zero ูˆ Cos ุงู„ุตูุฑ
221
00:21:53,110 --> 00:21:59,010
ูŠุจู‚ู‰ ุฏุงูŠุณุฑ ุจูˆุงุญุฏุŒ ู„ูˆ ุฑุญุช ู‚ู„ุช ู„ูƒ ุจุฏูŠ ุขุฎุฐ ูƒู…ุงู† F of
222
00:21:59,010 --> 00:22:06,490
ุงุซู†ูŠู† ุจุงูŠุŒ ูŠุจู‚ู‰ Cos ุงุซู†ูŠู† ุจุงูŠ ุฒุงุฆุฏ ุฌุฐุฑ ุซู„ุงุซุฉ Sine
223
00:22:06,490 --> 00:22:11,570
ุงุซู†ูŠู† ุจุงูŠุŒ ู‡ุฐู‡ Zero ูˆู‡ุฐู‡ ูˆุงุญุฏุฉุŒ ูŠุจู‚ู‰ ูˆุงุญุฏุŒ ู…ุนู†ุงุชู‡ ู‡ุฐุง
224
00:22:11,570 --> 00:22:20,210
ุงู„ูƒู„ุงู…ุŒ the points ุงู„ู†ู‚ุงุท ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ zero ูˆุงุญุฏ and
225
00:22:20,210 --> 00:22:30,530
ุงุซู†ูŠู† ุจุงูŠ ูˆุงุญุฏุŒ lie on the graphุŒ ู‡ุฐุง ุจุฏู„ ุฃู‚ูˆู„ ุชู‚ุงุทุน
226
00:22:30,530 --> 00:22:34,590
ู…ุน ู…ุญูˆุฑ ุงู„ุฅุญุฏุงุซูŠุงุชุŒ ุทุจุนู‹ุง ุงู„ุดุบู„ุฉ ู‡ุฐู‡ ุงู„ุฃูˆู„ู‰ ุฌุงุจุช
227
00:22:34,590 --> 00:22:40,390
ู„ุชู‚ุงุทุน ู…ุน ู…ุญูˆุฑ YุŒ ู‡ุฐู‡ ุงู„ุซุงู†ูŠุฉ ุจุฏุฃุช ุชุฌูŠุจ ู„ูŠ ูˆูŠู†
228
00:22:40,390 --> 00:22:44,790
ุจูŠู†ุชู‡ูŠ ุงู„ู…ู†ุญู†ู‰ุŒ ู„ูƒู† ู‡ุฐู‡ ูˆูŠู† ุจูŠุจุฏุฃ ุงู„ู…ู†ุญู†ู‰ ูˆู‡ุฐู‡ ูˆูŠู†
229
00:22:44,790 --> 00:22:49,150
ุจูŠู†ุชู‡ูŠ ุงู„ู…ู†ุญู†ู‰ุŒ ุฎู„ูŠ ุงู„ุชู‚ุงุทุน ู…ุน ู…ุญูˆุฑ X ู†ุฌูŠุจู‡ ุงู„ุขู†
230
00:22:49,150 --> 00:22:55,130
ุจุทุฑูŠู‚ุฉ ุซุงู†ูŠุฉุŒ ุทุจ ู…ุดุงู† ู‡ูŠูƒุŒ ุฅุฐุง ุจุฏูŠ ุฃุจุฏุฃ ุดุบู„ูŠ ููŠ ุนู†ุฏูŠ
231
00:22:55,130 --> 00:22:59,670
ุญุงุฌุฉ ุงุณู…ู‡ุง ู‚ุณู…ุฉ ุชู‡ูŠูŠู†ุฉุŒ ู„ุฃุŒ ูŠุจู‚ู‰ ู‚ุตุฉ ู„ูˆ ู‚ุณู…ุช ุงู„ุตูุฉ
232
00:22:59,670 --> 00:23:04,600
ุนู„ู‰ ุดุฌุฑุฉ ูŠุจู‚ู‰ ุชุฑูˆุญ ู„ู…ูŠู†ุŸ ู„ู„ู…ุดุชู‚ุฉุŒ ูˆุดูˆู ูƒูŠู ุจุฏูŠ ุฃุญุณุจู‡ุง.
233
00:23:04,600 --> 00:23:11,060
ุฅุฐุง ุฃู†ุง ุจุฏูŠ ุฃุฌูŠุจ ุงู„ู€ F prime of XุŒ ู…ุดุชู‚ุฉ ุงู„ู€ cos ุจุณุงู„ุจ
234
00:23:11,060 --> 00:23:19,610
sin X ุฒุงุฆุฏ ุฌุฐุฑ ุซู„ุงุซุฉ ููŠ cos XุŒ ู‡ุฐู‡ ู‡ู‡ู‡ ู…ุด ุฒูŠ
235
00:23:19,610 --> 00:23:22,990
ุงู„ู…ุดุชู‚ุงุช ุงู„ู„ูŠ ูุนู„ู‡ุง ุชุญุท ุฃุฌูˆุฒ ูˆุชุดูˆู ุดุฑุท ุงู„ุฌูˆุฒ
236
00:23:22,990 --> 00:23:27,370
ุงู„ุฃูˆู„ ูˆุงู„ุซุงู†ูŠุŒ ูˆุงุถุฑุจ ุฃูˆ ุงู‚ุณู…ุŒ ูˆุชุทู„ุน ุงู„ุฅุดุงุฑุงุชุŒ ู‡ุฐู‡
237
00:23:27,370 --> 00:23:30,850
ุตุงุฑ ููŠู‡ุง ู…ุดูƒู„ุฉุŒ ู…ุง ููŠ ุนู†ุฏู‡ุง ุฃุฌูˆุฒ ูˆู…ุง ููŠ ุนุงู…ู„ ู…ุดุฑูƒุฉ
238
00:23:30,850 --> 00:23:36,070
ูˆูƒุฐุง ุจุณูŠุทุฉุŒ ุจู†ุณุฃู„ูƒ ุงู„ุณุคุงู„ ุงู„ุชุงู„ูŠุŒ ู‡ู„ ู‡ู†ุงูƒ ู†ู‚ุทุฉ ู‡ุฐู‡
239
00:23:36,070 --> 00:23:40,390
ุงู„ู…ุดุชู‚ุฉ ุบูŠุฑ ู…ุนุฑูุฉ ุนู†ุฏู‡ุง ุนู„ู‰ ุงู„ูุชุฑุฉ ู…ู† Zero ู„ุฅุซู†ูŠู†
240
00:23:40,390 --> 00:23:44,550
ุจุงูŠุŒ ู„ุง ู…ู† zero ู„ู„ุงุซู†ูŠู† ุจุงูŠ ูˆู„ุง ุญุชู‰ ู„ูƒู„ ุงู„ู€ real life
241
00:23:44,550 --> 00:23:47,930
ูƒู„ู‡ุง ู…ุนุฑูุฉ ุนู„ู‰ ุงู„ูƒู„ุŒ ูŠุจู‚ู‰ ู…ุนู‡ุง ุฅู† ุฏู‡ ู…ุดูƒู„ุฉ ููŠู‡ุงุŒ ุฏู‡
242
00:23:47,930 --> 00:23:53,570
ุฅุฐุง ุงู„ู…ุดูƒู„ุฉ ูˆุงุฌู‡ุชู‡ุง ุฏูŠุŒ ุจุฏุฃุช ุฃุณุงูˆูŠ ZeroุŒ ุฃุจุฏุฃ ุฃุญุท ู‡ุฐู‡
243
00:23:53,570 --> 00:23:59,050
ุชุณุงูˆูŠ Zero ูˆุจุฃุฌูŠ ุจุฃุญู„ ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ุŒ ุฅุฐุง ู‡ุฐู‡ ู„ูˆ ู†ุฒู„ู†ุง
244
00:23:59,050 --> 00:24:03,650
ุงู„ู€ sin ุนู„ู‰ ุงู„ุดุฌุฑุฉ ุงู„ุซุงู†ูŠุฉ ุจุตูŠุฑ ุฅู† ุงู„ู€ sin ุงู„ู€ x
245
00:24:03,650 --> 00:24:10,730
ุจูŠุณุงูˆูŠ ุฌุฐุฑ ุซู„ุงุซุฉ ููŠ cosine ุงู„ู€ xุŒ ุฃู‚ุณู… ุนู„ู‰ cosine
246
00:24:10,730 --> 00:24:18,030
ุจูŠุตูŠุฑ sin ุนู„ู‰ cosineุŒ tan ุงู„ู€ x ุจูŠุณุงูˆูŠ ุฌุฐุฑ ุซู„ุงุซุฉ.
247
00:24:18,390 --> 00:24:23,950
ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฅู† ุงู„ู€ X ุจุชุชุณุงูˆูŠ ุฃุจุตุฑ ู‚ุฏ ุฅูŠุดุŒ ุชุนุงู„ูŽ
248
00:24:23,950 --> 00:24:28,290
ู†ุณุฃู„ูƒ ุงู„ุณุคุงู„ ุงู„ุชุงู„ู ุงู„ุธู„ ุทู„ุน ู‚ูŠู…ุฉ ู…ูˆุฌุจ ูˆุงู„ู„ู‡ ุณุงู„ุจ.
249
00:24:28,290 --> 00:24:33,350
ุขู‡ ู…ูˆุฌุจุŒ ุขู‡ ุงู„ุธู„ ูŠูƒูˆู† ู…ูˆุฌุจ ููŠ ุฃูŠ ุงู„ุฑุจุน ุงู„ุฃูˆู„
250
00:24:33,350 --> 00:24:37,890
ูˆุงู„ุฑุงุจุนุŒ ุฅุฐุง ุฃู†ุง ุนู†ุฏูŠ ุจุฏู„ ุงู„ุฒุงูˆูŠุฉ ุฒุงูˆูŠุชูŠู†ุŒ ูŠุนู†ูŠ ุนู†ุฏูŠ
251
00:24:37,890 --> 00:24:43,380
ู†ู‚ุทุชูŠู†ุŒ ุงู„ุซุงู†ูŠ ุนู†ุฏู‡ู… ุจุฏูŠ ูŠุณุงูˆูŠ ุฌุฏุงุด ุฌุฐุฑ ุซู„ุงุซุฉุŒ ูŠุนู†ูŠ
252
00:24:43,380 --> 00:24:47,640
ุงู„ู…ุดุชู‚ุฉ ุจุฏู‡ุง ุชุณุงูˆูŠ ุฌุฏุงุด ูˆุฅู† ุงู„ู…ุดุชู‚ุฉ ู‡ูŠ ุงู„ู…ุดุชู‚ุฉ ู‡ูŠ
253
00:24:47,640 --> 00:24:48,040
ุงู„ู…ุดุชู‚ุฉ ู‡ูŠ ุงู„ู…ุดุชู‚ุฉ ู‡ูŠ ุงู„ู…ุดุชู‚ุฉ ู‡ูŠ ุงู„ู…ุดุชู‚ุฉ ู‡ูŠ
254
00:24:48,040 --> 00:24:48,240
ุงู„ู…ุดุชู‚ุฉ ู‡ูŠ ุงู„ู…ุดุชู‚ุฉ ู‡ูŠ ุงู„ู…ุดุชู‚ุฉ ู‡ูŠ ุงู„ู…ุดุชู‚ุฉ ู‡ูŠ
255
00:24:48,240 --> 00:24:50,040
ุงู„ู…ุดุชู‚ุฉ ู‡ูŠ ุงู„ู…ุดุชู‚ุฉ ู‡ูŠ ุงู„ู…ุดุชู‚ุฉ ู‡ูŠ ุงู„ู…ุดุชู‚ุฉ ู‡ูŠ
256
00:24:50,040 --> 00:24:53,680
ุงู„ู…ุดุชู‚ุฉ ู‡ูŠ ุงู„ู…ุดุชู‚ุฉ ู‡ูŠ ุงู„ู…ุดุชู‚ุฉ ู‡ูŠ ุงู„ู…ุดุชู‚ุฉ ู‡ูŠ
257
00:24:53,680 --> 00:24:55,000
ุงู„ู…ุดุชู‚ุฉ ู‡ูŠ ุงู„ู…ุดุชู‚ุฉ ู‡ูŠ ุงู„ู…ุดุชู‚ุฉ ู‡ูŠ ุงู„ู…ุดุชู‚ุฉ ู‡ูŠ
258
00:24:55,000 --> 00:24:55,320
ุงู„ู…ุดุชู‚ุฉ ู‡ูŠ ุงู„ู…ุดุชู‚ุฉ ู‡ูŠ ุงู„ู…ุดุชู‚ุฉ ู‡ูŠ ุงู„ู…ุดุชู‚ุฉ ู‡ูŠ
259
00:24:55,320 --> 00:24:55,960
ุงู„ู…ุดุชู‚ุฉ ู‡ูŠ ุงู„ู…ุดุชู‚ุฉ ู‡ูŠ ุงู„ู…ุดุชู‚ุฉ ู‡ูŠ ุงู„ู…ุดุชู‚ุฉ ู‡ูŠ
260
00:24:55,960 --> 00:24:56,100
ุงู„ู…ุดุชู‚ุฉ ู‡ูŠ ุงู„ู…ุดุชู‚ุฉ ู‡ูŠ ุงู„ู…ุดุชู‚ุฉ ู‡ูŠ ุงู„ู…ุดุชู‚ุฉ ู‡ูŠ
261
00:24:56,100 --> 00:25:00,820
ุงู„ู…ุดุชู‚ุฉ ู‡ูŠ ุงู„ู…ุดุชู‚ุฉ ู‡ูŠ ุงู„ู…ุดุชู‚ุฉุŒ ุซู„ุงุซุฉ ูŠุนู†ูŠ ุณุชูŠู† ุฏุฑุฌุฉ.
262
00:25:00,820 --> 00:25:06,960
ูŠุจู‚ู‰ X ุจุฏู‡ุง ุชุณุงูˆูŠ ุจุงูŠ ุนู„ู‰ ุซู„ุงุซุฉ ูˆุงู„ู€ X ุงู„ุซุงู†ูŠุฉ ุจุฏู‡ุง
263
00:25:06,960 --> 00:25:10,920
ุชุณุงูˆูŠ ููŠ ุงู„ุฑุจุน ุงู„ุซุงู„ุซ ูŠุจู‚ู‰ ุจุณูŠุทุฉ ุฌุฏู‹ุงุŒ ู…ุฆุฉ ูˆุซู…ุงู†ูŠู†
264
00:25:10,920 --> 00:25:16,120
ูˆุจุณ ุฃุถูŠู ุนู„ูŠู‡ุง ุจุงูŠ ุนู„ู‰ ุซู„ุงุซุฉุŒ ู…ุฆุฉ ูˆุซู…ุงู†ูŠู† ุฒุงุฆุฏ
265
00:25:16,120 --> 00:25:20,660
ุจุงูŠ ุนู„ู‰ ุซู„ุงุซุฉุŒ ุงู„ู„ูŠ ู‡ูˆ ูƒุฏุงุด ุฃุฑุจุนุฉ ุจุงูŠ ุนู„ู‰ ุซู„ุงุซุฉ.
266
00:25:20,660 --> 00:25:26,820
ูŠุจู‚ู‰ ุฃุฑุจุนุฉ ุจุงูŠ ุนู„ู‰ ุซู„ุงุซุฉุŒ ูŠุจู‚ู‰ ู‡ุฐูˆู„ ุฅูŠุด ูŠุนุชุจุฑูˆู†
267
00:25:26,820 --> 00:25:34,380
ุดุจุงุจุŸ ู„ูƒู† ุฃู†ุง ุจุฏุฃุช ุฃู‚ุณู… ู…ู† ุงู„ู€ real line ุนุงู„ู…ูŠู‹ุง ุญุณุจ
268
00:25:34,380 --> 00:25:38,900
ุงู„ู†ู‚ุงุท ุงู„ู„ูŠ ุนู†ุฏูŠุŒ ูŠุจู‚ู‰ ุฃู†ุง ุจู†ุงุก ุนู„ูŠู‡ ู„ูˆ ุฌูŠุช ู‚ู„ุช
269
00:25:38,900 --> 00:25:43,760
ู‡ุฐุง ุงู„ู€ real line ูˆุจุฏูŠ ุฃุจุฏุฃ ู…ู† ุนู†ุฏ ุงู„ู€ zero ูˆุงู†ุชู‡ูŠ
270
00:25:43,760 --> 00:25:49,970
ุจู…ูŠู†ุŸ ุจุงู„ุงุซู†ูŠู† ุจุงูŠุŒ ุฅุฐุง ููŠ ุงู„ู†ุต ุจูŠูƒูˆู† ู‡ู†ุง ู‚ุฏ ุฅูŠุด ุจุงูŠ.
271
00:25:49,970 --> 00:25:54,710
ููŠ ุงู„ู†ุต ูƒู…ุงู† ู‡ู†ุง ุจูŠูƒูˆู† ุจุงูŠ ุนู„ู‰ ุงุซู†ูŠู† ูˆููŠ ุงู„ู†ุต
272
00:25:54,710 --> 00:26:00,490
ุงู„ุซุงู†ูŠ ุจูŠูƒูˆู† ุซู„ุงุซุฉ ุจุงูŠ ุนู„ู‰ ุงุซู†ูŠู†ุŒ ุจู‡ุงูŠ ุฌุณู… ุชู…ูŠู† ุงู„ู€
273
00:26:00,490 --> 00:26:06,130
real lineุŒ ุงู„ุขู† ุจุฏุฃุช ุฃุดูˆู ู…ูˆู‚ุน ุงู„ู†ู‚ุงุท ุงู„ุฎุงุฑุฌุฉ ุนู†ุฏูŠ
274
00:26:06,130 --> 00:26:11,530
ุนุงู„ู…ูŠู‹ุง ุนู„ู‰ ุงู„ุฑุณู…ุŒ ุจุงูŠ ุนู„ู‰ ุซู„ุงุซุฉ ูŠุนู†ูŠ ุณุชูŠู†
275
00:26:11,530 --> 00:26:16,850
ุฏุฑุฌุฉุŒ ุณุชูŠู† ุฏูˆู„ุงุฑ ูŠุนู†ูŠ ุซู„ุซูŠู† ุงู„ุฎุท ุชู‚ุฑูŠุจู‹ุงุŒ ูŠุจู‚ู‰ ู‡ู†ุง ู‡ุงูŠ
276
00:26:16,850 --> 00:26:22,070
ุจุงูŠ ุนู„ู‰ ุซู„ุงุซุฉุŒ ุงู„ุซุงู†ูŠุฉ ู…ุฆุชูŠู† ูˆุฃุฑุจุนูŠู† ูŠุจู‚ู‰ ู‡ุงูŠ
277
00:26:22,070 --> 00:26:26,930
ุงู„ู€ ู…ุฆุชูŠู†ุŒ ู…ุฆุฉ ูˆุซู…ุงู†ูŠู† ุจุฏูŠ ุฃุถูŠู ุนู„ูŠู‡ุง ุณุชูŠู† ูŠุจู‚ู‰
278
00:26:26,930 --> 00:26:33,090
ูƒู…ุงู† ู‡ุฐู‡ ุฃุฑุจุนุฉ ุจุงูŠ ุนู„ู‰ ุซู„ุงุซุฉุŒ ุฅุฐุง ุงุญู†ุง ุงู†ู‚ุณู…ุช ุงู„ูุชุฑุฉ
279
00:26:33,090 --> 00:26:37,490
ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ู…ู† ุตูุฑ ู„ู„ุงุซู†ูŠู† ุจุงูŠ ุฅู„ู‰ ุซู„ุงุซ ูุชุฑุงุช
280
00:26:37,790 --> 00:26:41,390
ุงู„ูุชุฑุฉ ุงู„ุฃูˆู„ู‰ ู…ู† Zero ู„ุบุงูŠุฉ ุจุงูŠ ุนู„ู‰ ุซู„ุงุซุฉุŒ ุงู„ุซุงู†ูŠุฉ ู…ู†
281
00:26:41,390 --> 00:26:45,090
ุจุงูŠ ุนู„ู‰ ุซู„ุงุซุฉ ู„ุฃุฑุจุนุฉ ุจุงูŠ ุนู„ู‰ ุซู„ุงุซุฉุŒ ุงู„ุซุงู„ุซุฉ ู…ู† ุฃุฑุจุนุฉ ุจุงูŠ
282
00:26:45,090 --> 00:26:51,990
ุนู„ู‰ ุซู„ุงุซุฉ ู„ุบุงูŠุฉ ุงุซู†ูŠู† ุจุงูŠุŒ ุจุฏุฃุช ุฃุดูˆู ุฅุดุงุฑุฉ ุงู„ู€ F'ุŒ ูˆูŠู†
283
00:26:51,990 --> 00:26:56,890
ุงู„ู€ F'ุŸ ู‡ุฐู‡ ุงู„ู€ F' ุงู„ู„ูŠ ุนู†ุฏู†ุงุŒ ูŠุจู‚ู‰ ู‡ุฐู‡ ุจุฏุฃุช ุขุฎุฐ
284
00:26:56,890 --> 00:27:02,990
ุนู„ูŠู‡ุง ุฅุดุงุฑุฉุŒ ุงู„ู€ F prime of X ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฎุท ุงู„ู„ูŠ
285
00:27:02,990 --> 00:27:07,250
ุนู†ุฏู†ุง ู‡ู†ุงุŒ ุจุฏูŠ ุขุฌูŠ ุนู„ู‰ ุงู„ูุชุฑุฉ ู…ู† Zero ู„ุบุงูŠุฉ ุจุงูŠ
286
00:27:07,250 --> 00:27:11,830
ุนู„ู‰ ุซู„ุงุซุฉุŒ ุงู„ูุชุฑุฉ ุงู„ุฃูˆู„ู‰ุŒ ู‚ุจู„ ุงู„ู†ู‚ุทุฉ ุงู„ุฎุงุฑุฌุฉุŒ ุฎุฏ ุฃูŠ
287
00:27:11,830 --> 00:27:16,730
ุฒุงูˆูŠุฉ ู‚ุจู„ ุจุงูŠ ุนู„ู‰ ุซู„ุงุซุฉุŒ ุจุงูŠ ุนู„ู‰ ุณุชุฉุŒ ุซู„ุงุซูŠู† ุฏุฑุฌุฉ
288
00:27:16,730 --> 00:27:24,440
ูุจุฃุฌูŠ ุจู‚ูˆู„ู‡ ุฌูŠ ุซู„ุงุซูŠู†ุŒ ุจู†ุตู‡ุงุŒ ู‡ูŠ ุฌุชุง ุซู„ุงุซูŠู† ุจุฌุฐุฑ ุซู„ุงุซุฉ
289
00:27:24,440 --> 00:27:29,020
ุนู„ู‰ ุงุซู†ูŠู†ุŒ ุนุงู…ุฉ ุจุณูŠุทุŒ ุซู„ุงุซุฉ ุนู„ู‰ ุงุซู†ูŠู†ุŒ ูˆุงุญุฏ ูˆู†ุตุŒ ูˆู†ู‚ุต
290
00:27:29,020 --> 00:27:33,560
ู†ุต ุจุธู„ ูˆุงุญุฏ ู…ูˆุฌุจ ูˆู„ุง ุณุงู„ุจุŒ ุฅุฐุง ุฃูŠ ุฒุงูˆูŠุฉ ุชุฃุฎุฐู‡ุง ููŠ
291
00:27:33,560 --> 00:27:41,190
ู‡ุฐู‡ ุงู„ูุชุฑุฉ ู‡ุชุนุทูŠู†ุง ู‚ูŠู…ุฉ ู…ูˆุฌุจุฉุŒ ุนู„ู‰ ุงู„ูุชุฑุฉ ู…ู† ุจุงูŠ ุนู„ู‰
292
00:27:41,190 --> 00:27:46,110
ุซู„ุงุซุฉ ู„ุบุงูŠุฉ ุฃุฑุจุนุฉ ุจุงูŠ ุนู„ู‰ ุซู„ุงุซุฉุŒ ุฎุฏ ุจุงูŠ ุนู„ู‰ ุงุซู†ูŠู†ุŒ ุฎุฏ ุจุงูŠ
293
00:27:46,110 --> 00:27:49,470
ุนู„ู‰ ุงุซู†ูŠู†ุŒ ุฎุฏ ุงู„ู„ูŠ ุจุฏูƒ ุฅูŠุงู‡ุง ู„ูˆู‚ุช ู…ุง ุชูˆุตู„ ู„ุบุงูŠุฉ ุฃุฑุจุนุฉ ุจุงูŠ
294
00:27:49,470 --> 00:27:53,970
ุนู„ู‰ ุซู„ุงุซุฉุŒ ูู„ูˆ ุฃุฎุฐู†ุง ุจุงูŠ ู…ุซู„ู‹ุง ูŠุจู‚ู‰ ุจุฃุฌูŠ ุจู‚ูˆู„ู‡ sin ุจุงูŠ
295
00:27:53,970 --> 00:27:58,590
ุจู€ ZeroุŒ ูƒูˆุณูŠู† ู…ุฆุฉ ูˆุซู…ุงู†ูŠู† ุจุณุงู„ุจ ูˆุงุญุฏ ููŠ ุฌุฐุฑ ุซู„ุงุซุฉ
296
00:27:58,590 --> 00:28:02,450
ุจุณุงู„ุจุŒ ูŠุนู†ูŠ ูƒู…ูŠุฉ ุณุงู„ุจุฉุŒ ู„ูˆ ุฃุฎุฏุช ุจุงูŠ ุนู„ู‰ ุงุซู†ูŠู† ู…ุด
297
00:28:02,450 --> 00:28:07,610
ุจุงูŠ ูŠุจู‚ู‰ ุจุตูŠุฑ ู‡ุงุฏูŠ ุจู€ ZeroุŒ ุตุงุฑ ุจุงูŠ ุงุซู†ูŠู† ุจูˆุงุญุฏ ุจุงู„ุณุงู„ุจ.
298
00:28:07,610 --> 00:28:14,310
ูŠุจู‚ู‰ ุจุตูŠุฑ ู‡ุงุฏูŠ ูƒู„ู‡ุง ู…ู† ุณุงู„ุจุฉุŒ ู‡ุงุฏูŠ ูƒู„ู‡ุง ู…ู† ุนู†ุฏ ุงู„ู€
299
00:28:14,310 --> 00:28:18,390
ุจุงูŠ ุนู„ู‰ ุซู„ุงุซุฉ ู„ุบุงูŠุฉ ุฃุฑุจุนุฉ ุจุงูŠ ุนู„ู‰ ุซู„ุงุซุฉุŒ ุทูŠุจ ุจุฏูŠ ุขุฎุฐ ู…ู†
300
00:28:18,390 --> 00:28:21,930
ุฃุฑุจุนุฉ ุจุงูŠ ุนู„ู‰ ุซู„ุงุซุฉ ู„ู„ุงุซู†ูŠู† ุจุงูŠุŒ ู„ูˆ ุฃุฎุฏุช ุซู„ุงุซุฉ ุจุงูŠ ุนู„ู‰
301
00:28:21,930 --> 00:28:25,580
ุงุซู†ูŠู†ุŒ ุซู„ุงุซุฉ ุจุนุฏูŠู† ู„ู„ู…ุฆุชูŠู† ูˆุงู„ุณุจุนูŠู† ุถุฑุฑุŒ ูŠุนู†ูŠ ูƒูˆุณูŠู†
302
00:28:25,580 --> 00:28:29,840
ู„ู„ู…ุฆุชูŠู† ูˆุงู„ุณุจุนูŠู† ุจู€ ZeroุŒ ุณูŠู† ู„ู„ู…ุฆุชูŠู† ูˆุงู„ุณุจุนูŠู† ุจุณุงู„ุจ
303
00:28:29,840 --> 00:28:35,660
ูˆุงุญุฏุŒ ู…ุน ุงู„ุณุงู„ุจ ุจูŠุตูŠุฑ ู…ูˆุฌุจุŒ ุฅุฐุง ุงู„ูุชุฑุฉ ู‡ุฐู‡ ูƒู„ู‡ุง ุจุฏู‡ุง
304
00:28:35,660 --> 00:28:42,500
ุชูƒูˆู† ูุชุฑุฉ ู…ูˆุฌุจุฉุŒ ูŠุจู‚ู‰ ุงู„ุฏุงู„ุฉ ูƒุงู†ุช increasing ุตุงุฑุช
305
00:28:42,500 --> 00:28:47,820
ุนู†ุฏ ู‡ู†ุง decreasing ุฑุฌุนุช ู‡ู†ุง ุตุงุฑุช ุฅูŠู‡ุŸ ุตุงุฑุช
306
00:28:47,820 --> 00:28:53,620
increasingุŒ ุฅุฐุง ุจุฑูˆุญ ุจู‚ูˆู„ู‡ ู…ุง ูŠุฃุชูŠ ุงู„ู€ F is
307
00:28:53,620 --> 00:29:01,780
increasingุŒ ุฏุงู„ุฉ ุฒูŠูˆุฏูŠุฉ ุนู„ู‰ ุงู„ูุชุฑุฉ ู…ู† Zero ู„ุบุงูŠุฉ
308
00:29:01,780 --> 00:29:09,880
ุจุงูŠ ุนู„ู‰ ุซู„ุงุซุฉ and on ูƒู…ุงู† ุฃุฑุจุนุฉ ุจุงูŠ ุนู„ู‰ ุซู„ุงุซุฉ ู„ุบุงูŠุฉ
309
00:29:09,880 --> 00:29:19,670
ุงุซู†ูŠู† ุจุงูŠุŒ ุงู„ู€ F is decreasingุŒ ุฏุงู„ุฉ ู†ู‚ุตูŠุฉ ุนู„ู‰
310
00:29:19,670 --> 00:29:26,710
ุงู„ูุชุฑุฉ ู…ู† ุนู†ุฏ ุงู„ู€ ุจุงูŠ ุนู„ู‰ ุซู„ุงุซุฉ ู„ุบุงูŠุฉ ุฃุฑุจุนุฉ ุจุงูŠ ุนู„ู‰
311
00:29:26,710 --> 00:29:29,870
ุซู„ุงุซุฉุŒ ุจุฏู†ุง ู†ุฌูŠุจ ุงู„ู€ local maximum ูˆุงู„ู€ local
312
00:29:29,870 --> 00:29:35,910
minimumุŒ ุฅุฐุง ุจุฏู†ุง ู†ุฑูˆุญ ู†ุญุณุจ ู‚ูŠู…ุฉ ุงู„ุฏุงู„ุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง
313
00:29:42,370 --> 00:29:48,670
ูŠุจู‚ู‰ ุจู†ุฑูˆุญ ู†ุญุณุจ F of Pi ุนู„ู‰ ุซู„ุงุซุฉุŒ ุจู†ุฑุฌุน ุนู„ู‰ ุฑุฃุณ
314
00:29:48,670 --> 00:29:54,930
ุงู„ู…ุณุฃู„ุฉุŒ ุจุฏู†ุง ู†ุดูŠู„ ูƒู„ X ูˆู†ุญุท ู…ูƒุงู†ู‡ุง ุงู„ู„ูŠ ู‡ู…ูŠู† Pi
315
00:29:54,930 --> 00:30:04,710
ุนู„ู‰ ุซู„ุงุซุฉุŒ ูŠุจู‚ู‰ ุจุตูŠุฑ Cos Pi ุนู„ู‰ ุซู„ุงุซุฉ ุฒุงุฆุฏ ุฌุฐุฑ ุซู„ุงุซุฉ
316
00:30:04,710 --> 00:30:12,950
ุณุงูŠู† ุจุงูŠ ุนู„ู‰ ุซู„ุงุซุฉ ูˆูŠุณุงูˆูŠ ุฌุชุง ุณุชูŠู† ุงู„ู„ูŠ ู‡ูŠ ุจู†ุตุŒ ูˆุฌู‡
317
00:30:12,950 --> 00:30:21,240
ุณุชูŠู† ุฌุฐุฑ ุซู„ุงุซุฉ ุนู„ู‰ ุงุซู†ูŠู† ูŠุจู‚ู‰ ุงู„ุฌูˆุงุจ ูƒู„ู‡ ุงุซู†ูŠู†ุŒ ุจุฏูŠ
318
00:30:21,240 --> 00:30:28,760
ุขุฎุฐ f of ุงู„ุซุงู†ูŠุฉ ุงู„ู„ูŠ ู‡ูˆ ุฃุฑุจุนุฉ ุจุงู‚ูŠ ุนู„ู‰ ุซู„ุงุซุฉ ูˆูŠุณุงูˆูŠ
319
00:30:28,760 --> 00:30:34,560
ุงู„ู€ cosine ุฃุฑุจุนุฉ ุจุงู‚ูŠ ุนู„ู‰ ุซู„ุงุซุฉุŒ ุฌุฐุฑ ุซู„ุงุซุฉ ุงู„ู€ sin
320
00:30:34,560 --> 00:30:40,140
ุฃุฑุจุนุฉ ุจุงู‚ูŠ ุนู„ู‰ ุซู„ุงุซุฉ ูˆูŠุณุงูˆูŠุŒ ุฃุฑุจุนุฉ ุจุงู‚ูŠ ุนู„ู‰ ุซู„ุงุซุฉ ููŠ
321
00:30:40,140 --> 00:30:43,840
ุงู„ุฑุจุน ุงู„ุซุงู„ุซุŒ ููŠ ุงู„ุฑุจุน ุงู„ุซุงู„ุซ ูŠุฌูŠุจ ุงู„ุชู…ุงู… ุณุงู„ุจ
322
00:30:43,840 --> 00:30:49,820
ูŠุนู†ูŠ ุงู„ู…ุฆุฉ ูˆุซู…ุงู†ูŠู† ุฒุงุฆุฏ ุจุงูŠ ุนู„ู‰ ุซู„ุงุซุฉุŒ ู„ุฌุชุง ุจุงูŠ ุนู„ู‰
323
00:30:49,820 --> 00:30:56,620
ุซู„ุงุซุฉ ุจุณ ุจุงู„ุณุงู„ุจ ูŠุจู‚ู‰ ุงู„ู„ูŠ ู‡ูˆ ุณุงู„ุจ ู†ุต ุฒุงุฆุฏ ุฌุฐุฑ
324
00:30:56,620 --> 00:31:02,880
ุซู„ุงุซุฉ ุจุฑุถู‡ ุงู„ู€ sin ุณุงู„ุจ ูŠุจู‚ู‰ ุณุงู„ุจ ุฌุฐุฑ ุซู„ุงุซุฉ ุนู„ู‰
325
00:31:02,880 --> 00:31:08,180
ุงู„ุงุซู†ูŠู† ูŠุจู‚ู‰ ุงู„ุฌูˆุงุจ ู‚ุฏ ุฅูŠุดุŸ ุณุงู„ุจ ุงุซู†ูŠู†ุŒ ูŠุจู‚ู‰ ุจุฑูˆุญ
326
00:31:08,180 --> 00:31:19,610
ุจู‚ูˆู„ู‡ ุงู„ู€ F has localุŒ ุงู„ู€ F has local maximumุŒ local
327
00:31:19,610 --> 00:31:27,130
maximumุŒ ุฌุฏุงุด ุงุซู†ูŠู†ุŒ at X ูŠุณุงูˆูŠ ุจุงูŠ ุนู„ู‰ ุซู„ุงุซุฉ and
328
00:31:27,130 --> 00:31:36,690
local minimumุŒ ุณุงู„ุจ ุงุซู†ูŠู†ุŒ at X ูŠุณุงูˆูŠ ุฃุฑุจุนุฉ ุจุงูŠ ุนู„ู‰
329
00:31:36,690 --> 00:31:41,360
ุซู„ุงุซุฉุŒ ุฎู„ุตู†ุง ุงู„ู€ local maximum ูˆุงู„ู€ local minimum ูˆ
330
00:31:41,360 --> 00:31:43,760
ุงู„ู€ increasing ูˆุงู„ู€ decreasing ูŠุจู‚ู‰ ุถุงูŠู„ ุงู„ู€
331
00:31:43,760 --> 00:31:47,060
inflection point ุฃูˆ ุงู„ู€ concave up ูˆุงู„ู€ concave
332
00:31:47,060 --> 00:31:53,440
downุŒ ุฅุฐุง ุจุฏู†ุง ู†ุฑูˆุญ ู†ุฌูŠุจ ู„ู‡ ุงู„ู€ f double prime of xุŒ ุงู„ู€ f
333
00:31:53,440 --> 00:32:01,560
prime of x ู‡ูŠ ุจู†ุดุชู‚ู‡ุง ูƒู…ุงู† ู…ุฑุฉุŒ ูŠุจู‚ู‰ ุณุงู„ุจ cosine X
334
00:32:01,560 --> 00:32:08,520
ูˆุจุนุฏ ุชูุงุถู„ cosine ุจุณุงู„ุจ sin ูŠุจู‚ู‰ ุณุงู„ุจ ุฌุฐุฑ ุซู„ุงุซุฉ ููŠ
335
00:32:08,520 --> 00:32:13,940
sin XุŒ ุทุจุนู‹ุง ู‡ุฐู‡ ู…ุนุฑูุฉ ุนู„ู‰ ุทูˆู„ุŒ ุฅุฐุง ุจุฏูŠ ุฃุญุท ุงู„ู€ F
336
00:32:13,940 --> 00:32:18,710
double prime ุจู€ Zero ูˆู†ุดูˆู ุฅูŠุด ุจุฏู‡ุง ุชุนุทูŠู†ุงุŒ ูŠุจู‚ู‰ ู„ูˆ
337
00:32:18,710 --> 00:32:25,470
ุญุทูŠู†ุง ู‡ุฐู‡ ุชุณุงูˆูŠ ZeroุŒ ู‡ุฐุง ุจุฏู‡ ูŠุนุทูŠู†ุง ุฅู†ู‡ ุฌุฐุฑ ุซู„ุงุซุฉ
338
00:32:25,470 --> 00:32:30,730
ููŠ sin ุงู„ู€ XุŒ ุฌุฐุฑ ุซู„ุงุซุฉ ููŠ sin X ุจุฏู‡ ูŠุณุงูˆูŠ ุณุงู„ุจ
339
00:32:30,730 --> 00:32:36,510
cosine ุงู„ู€ XุŒ ูŠุจู‚ู‰ ู…ุนู†ุงู‡ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฅู†ู‡ tan ุงู„ู€ X
340
00:32:36,510 --> 00:32:45,410
ุจูŠุณุงูˆูŠ ุณุงู„ุจ ูˆุงุญุฏ ุนู„ู‰ ุฌุฐุฑ ุซู„ุงุซุฉุŒ ุงู„ุธู„ ู„ู‚ูŠู…ุฉ ุณุงู„ุจุฉ
341
00:32:45,410 --> 00:32:49,570
ูŠุจู‚ู‰ ุงู„ุฒุงูˆูŠุฉ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ุฑุจุน ุงู„ุซุงู†ูŠ ูˆุงู„ุฑุจุน ุงู„ุฑุงุจุน
342
00:32:49,570 --> 00:32:53,330
ู„ุฃู†ู‡ ุธู„ ู…ูˆุฌุจ ููŠ ุงู„ุฑุจุน ุงู„ุฃูˆู„ ูˆุงู„ุซุงู„ุซุŒ ุฅุฐุง ุณุงู„ุจ ููŠ
343
00:32:53,330 --> 00:32:59,890
ุงู„ุซุงู†ูŠ ูˆุงู„ุฑุงุจุนุŒ ูŠุนู†ูŠ ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฅู† ุงู„ู€ X ูŠุณุงูˆูŠ
344
00:33:00,670 --> 00:33:04,090
ุจู‚ู‰ ุงู„ู„ูŠ ุจู‚ูˆู„ ู…ูŠู† ุงู„ุฒุงูˆูŠุฉ ุงู„ู„ูŠ ุฌูŠุจุชู‡ุง ู…ู† ูˆุงุญุฏ ุนู„ู‰
345
00:33:04,090 --> 00:33:07,630
ุฌุฐุฑ ุซู„ุงุซุฉุŸ ู„ูŠู‡ุง ุจุงูŠ ุนู„ู‰ ุณุชุฉุŒ ุทุจุนู‹ุง ู…ู† ุงู„ู…ุฆุฉ ูˆุซู…ุงู†ูŠู†
346
00:33:07,630 --> 00:33:15,570
ุจุตูŠุฑ ุฎู…ุณุฉ ุจุงูŠ ุนู„ู‰ ุณุชุฉุŒ ุฎู…ุณุฉ ุจุงูŠ ุนู„ู‰ ุณุชุฉุŒ ูˆ X ุงู„ุซุงู†ูŠุฉ
347
00:33:15,570 --> 00:33:22,990
ุฃุญุฏ ุนุดุฑ ุจุงูŠ ุนู„ู‰ ุณุชุฉุŒ ุฃุชุฑุญู‡ู… ูƒุฐู„ูƒ ู…ู† ู…ูŠู†ุŸ ู…ู† ุงุซู†ูŠู†
348
00:33:22,990 --> 00:33:28,530
ุจุงูŠ ู„ุฏูˆุฑุฉ ูƒุงู…ู„ุฉุŒ ูŠุจู‚ู‰ ุฌุจู†ุง ุงู„ู€ XุŒ ุฎู…ุณุฉ ุจุงูŠ ุฃูˆ ุนู„ู‰ ุงู„ู€
349
00:33:28,530 --> 00:33:32,310
calculator ุนู†ุฏูƒ ุฃู†ุช ุจุชุฌูŠุจู‡ุง ุฏูˆุฑูŠุŒ ูŠุจู‚ู‰ ุฎู…ุณุฉ ุจุงูŠ ุนู„ู‰
350
00:33:32,310 --> 00:33:36,270
ุณุชุฉ ุฃูˆ ุฃุญุฏ ุนุดุฑุŒ ู„ูˆ ุชู„ุงุชู…ูŠุฉ ูˆุชู„ุงุชูŠู† ุฏุฑุฌุฉ ูˆู…ุฆุฉ ูˆ
351
00:33:36,270 --> 00:33:41,990
ุฎู…ุณูŠู† ุฏุฑุฌุฉุŒ ูŠุจู‚ู‰ ู‡ุงูŠ ุทู„ุนู†ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ู†ู‚ุงุท ุงู„ู„ูŠ ู‚ุฏ
352
00:33:41,990 --> 00:33:47,110
ุชูƒูˆู† conflicting pointsุŒ ุงู„ู„ู‡ ุฃุนู„ู… ุฃู†ุง ู…ุด ู…ุชุฃูƒุฏ ู„ูƒู†
353
00:33:47,110 --> 00:33:50,950
ุฃู†ุง ุจู‚ูˆู„ ุงู„ุฏุงู„ุฉ ุงู„ุฃุตู„ูŠุฉ ุฏุงู„ุฉ ู…ุชุตู„ุฉ ุนู„ู‰ ูƒู„ ุงู„ู€ real
354
00:33:50,950 --> 00:33:56,090
lineุŒ ุงู„ุณุคุงู„ ู‡ูˆ ูˆุงู„ู„ู‡ ุนู†ุฏ ู‡ุฐู‡ ุงู„ู†ู‚ุงุทุŒ ุฅุฐุง ุงู„ุฏุงู„ุฉ
355
00:33:56,090 --> 00:34:01,510
ุบูŠุฑุช ุงุชุฌุงู‡ ุงู„ู€ concavity ุชุจุนู‡ุงุŒ ุจูŠูƒูˆู† ูุนู„ุงู‹ ุนู†ุฏู†ุงุŒ
356
00:34:01,510 --> 00:34:06,550
ุนู†ุฏู†ุง ุงู„ู„ูŠ ู‡ูˆ inflection pointุŒ ุฅุฐุง ุฃู†ุง ู„ูˆ ุฌูŠุชุŒ
357
00:34:06,550 --> 00:34:10,980
ู‚ู„ุช ู‡ุฐุง ุงู„ู€ real line ูƒู„ู‡ุŒ ูˆุจุฏุฃู†ุง ู…ู† ุนู†ุฏ ุงู„ู€ zero
358
00:34:10,980 --> 00:34:16,640
ูˆุงู†ุช ู‡ู†ุง ุนู†ุฏ ู…ู†ุŸ ุนู†ุฏ ุงุซู†ูŠู† ุจุงูŠุŒ ูŠุจู‚ู‰ ููŠ ุงู„ู†ุต ู‡ู†ุง
359
00:34:16,640 --> 00:34:23,280
ุจุงูŠุŒ ูˆููŠ ุงู„ู†ุต ู‡ู†ุง ู‚ุฏ ุฅูŠุด ุจุงูŠ ุนู„ู‰ ุงุซู†ูŠู†ุŒ ูˆููŠ ุงู„ู†ุต ู‡ู†ุง
360
00:34:23,280 --> 00:34:29,540
ู‚ุฏ ุฅูŠุดุŸ ุซู„ุงุซุฉ ุจุงูŠ ุนู„ู‰ ุงู„ุงุซู†ูŠู†ุŒ ุงุญู†ุง ุงู„ู†ู‚ุงุท ุงู„ู„ูŠ ุญุงู„ู†ุง
361
00:34:29,540 --> 00:34:34,420
ุฎู…ุณุฉ ุจุงูŠ ุนู„ู‰ ุณุชุฉุŒ ูŠุนู†ูŠ ู…ุฆุฉ ูˆุฎู…ุณูŠู† ุฏุฑุฌุฉุŒ ู…ุฆุฉ ูˆุฎู…ุณูŠู† ุฏุฑุฌุฉ
362
00:34:34,420 --> 00:34:41,240
ูŠุนู†ูŠ ุจุชุฌูŠู†ูŠ ู‡ู†ุงุŒ ูŠุจู‚ู‰ ู‡ุฐุง ุฎู…ุณุฉ ุจุงูŠ ุนู„ู‰ ุณุชุฉุŒ ุงู„ุซุงู†ูŠุฉ
363
00:34:41,240 --> 00:34:46,660
ู‡ูŠู‡ุง ุฃุญุฏ ุนุดุฑ ุจุงูŠ ุนู„ู‰ ุณุชุฉุŒ ุชู„ุงุชู…ูŠุฉ ูˆุชู„ุงุชูŠู† ุฏุฑุฌุฉุŒ ูŠุจู‚ู‰
364
00:34:46,660 --> 00:34:51,900
ู‡ุฐุง ุฃุญุฏ ุนุดุฑ ุจุงูŠ ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ ุณุชุฉุŒ ุงู„ุขู† ุจุฏู†ุง ู†ุฌูŠ ููŠ
365
00:34:51
401
00:39:01,360 --> 00:39:07,790
ู„ุฃู† ู‡ุฐุง ู…ุญูˆุฑ X ูˆู‡ุฐุง ู…ุญูˆุฑ YุŒ ุฃู‚ุตู‰ ู‚ูŠู…ุฉ ุชุฃุฎุฐู‡ุง ุงู„ุฏุงู„ุฉ
402
00:39:07,790 --> 00:39:11,210
ุงู„ู„ูŠ ู‡ูˆ ุงู„ุงุซู†ูŠู†ุŒ ูˆุฃู‚ู„ ู‚ูŠู…ุฉ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€minimum ุงู„ู„ูŠ
403
00:39:11,210 --> 00:39:16,050
ู‡ูˆ ุงู„ุณุงู„ุจ ุงุซู†ูŠู†ุŒ ูŠุจู‚ู‰ ู„ูˆ ุฌุฆุช ู‚ู„ุช ู‡ุฐุง ุงู„ุฎุท ุงู„ู„ูŠ ู‡ูˆ
404
00:39:16,050 --> 00:39:21,690
ุงู„ุงุซู†ูŠู†ุŒ ูˆู‡ุฐุง ุงู„ุฎุท ุงู„ู…ู†ุงุธุฑ ุงู„ู„ูŠ ู‡ูˆ ุฌุฏุงุด ุณุงู„ุจ ุงุซู†ูŠู†
405
00:39:21,690 --> 00:39:27,250
ูˆู‡ุฐู‡ ุงู„ู†ู‚ุทุฉ ุงู„ุฃุตู„ ุงู„ู„ูŠ ู‡ูŠ zeroุŒ ุจุฏูŠ ุฃูƒุจุฑ ุงู„ุฎุท ู…ู†
406
00:39:27,250 --> 00:39:34,710
ู†ุงุญูŠุฉ ู‡ุฐู‡ ุจุณุŒ ุนู„ุดุงู† ู‡ูŠ ุงู„ุฑุณู…ุฉ ูƒู„ู‡ุง ุนู„ู‰ ุงู„ูŠู…ูŠู†ุŒ ูŠุจู‚ู‰
407
00:39:34,710 --> 00:39:40,570
ู„ูˆ ุฌุฆุช ู‚ู„ุช ู‡ุงูŠ ุงู„ุฎุท ู‡ู†ุงุŒ ูˆู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุณุงู„ุจ ุงุซู†ูŠู†
408
00:39:40,570 --> 00:39:47,650
ูˆู‡ุฐุง ุงู„ zeroุŒ ูˆู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุงุซู†ูŠู†ุŒ ูˆู‡ุฐุง ู…ุญูˆุฑ Y ู…ู†
409
00:39:47,650 --> 00:39:53,470
Zero ู„ุบุงูŠุฉ ุงุซู†ูŠู† ุจุงูŠุŒ ูŠุจู‚ู‰ ู‡ุงุฏ ุงุซู†ูŠู† ุจุงูŠุŒ ุงู„ู…ู†ุญู†ุฉ ู‡ูŠุจุฏุฃ
410
00:39:53,470 --> 00:40:01,970
ุนู†ุฏ ุงู„ู†ู‚ุทุฉ 0 ูˆ 1ุŒ ูˆูŠู†ุชู‡ูŠ
411
00:40:01,970 --> 00:40:08,810
ุนู†ุฏ ุงู„ู†ู‚ุทุฉ 2 ูˆ 1ุŒ ุนู†ุฏ ุงู„ู†ู‚ุทุฉ 2 ูˆ 1
412
00:40:15,980 --> 00:40:19,260
ุจุนุฏ ูƒุฏู‡ ุงู„ุณูŠู…ุชูˆุช ู…ุงููŠุด ุนู†ุฏูŠ ุจุฏู‡ุŒ ุฃุฑูˆุญ ู„ู„ local
413
00:40:19,260 --> 00:40:23,240
maximum ูˆุงู„ local minimumุŒ ุฎู„ูŠู†ูŠ ุฃุฑุชุจ ุงู„ุฎุทุฉ ู„ุฃู†
414
00:40:23,240 --> 00:40:31,560
ู‡ุฐู‡ุŒ ูŠุจู‚ู‰ ุจุงูŠ ุนู„ู‰ ุงุซู†ูŠู†ุŒ ูŠุจู‚ู‰ ู‡ุฐู‡ ุซู„ุงุซุฉ ุจุงูŠ ุนู„ู‰
415
00:40:31,560 --> 00:40:36,240
ุงู„ุงุซู†ูŠู†ุŒ ุงู„ู€ inflection points ุนู†ุฏ ุงู„ู†ู‚ุทุฉ ุฎู…ุณุฉ ุจุงูŠ
416
00:40:36,240 --> 00:40:43,540
ุนู„ู‰ ุณุชุฉ ูˆ ZeroุŒ ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู†ู‚ุทุฉ ุงู„ุฎู…ุณุฉ ุจุงูŠ ุนู„ู‰ ุณุชุฉ
417
00:40:43,540 --> 00:40:47,780
ูˆุงู„ู†ู‚ุทุฉ ุงู„ู„ูŠ ุจู‚ุช ุฃุญุฏ ุนุดุฑ ุจุงูŠ ุนู„ู‰ ุณุชุฉุŒ ูŠุจู‚ู‰ ู‡ุฐู‡
418
00:40:47,780 --> 00:40:55,350
ุงู„ู†ู‚ุทุฉ ุงู„ุฎู…ุณุฉ ุจุงูŠ ุนู„ู‰ ุณุชุฉุŒ ุจุนุฏ ู‡ูŠูƒุŒ ุจุชูŠุฌูŠ ู„ู„ local
419
00:40:55,350 --> 00:41:00,570
maximumุŒ ูˆูŠู† ุงู„ localุŸ ุงู‡ุŒ ู‡ูŠ ุนู†ุฏูƒ local maximum
420
00:41:00,570 --> 00:41:05,310
ุงุซู†ูŠู†ุŒ ุนู†ุฏ ุงู„ by ุนู„ู‰ ุซู„ุงุซุฉ ุนู†ุฏ ุณุชูŠู† ุฏุฑุฌุฉุŒ ูŠุจู‚ู‰ ู‡ูŠ
421
00:41:05,310 --> 00:41:10,470
ุงู„ by ุนู„ู‰ ุซู„ุงุซุฉุŒ by ุนู„ู‰ ุซู„ุงุซุฉ ุนู†ุฏ local maximum
422
00:41:10,470 --> 00:41:14,790
ู‡ู†ุงุŒ ุงุซู†ูŠู† ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุงุŒ ู‡ูˆ ุนู†ุฏูŠ local
423
00:41:14,790 --> 00:41:19,970
minimum localุŒ ุณุงู„ุจ ุงุซู†ูŠู† ุนู†ุฏ ุฃุฑุจุนุฉ ุจุงูŠ ุนู„ู‰ ุซู„ุงุซุฉ
424
00:41:19,970 --> 00:41:24,790
ูŠุนู†ูŠ ู…ุฆุชูŠู† ูˆุฃุฑุจุนูŠู† ุฏุฑุฌุฉุŒ ู…ุฆุชูŠู† ูˆุฃุฑุจุนูŠู† ูŠุนู†ูŠ ุนู†ุฏู‡
425
00:41:24,790 --> 00:41:30,450
ุงู„ู†ู‚ุทุฉ ู‡ุฐู‡ ุชู‚ุฑูŠุจุงุŒ ูˆุจุฏูƒ ุชู†ุฒู„ ุชุญุชุŒ ูŠุจู‚ู‰ ู‡ุฐู‡ local
426
00:41:30,450 --> 00:41:35,980
minimum ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุงุŒ ุจุนุฏ ู‡ูŠูƒุŒ ุจูŠุฌูŠ ู„ูŠ ุงู„ุฏุงู„ุฉ
427
00:41:35,980 --> 00:41:41,380
increasing ู…ู† Zero ู„ุบุงูŠุฉ ุจุงูŠ ุนู„ู‰ ุซู„ุงุซุฉุŒ ู…ุธุจูˆุทุŸ ู…ู†
428
00:41:41,380 --> 00:41:46,720
Zero ู„ุบุงูŠุฉ ุจุงูŠ ุนู„ู‰ ุซู„ุงุซุฉ increasingุŒ ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู…ู†ุญู†ุฉ
429
00:41:46,720 --> 00:41:52,410
ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุงุŒ ุจุนุฏูŠู‡ุง decreasing ู…ู† ุนู†ุฏ ุงู„ ุจุงูŠ
430
00:41:52,410 --> 00:41:59,070
ุนู„ู‰ ุซู„ุงุซุฉ ู„ุบุงูŠุฉ ู‡ุฐู‡ุŒ ุฃุฑุจุนุฉ ุจุงูŠ ุนู„ู‰ ุซู„ุงุซุฉุŒ ูŠุจู‚ู‰ ู‡ุฐู‡
431
00:41:59,070 --> 00:42:05,150
decreasingุŒ ูˆูŠู…ุฑ ุจุงู„ inflection pointุŒ ูˆู‡ูŠูƒ ุจุตูŠุฑ
432
00:42:05,150 --> 00:42:10,250
ู…ูุชูˆุญ ุงู„ุฃุนู„ู‰ุŒ ุจุนุฏูŠู‡ุง ุจูŠุฌูŠ ู„ูŠ increasing ูˆูŠู…ุฑ ุจุงู„
433
00:42:10,250 --> 00:42:15,530
inflection point ูˆู‡ูŠูƒุŒ ูˆุจุนุฏู‡ุง ุจุตูŠุฑ
434
00:42:19,340 --> 00:42:23,820
ู†ุชุฃูƒุฏ ุฅู† ู…ุนู„ูˆู…ุงุชู†ุง ุตุญ ูˆู„ุง ู„ุฃุŒ ู‡ุฐูŠ increasing ูˆ
435
00:42:23,820 --> 00:42:28,340
decreasing ูˆ increasingุŒ ู…ุธุจูˆุท ู…ุงุฆุฉ ููŠ ุงู„ู…ุงุฆุฉุŒ ู†ุฌูŠ ู‡ู„ ู…ู†
436
00:42:28,340 --> 00:42:32,040
ุนู†ุฏูŠ ุงู„ Zero ู„ุฎู…ุณุฉ ุจุงูŠ ุนู„ู‰ ุณุชุฉ concave down ูˆู„ุง
437
00:42:32,040 --> 00:42:36,760
ู„ุฃ ุทู„ุน concave up ู…ุธุจูˆุทุŒ ู‡ู„ ู…ู† ุฎู…ุณุฉ ุจุงูŠ ุนู„ู‰ ุณุชุฉ
438
00:42:36,760 --> 00:42:40,670
ู„ุฃุญุฏ ุนุดุฑ ุจุงูŠ ุนู„ู‰ ุณุชุฉ concave up ู…ุธุจูˆุทุŒ ุงู„ุขู† ู…ู†
439
00:42:40,670 --> 00:42:44,910
ุฃุญุฏ ุนุดุฑ ุจุงูŠ ุนู„ู‰ ุงู„ุณุชุฉ ู„ุบุงูŠุฉ ุงุซู†ูŠู† ุจุงูŠุŒ ุจูŠูƒูˆู† ูƒูŠูุŸ down
440
00:42:44,910 --> 00:42:50,550
ูŠุจู‚ู‰ ุงู„ุฃุณูู„ุŒ ูŠุจู‚ู‰ ุงู„ุฑุณู…ุฉ ุฏู‚ูŠู‚ุฉ ู…ุงุฆุฉ ููŠ ุงู„ู…ุงุฆุฉุŒ ู‡ุฐุง ุงู„ุขู†
441
00:42:50,550 --> 00:42:55,910
ุงู„ู†ู‚ุทุฉ ูˆุงู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ุŒ ู‡ุฏูˆู„ ุงู„
442
00:42:55,910 --> 00:43:05,170
inflection pointsุŒ ุงู„ู†ู‚ุทุชูŠู† ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฏูˆู„ ุทุจุนู‹ุง ู‡ุฐู‡
443
00:43:05,170 --> 00:43:13,050
ุงู„ู†ู‚ุทุฉ ุงู„ู„ูŠ ู‡ูŠ ุฃุฑุจุนุฉ ุจุงูŠ ุนู„ู‰ ุซู„ุงุซุฉ ูˆุณุงู„ุจ ุงุซู†ูŠู†ุŒ ูˆู‡ุฐู‡
444
00:43:13,050 --> 00:43:18,150
ุงู„ู„ูŠ ู‡ูŠ ุจุงูŠ ุนู„ู‰ ุซู„ุงุซุฉ ูˆุงุซู†ูŠู†ุŒ ู‡ุฐู‡ local maximumุŒ ูˆู‡ุฐู‡
445
00:43:18,150 --> 00:43:19,690
local minimum
446
00:43:29,920 --> 00:43:36,100
ุงู„ู†ู‚ุทุฉ ุงู„ุฃุนู„ู‰ ู‡ูŠ ุงู„ local minimumุŒ ูˆุงู„ู†ู‚ุทุฉ ุงู„ุฃุนู„ู‰
447
00:43:36,100 --> 00:43:37,700
ู‡ูŠ local maximum
448
00:43:42,000 --> 00:43:46,380
ูŠุจู‚ู‰ ุฃู†ุง ุจุฏูŠ ุฃุฑุณู… ูุนู„ู‹ุง ู‡ุฐู‡ุŒ ู„ูˆ ุจุฏูƒ ุชู‚ูˆู„ ู„ูŠ ู‡ุฐุงุŒ ุจู‚ูˆู„ ู„ูƒ
449
00:43:46,380 --> 00:43:54,940
ู‡ุฐู‡ ุตุญูŠุญุŒ ู‡ุฐู‡ local minimumุŒ ู‡ุฐู‡ ู‡ู†ุง ูƒู…ุงู† local
450
00:43:54,940 --> 00:44:01,030
maximumุŒ ุฃู‚ูˆู„ ู„ูƒ ุฒูŠุงุฏุฉ ุนู„ู‰ ุฐู„ูƒุŒ ู‡ุฐู‡ absolute maximum
451
00:44:01,030 --> 00:44:05,390
ูˆู‡ุฐู‡ absolute minimumุŒ ู„ุฃู† ุฃู‚ุตู‰ ู‚ูŠู…ุฉ ุจูŠุงุฎุฏู‡ุง ู‡ูŠ
452
00:44:05,390 --> 00:44:08,890
ุงุซู†ูŠู† ุฎู„ุงู„ ูุชุฑุฉ ู…ู† Zero ู„ุงุซู†ูŠู† ุจุงูŠุŒ ูˆุฃู‚ู„ ู‚ูŠู…ุฉ
453
00:44:08,890 --> 00:44:11,930
ุจูŠุงุฎุฏู‡ุง ุณุงู„ุจ ุงุซู†ูŠู† ู…ู† Zero ู„ุงุซู†ูŠู† ุจุงูŠุŒ ูŠุจู‚ู‰ ู‡ุฐู‡
454
00:44:11,930 --> 00:44:15,130
absolute minimumุŒ ูˆู‡ุฐู‡ absolute maximumุŒ ููŠ ู…ุง ู„ูˆ
455
00:44:15,130 --> 00:44:18,030
ุทู„ุจู‡ุงุŒ ู„ุฃู†ู‡ ู…ุง ุทู„ุจุดุŒ ู‡ูˆ ุฌุงู„ูŠ ุงุฑุณู… ูˆุฎู„ุงุตุŒ ูˆู†ู‚ูˆู„ู‡
456
00:44:18,030 --> 00:44:23,110
ุฑุณู…ู†ุงุŒ ูŠุนุทูŠูƒ ุงู„ุนุงููŠุฉุŒ ุชู…ุงู…ุŸ ุฅุฐุง ู„ุญุฏ ู‡ู†ุง ุงู†ุชู‡ู‰ ู‡ุฐุง ุงู„
457
00:44:23,110 --> 00:44:29,470
sectionุŒ ูˆุฅู„ูŠูƒู… ุฃุฑู‚ุงู… ุงู„ู…ุณุงุฆู„ ุนู„ู‰ ู‡ุฐุง ุงู„ section
458
00:44:29,470 --> 00:44:36,010
ุงู„ู„ูŠ ู‡ูˆ exercises ุฃุฑุจุนุฉ ุฃุฑุจุนุฉุŒ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡
459
00:44:36,010 --> 00:44:44,690
exercises ุฃุฑุจุนุฉ ุฃุฑุจุนุฉุŒ ุงู„ู…ุณุงุฆู„ ุงู„ุชุงู„ูŠุฉ ู…ู† ูˆุงุญุฏ
460
00:44:44,690 --> 00:44:53,130
ู„ูˆุงุญุฏ ูˆุชุณุนูŠู†ุŒ ุงู„ู€ wholeุŒ ุจู†ุถูŠู ุนู„ูŠู‡ุง ู…ู† ุซู„ุงุซุฉ ูˆุชุณุนูŠู†
461
00:44:53,130 --> 00:45:02,370
ู„ุณุชุฉ ูˆุชุณุนูŠู†ุŒ ูˆู…ู† ู…ุฆุฉ ูˆุงุญุฏ ู„ู…ุฆุฉ ูˆุงุทู…ุงุดุŒ ู…ุฆุฉ ูˆุงุญุฏ ู„ู…ุฆุฉ
462
00:45:02,370 --> 00:45:03,490
ูˆุงุทู…ุงุด
463
00:45:21,800 --> 00:45:24,900
ุงู„ุณู„ุงู… ุนู„ูŠูƒู… ูˆุฑุญู…ุฉ ุงู„ู„ู‡ ูˆุจุฑูƒุงุชู‡
464
00:45:54,540 --> 00:46:06,120
ู‡ุฐุง ุจุฏู‡ ุงู„ุฑุณู…ุฉุŒ ุทูŠุจ
465
00:46:06,120 --> 00:46:15,040
ู‡ุฐุง ุงู†ุชู‡ู‰ ุนู„ูŠูƒ ุณูƒุดู† ุฃุฑุจุนุฉ ุฃุฑุจุนุฉุŒ ุงู„ุฑุณู… ุฅูŠู‡ ุงู„ุณู…ุณ
466
00:46:15,040 --> 00:46:18,140
ููŠู‡ุง
467
00:46:18,140 --> 00:46:23,040
ุณู…ุชุชุŸ ู„ุฃุŒ ุฑูˆุญู†ุง ุญุทูŠู†ุง ุงู„ local maximum ูˆุงู„ local
468
00:46:23,040 --> 00:46:28,380
minimum ูˆุงู„ู€ inflection pointsุŒ ุจุนุฏ ุฐู„ูƒ ุฏูˆุฑู†ุง ุงู„
469
00:46:28,380 --> 00:46:33,580
increasingุŒ ุฏูˆุฑู†ุง ุงู„ decreasingุŒ ูˆุจุนุฏูŠู† ุดูˆูู†ุง ู‡ู„
470
00:46:33,580 --> 00:46:37,120
ุงู„ุฑุณู…ุฉ ูƒุงู†ุช ูƒูŠู ุฃุจูˆูƒ ูˆูƒูŠู ุฏุงู† ูˆู„ุง ุฌู†ุงู‡ุง ุชู…ุงู…ุŒ ูŠู‚ูˆู„
471
00:46:37,120 --> 00:46:43,000
ุจุตู…ู†ุง ุฎู„ุงุตุŒ ุทูŠุจ ุงู„ุขู† ุจุฏู†ุง ู†ูŠุฌูŠ ู„ุงู…ุงู… ุงู„ุญู„ู‚ุงุช ุงู„ู„ูŠ
472
00:46:43,000 --> 00:46:45,800
ุจุฏู‡ ุงู„ุฑุณู…ุฉ ุฃูˆ ุฎู„ุงุตุŸ ุงู„ุฑุณู… ุฎู„ุงุตุŸ
473
00:46:59,710 --> 00:47:04,790
ุงู„ุขู† ุจุฑูˆุญ ู„ู€ section ุฃุฑุจุนุฉ ุฎู…ุณุฉ ูˆุฃุฑุจุนุฉ ุณุชุฉ ูˆ
474
00:47:04,790 --> 00:47:09,990
ุจู‚ูˆู„ู‡ู… ุงู„ู„ู‡ ูŠุณู‡ู„ ุนู„ูŠูƒู…ุŒ ุจุฑูˆุญ ู„ุฃุฑุจุนุฉ ุณุจุนุฉ ุงู„ู„ูŠ ู‡ูˆ ุงู„
475
00:47:09,990 --> 00:47:16,130
antiderivative ุงู„ุขุฎุฑ
476
00:47:16,130 --> 00:47:23,690
section ููŠ ุงู„ุดุจุทุฉ ูˆู‡ูˆ ู…ู‚ุฏู…ุฉ ู„ู…ูˆุถูˆุน ุงู„ุชูƒุงู…ู„ุŒ ุชู…ุงู…ุŸ
477
00:47:23,690 --> 00:47:28,050
ุงู„ู€ antiderivative ุจุฏู†ุง ู†ุนุทูŠ ุชุนุฑูŠู ู„ู‡ุŒ ู†ู‚ูˆู„ definition
478
00:47:30,840 --> 00:47:39,660
A function capital F is an
479
00:47:39,660 --> 00:47:45,820
antiderivative of
480
00:47:45,820 --> 00:47:57,640
F on an interval I
481
00:48:20,360 --> 00:48:27,860
ู†ู‚ุทุฉ ู…ู‡ู…ุฉ ุฌุฏู‹ุงุŒ the most general
482
00:48:29,770 --> 00:48:36,210
the most general antiderivative
483
00:48:36,210 --> 00:48:39,230
antiderivative
484
00:48:39,230 --> 00:48:53,190
of f on ุงู„ interval IุŒ on interval I is capital F
485
00:48:53,190 --> 00:49:07,360
of X ุฒุงุฆุฏ constant CุŒ where C is constantุŒ ู†ุฌูŠ
486
00:49:07,360 --> 00:49:14,240
ู„ู€ some antiderivatives
487
00:49:14,240 --> 00:49:21,440
some antiderivatives ุฃูˆ antiderivative formulas
488
00:55:31,970 --> 00:55:35,890
ุทุจุนู‹ุง ุงู„ู„ูŠ ุฃุญุจู‡ ู…ุดุชู‚ุฉ ุงู„ุฏูˆุงู„ ุงู„ู…ุซู„ุซูŠุฉ ุงู„ุณุชุฉ ุจู„ุง ุฌู‡ุฏ
489
00:55:35,890 --> 00:55:44,470
ูƒู„ู‡ ูƒู„ุงู… ุจุณูŠุท ูˆู„ุง ุญุงุฌุฉ ู…ูˆู„ุงุดูŠ
490
00:55:44,470 --> 00:55:49,730
ูŠุจู‚ู‰
491
00:55:49,730 --> 00:55:52,550
ููŠ ุงู„ุงู†ุฏูˆู†ูŠุฒูŠุง ุงู„ู…ูˆุถูˆุน ุงู„ antiderivative
492
00:55:52,550 --> 00:55:57,610
antiderivativeุŒ ุชูุงุถู„ ู„ู…ุง ุฃู‚ูˆู„ antiderivative ูŠุนู†ูŠ
493
00:55:57,610 --> 00:56:02,390
ุฃู†ุง ุจุฏูŠ ุฃุดุชุบู„ ุดุบู„ ุถุฏ ุงู„ุชูุงุถู„ุŒ ุถุฏ ุงู„ุชูุงุถู„ ุชุนู„ู…ู†ุงู‡ ููŠ
494
00:56:02,390 --> 00:56:05,330
ุงู„ุซุงู†ูˆูŠุฉุŒ ูŠุนู†ูŠ ุนุจุงุฑุฉ ุนู† ุฅูŠุดุŸ ุจุณ ู…ุง ุจุฏูŠุด ุฃู‚ูˆู„ ุชูƒุงู…ู„
495
00:56:05,330 --> 00:56:08,710
ุญุชู‰ ุงู„ู„ุญุธุฉุŒ ู„ู…ุง ู†ูˆุตู„ ู„ุชูƒุงู…ู„ ุจุฏูŠ ุฃู‚ูˆู„ ุชูƒุงู…ู„ ุฒูŠ ู…ุง
496
00:56:08,710 --> 00:56:13,290
ู‡ุนุฑูู‡ ุจุนุฏ ู‚ู„ูŠู„ ุทุจุนู‹ุงุŒ ูŠุจู‚ู‰ ุฃู†ุง ุจุฏูŠ ุฃู‚ูˆู„ ุถุฏ ุงู„ุชูุงุถู„
497
00:56:13,290 --> 00:56:18,230
antiderivativeุŒ ูŠุจู‚ู‰ ุถุฏ ุงู„ุชูุงุถู„ ุดูˆ ูŠุนู†ูŠ ุถุฏ ุงู„ุชูุงุถู„
498
00:56:18,230 --> 00:56:23,810
ุงู„ุชุนุฑูŠู ุจูŠู‚ูˆู„ ู„ูŠ ู…ุง ูŠุฃุชูŠุŒ ุจูŠู‚ูˆู„ ู„ูŠ ุฃุชุจุน ู„ูƒ capital F
499
00:56:23,810 --> 00:56:27,720
ุฎู„ูŠ ุจุงู„ูƒ ูƒุงููŠ ุนู†ุฏ ุงู„ูƒุชุงุจุฉุŒ capital F ู‡ูŠ ุงู„ู€
500
00:56:27,720 --> 00:56:32,940
Antiderivative ู„ู„ู€ small f ุนู„ู‰ ูุชุฑุฉ ู…ุญุฏุฏุฉ ูˆุงู„ุชูŠ
501
00:56:32,940 --> 00:56:39,800
ุชูƒูˆู† ุงู„ูุชุฑุฉ IุŒ ุฅุฐุง ูƒุงู† ู…ุดุชู‚ ุงู„ู€ capital F ู‡ูŠ ุงู„ู€ small
502
00:56:39,800 --> 00:56:45,880
f ู„ูƒู„ X ุงู„ู…ูˆุฌูˆุฏ ุฃูˆูŠุง ููŠ ุงู„ู€ interval IุŒ ูŠุจู‚ู‰ capital
503
00:56:45,880 --> 00:56:49,980
F ู‡ูŠ ุงู„ู€ Antiderivative ู„ู„ุฏุงู„ุฉ small fุŒ ุฅุฐุง ูƒุงู†
504
00:56:49,980 --> 00:56:57,120
ู…ุดุชู‚ capital F ุฃุนุทุชู†ุง ู…ู‡ู…ุฉุŒ ุฃุนุทุชู†ูŠ ุงู„ู„ูŠ ู‡ูˆ ุฃุนุทุชู†ูŠ ู„ูŠู‡
505
00:56:57,120 --> 00:57:01,840
ุงู„ู€ small fุŒ ู„ูƒู† ู„ูˆ ุฌุฆุช ู‚ู„ุช ู„ูƒ ู…ุซู„ุง ุงู„ู€ X ุชูƒุนูŠุจ ู‡ุฐู‡
506
00:57:01,840 --> 00:57:06,560
ู…ุดุชู‚ุชู‡ุง ุฌุฏุงุด ุชู‚ูˆู„ ู„ูŠ ุซู„ุงุซุฉ X ุชุฑุจูŠุนุŒ ู„ูˆ ู‚ู„ุช ู„ูƒ X ุชูƒุนูŠุจ
507
00:57:06,560 --> 00:57:12,180
ุฒุงุฆุฏ ู…ุฆุฉุŒ ุฌุฏุงุด ู…ุดุชู‚ุชู‡ุง ุซู„ุงุซุฉ X ุชุฑุจูŠุนุŒ ุฅุฐุง ู†ูุณ ุงู„ู…ุดุชู‚
508
00:57:12,180 --> 00:57:18,140
ู„ูƒ ุงู„ูุฑู‚ ุจูŠู† ุงู„ุฏุงู„ุชูŠู† ุฌุฏุงุด ู…ู‚ุฏุงุฑ ุซุงุจุชุŒ ุฅุฐุง ุฃู†ุง ุจุฏูŠ
509
00:57:18,140 --> 00:57:23,120
ุฃุฑูˆุญ ุฃุชู„ุดู‰ ุงู„ุฎุทุฃ ุฅู† ูˆุฌุฏ ู‡ุฐุง ุงู„ุฎุทุฃุŒ ุจุฑูˆุญ ุจู‚ูˆู„ ู‡ู†ุง
510
00:57:23,120 --> 00:57:27,560
the most general antiderivative of f ุนู„ู‰ ุงู„
511
00:57:27,560 --> 00:57:32,820
interval IุŒ ู‡ูˆ ุนุจุงุฑุฉ ุนู† capital F of X ุฒูŠ ุงู„ู€ main ุฒูŠ
512
00:57:32,820 --> 00:57:38,860
ุงู„ู€ constant CุŒ ูŠุจู‚ู‰ ู‡ู†ุง ุฃุถูุช ู„ู‡ุง ู…ู‚ุฏุงุฑ ุซุงุจุช ู„ุง ูŠุคุซุฑ
513
00:57:38,860 --> 00:57:45,190
ุนู„ู‰ ุดูƒู„ ุงู„ู€ mainุŒ ุนู„ู‰ ุดูƒู„ ุงู„ู€ derivative ุงู„ุฏุงู„ุฉ ู‡ุฐู‡
514
00:57:45,190 --> 00:57:50,810
ู‡ูˆ ุฃุฑุถ ุณูŠู… ุงู„ุงู†ุชูŠ ุฏุฑูŠูุงุชูŠูุŒ ุจุฑูˆุญ ุจุญุท ู„ู‡ุฒุงูŠุฉ ูƒูˆู†ุณุชุงู†
515
00:57:50,810 --> 00:57:56,410
ุณูŠุŒ ุญุชู‰ ุฃุฎู„ุต ู…ู† ุงู„ู…ุดูƒู„ุฉ ุณูˆุงุก ูƒุงู†ุช ุณูŠ ุจุฒูŠุฑูˆ ุฃูˆ ุบูŠุฑ
516
00:57:56,410 --> 00:58:00,090
ุฒูŠุฑูˆุŒ ู‚ู„ู†ุง where c is ูƒูˆู†ุณุชุงู†ุŒ ูŠุจู‚ู‰ ูƒู„ ุงู„ุดุบู„ ุนู†ุฏูŠ
517
00:58:00,090 --> 00:58:04,630
ุญุทูŠุช ุณูŠ ุจู…ู‚ุฏุงุฑ 7ุŒ ุงู„ูƒู„ุงู… ุงู„ู„ูŠ ุจู‚ูˆู„ู‡ ุจุฏู‡ ุฃุฑูˆุญ ุฃุทุจู‚ู‡
518
00:58:04,630 --> 00:58:10,100
ุนู„ู‰ ุฃุฑุถ ุงู„ูˆุงู‚ุนุŒ ูุฑูˆุญู†ุง ุนู…ู„ู†ุง ุฌุฏูˆู„ ู„ุจุนุถ ุงู„ุฏูˆุงู„
519
00:58:10,100 --> 00:58:14,340
ุงู„ุดู‡ูŠุฑุฉุŒ ุจุฏู†ุง ู†ุฌูŠุจู„ู‡ุง ุงู„ู€ Antiderivative ุชุจุนู‡ุงุŒ ู†ุฌูŠ
520
00:58:14,340 --> 00:58:19,900
ู„ู„ุฏุงู„ุฉ ุงู„ุฃูˆู„ู‰ ุงู„ู€ X to the power NุŒ ุงู„ู€ X ู‡ูˆ ุงู„ู…ุชุบูŠุฑ
521
00:58:19,900 --> 00:58:25,620
ุฅู† ู‡ุฐุง is a real numberุŒ ุจุณ ุจุดุฑุท ุงู„ู€ N ู…ู…ู†ูˆุน ูŠุชุณุงูˆูŠ
522
00:58:25,620 --> 00:58:30,280
ุณุงู„ุจ ูˆุงุญุฏุŒ ู„ูƒู† ุฅู† ุดุงุก ุงู„ู„ู‡ ููŠ ูƒู„ ูƒู„ุงุตุฉ ุจู€.. ู‡ู†ุงุฎุฏ
523
00:58:30,280 --> 00:58:34,040
ู„ูˆ ูƒุงู†ุช ุงู„ู€ X ุจุฏูŠ ุชุณุงูˆูŠ ุณุงู„ุจ ูˆุงุญุฏ ุดูˆ ุจุฏูŠ ูŠูƒูˆู† ุดูƒู„
524
00:58:34,040 --> 00:58:38,600
ุงู„ู€ antiderivative ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุฃูˆ ุงู„ุชูƒุงู…ู„ ู„ู„ุฏุงู„ุฉ
525
00:58:38,600 --> 00:58:42,320
ุจุฑุถู‡ ู‡ู†ุนุฑูู‡ ู„ูˆ ูƒุงู†ุช ุงู„ู€ X ูŠุณุงูˆูŠ ูƒุฏู‡ ุณุงู„ุจ ูˆุงุญุฏ ุทุจุนู‹ุง
526
00:58:42,320 --> 00:58:47,360
ู…ุนุทูŠู†ุงุด ูƒูŠูƒู„ุฃู† ููŠ ู…ูˆุถูˆุน ู„ุบุฉ ู…ุงุช ุจูŠุฏุฎู„ ููŠ ุงู„ู…ูˆุถูˆุน
527
00:58:47,360 --> 00:58:51,620
ู„ูƒู† ุฅุญู†ุง ุญุชู‰ ุงู„ุขู† ู…ุง ุฃุฎุฐู†ุงุด ู„ุบุฉ ู…ุงุชุŒ ูŠุจู‚ู‰ ุงู„ู€ X to the
528
00:58:51,620 --> 00:58:54,740
power and the antiderivative ุงู„ู„ูŠ ู‡ูˆ ุจุถูŠู ู„ู„ุฃุณ
529
00:58:54,740 --> 00:59:00,160
ูˆุงุญุฏ ูˆุจู‚ุณู… ุนู„ู‰ ุงู„ุฃุณ ุงู„ุฌุฏูŠุฏ ูˆุจู‚ูˆู„ู‡ ุฒุงุฆุฏ ูƒูˆู†ุณุชุงู†ุณูŠ
530
00:59:00,160 --> 00:59:03,400
ูˆู‡ุฐุง ุงู„ู„ูŠ ูƒู†ุง ุฒู…ุงู† ู…ู† ูƒุงู…ู„ู‡ ููŠ ุงู„ุซุงู†ูˆูŠุฉุŒ ุชู…ุงู…ุŸ
531
00:59:03,400 --> 00:59:11,110
ุณู…ูŠุชู‡ ูƒุงู…ู„ ุบูŠุฑ ุงู„ู…ุญุฏูˆุฏุŒ Sin KXุŒ ุจุฏูŠ ุจุณุฃู„ ู†ูุณูŠ ู‚ุฏุงุด
532
00:59:11,110 --> 00:59:17,890
ุงู„ุฏุงู„ุฉ ุฃูˆ ู‚ุฏุงุด ุชูุงุถู„ ุงู„ู€ SinุŒ ู‡ูˆ CosุŒ ุฃู†ุง ู…ุง ุจุฏูŠุด ุชูุงุถู„
533
00:59:17,890 --> 00:59:23,550
ุงู„ู€ SinุŒ ุฃู†ุง ุจุฏูŠ ุงู„ู€ Antiderivative ู„ู„ู€ SinุŒ ูŠุนู†ูŠ ู…ุง ู‡ูŠ
534
00:59:23,550 --> 00:59:28,010
ุงู„ุฏุงู„ุฉ ุงู„ู„ูŠ ู…ุดุชู‚ุชู‡ุง ุจุชุนุทูŠู†ุง ุงู„ู€ SinุŒ ุจู‚ูˆู„ ู„ูˆ ุฌุฆุช
535
00:59:28,010 --> 00:59:32,250
ุงุดุชู‚ูŠุช ุชูุงุถู„ ุงู„ู€ Cos ุณุงู„ุจ ุงู„ู€ SinุŒ ุจุฑูˆุญ ุงู„ุณุงู„ุจ ู…ุน
536
00:59:32,250 --> 00:59:37,860
ุงู„ุณุงู„ุจุŒ ุถุฑุจ ู…ุดุชู‚ุฉุŒ ุชุฒูˆุฌู‡ุง K ุจุชุฑูˆุญ ู…ุน KุŒ ุจุถุงู„ ู‚ุฏุงุด SIN
537
00:59:37,860 --> 00:59:43,580
ุงู„ูƒูƒุณ ูˆุงู„ู€ C ู…ุดุชู‚ุฉ ุชุจุฒูŠุฑู‡ SIN ุงู„ูƒูƒุณุŒ ุฅุฐุง ุจู†ุงุก ุนู„ูŠู‡
538
00:59:43,580 --> 00:59:47,720
ุงู„ู€ Antiderivative ู„ู€ SIN ุงู„ูƒูƒุณ ู‡ูˆ ุณุงู„ุจ ูˆุงุญุฏ ุนู„ู‰ K
539
00:59:47,720 --> 00:59:53,300
Cos K X ุฒุงุฆุฏ Const CุŒ ู„ูˆ ุจุฏุฌุงุฌูŠ ู„ู„ูƒูƒุณ ูƒุฏูˆุด ู…ุชู‚ุนุฉ
540
00:59:53,300 --> 00:59:58,260
ุงู„ู€ SIN ู‡ูˆ CosุŒ ูŠุจู‚ู‰ ู„ูˆ ุฌุฆุช ุฃุดุชู‚ ู‡ุฐู‡ ู‡ูˆ Cos ุถุฑุจ K
541
00:59:58,260 --> 01:00:02,460
ุจุชุฑูˆุญ ู…ุน K ุจุชุนุทูŠู†ูŠ CosุŒ ุฅุฐุง ุงู„ู€ Antiderivative ู„ู€
542
01:00:02,460 --> 01:00:08,520
Cos X ู‡ูˆ 1 ุนู„ู‰ K ู„ู€ Sin K X ุฒูŠ ุงู„ูƒู†ุณุชุงู†ุณูŠุŒ ุชูุงุถู„ ุงู„
543
01:00:08,520 --> 01:00:13,040
10 ุจุณูƒุชุฑุจูŠุนุŒ ู‡ุฐุง ุงู„ู€ Antiderivative ู„ุณูƒุชุฑุจูŠุน ู‡ูŠ 10
544
01:00:13,040 --> 01:00:18,760
ู…ู‚ุณูˆู…ุฉ ุนู„ู‰ 1 ุนู„ู‰ KุŒ ุจุงู„ู…ุซู„ ุชูุงุถู„ ูƒุชุงู† ุจุณุงู„ุจ
545
01:00:18,760 --> 01:00:22,680
ูƒูˆุณูŠูƒู†ุชุฑุจูŠุนุŒ ู‡ุฐุง ุงู„ู€ Antiderivative ู„ูƒูˆุณูŠูƒู†ุชุฑุจูŠุน K X
546
01:00:22,860 --> 01:00:27,780
ูˆุงู„ุณุงู„ุจ ูˆุงุญุฏ ุนู„ู‰ ูƒู„ูƒูˆ ุชุงู† ูƒูƒ ุฒุงุฆุฏ ูƒูˆู†ุณุชุงู† ุณูŠุŒ ุชูุงุถู„
547
01:00:27,780 --> 01:00:32,540
ุชุณูŠูƒ ุจุณูŠูƒ ุชุงู†ุŒ ุฅุฐุง ุงู„ู€ Antiderivative ู„ุณูŠูƒ ูƒูƒุณ ุชุงู†
548
01:00:32,540 --> 01:00:38,780
ูƒูƒุณ ู‡ูˆ ูˆุงุญุฏ ุนู„ู‰ ูƒ ููŠ ู…ูŠู† ููŠ ุณูŠูƒ ุงู„ูƒูƒุณุŒ ูŠุนู†ูŠ ูƒุฃู†ู‡
549
01:00:38,780 --> 01:00:43,040
ุฃู†ุง ุจุฑุฌุน ุชุฑุฌูŠู‡ุŒ ุฃุจุฏุฃ ุงู„ู„ูŠ ุงู†ูุถู„ู‡ ุจุฑุฌุนู‡ ู„ู…ูŠู† ุงู„ู„ูŠ
550
01:00:43,040 --> 01:00:47,130
ุฃุตู„ ู‚ุจู„ ุงู„ุชูุงุถู„ุŒ ุจุฏู„ ุงู„ู…ุถุฑุจ ููŠ ุชูุงุถู„ ุงู„ุฒุงูˆูŠุฉ ุจู‚ุณู…
551
01:00:47,130 --> 01:00:51,790
ุนู„ู‰ ุชูุงุถู„ ุงู„ุฒุงูˆูŠุฉุŒ ู„ุฃู† ุนู†ุฏูŠ ุงู„ antiderivative ู„ูƒูˆ
552
01:00:51,790 --> 01:00:55,810
ุณูŠ ูƒุงู†ุช ูƒูˆุชุงู† ู‡ูŠ ุณุงู„ูŠ ูƒูˆ ุณูŠ ูƒุงู†ุช ูƒูƒ ู…ู‚ุณูˆู…ุฉ ุนู„ู‰ ู…ูŠู†
553
01:00:55,810 --> 01:01:00,630
ุนู„ู‰ ูƒ ุฒุงุฆุฏ ูƒูˆู†ุณุชุฑุงู† ุณูŠุŒ ู„ูˆ ุงุดุชู‚ุช ู‡ุฐู‡ ุจุชุนุทูŠู†ูŠ ู…ูŠู†
554
01:01:00,630 --> 01:01:05,810
ู‡ุฐู‡ุŒ ู‡ูŠ ุงู„ antiderivative ู„ู…ูŠู† ู„ู„ุฏู„ู‡ุงุŒ ุจุนุฏ ู‡ูŠูƒ ู„ูˆ
555
01:01:05,810 --> 01:01:09,650
ูƒุงู†ุช ุฏุงู„ุฉ ุฃูŠ f of xุŒ ุณูˆุงุก ุงู„ู„ูŠ ููŠ ุงู„ุฌุฏูˆู„ ุฃูˆ ุบูŠุฑู‡ู…
556
01:01:09,650 --> 01:01:14,230
ูุจุฏูŠ ุงู„ antiderivative ู„ูƒ ููŠ ุงู„ู€ f smallุŒ ูŠุจู‚ู‰ ูƒูŠุจ
557
01:01:14,230 --> 01:01:17,510
ุฃู‚ูˆู„ ุฅู† ุฃู†ุช ู…ุง ู„ูƒุด ุฏุนูˆุฉ ูˆุงู„ู ุงุตู…ู‡ ู„ุงู†ุช ุฏุฑูŠูุชูŠู ู‡ูŠ
558
01:01:17,510 --> 01:01:22,410
ุงู„ capital F of X ุฒุงุฆุฏ constant CุŒ ุงู„ุขู† ู„ูˆ ูƒุงู†ุช
559
01:01:22,410 --> 01:01:26,690
ุงู„ูƒูŠุจ ุณุงู„ุจ ูˆุงุญุฏ ูŠุจู‚ู‰ ุจูŠุตูŠุฑ ุงู„ุงู†ุช ุฏุฑูŠูุชูŠู ู„ุณุงู„ุจ F
560
01:01:26,690 --> 01:01:31,070
of X ู‡ูŠ ุณุงู„ุจ capital F of X ุฒุงุฆุฏ constant CุŒ ูŠุจู‚ู‰
561
01:01:31,070 --> 01:01:33,950
ุงู„ูƒูŠุจ ุญุงุทูŠู†ุง ุณุงู„ุจ ูˆุงุญุฏุŒ ู„ูˆ ูƒุงู† ุงู„ู…ุฌู…ูˆุน ุงู„ุฌุจุฑูŠ
562
01:01:33,950 --> 01:01:38,370
ู„ุฏุงู„ุชูŠู† ุงู„ุงู†ุช ุฏุฑูŠูุชูŠู ูŠุจู‚ู‰ ุงู„ู…ุฌู…ูˆุน ุงู„ุฌุจุฑูŠ ู„ุชูˆ ุงู†ุช
563
01:01:38,370 --> 01:01:38,970
ุฏุฑูŠูุชูŠู
564
01:01:50,480 --> 01:01:54,340
ู…ู† ุฎู„ุงู„ ุฌุฏูˆุฑ ุจุฏู†ุง ู†ุฑูˆุญ ู†ุญุณุจ ุงู„ู€ ant derivatives
565
01:01:54,340 --> 01:02:00,490
ู„ู„ุฏูˆุงู„ ุงู„ู…ุฎุชู„ูุฉ ุงู„ุขุชูŠุฉุŒ ูŠุจู‚ู‰ ุฃู†ุง ุนู†ุฏ X ูˆุณุงู„ุจ 4 ุฒุงุฆุฏ
566
01:02:00,490 --> 01:02:04,570
ุงุซู†ูŠู† X ุฒุงุฆุฏ ุซู„ุงุซุฉุŒ ูŠุจู‚ู‰ ู‡ุฐุง ู…ุฌู…ูˆุน ุฌุจุฑูŠ ู„ุซู„ุงุซ ุฏูˆุงู„
567
01:02:04,570 --> 01:02:09,310
ูˆู„ูŠุณ ู„ุฏุงู„ุชูŠู†ุŒ ูŠุจู‚ู‰ ุงู„ู€ ant derivative ู„ู„ุฃูˆู„ู‰ ุฒุงุฆุฏ ุงู„
568
01:02:09,310 --> 01:02:11,830
ant derivative ู„ู„ุชุงู†ูŠุฉ ุฒุงุฆุฏ ุงู„ู€ ant derivative
569
01:02:11,830 --> 01:02:16,470
ู„ู„ุชุงู„ุชุฉุŒ ูˆูƒู„ู‡ู… ุจุชุญุท ู„ู‡ู… ู…ู†ู‡ู… ูƒุงู„ูƒู„ุงุตูŠู†ุŒ ูŠุจู‚ู‰ ุจุงุฌูŠ
570
01:02:16,470 --> 01:02:24,460
ุจู‚ูˆู„ู‡ ู‡ู†ุง ุงู„ู€ antiุŒ ุงู„ุฎุทูˆุฉ ุงู„ุชุงู„ูŠุฉ ู‡ูŠุŒ ูŠุจู‚ู‰ ู‡ู†ุง X ุฃุณ
571
01:02:24,460 --> 01:02:29,880
ุจุฏูŠ ุฃุถูŠู ู„ู„ุฃุณ ูˆุงุญุฏ ูˆุฃู‚ุณู… ุนู„ู‰ ุงู„ุฃุณ ุงู„ุฌุฏูŠุฏุŒ
601
01:05:42,690 --> 01:05:49,990
ุณุงู„ุจ ู†ุต ู…ู‚ุณูˆู…ุง ุนู„ู‰ ุณุงู„ุจ ู†ุต ุฒุงุฆุฏ constant C ุณุงู„ุจ ู†ุต
602
01:05:49,990 --> 01:05:57,850
ู…ุน ุณุงู„ุจ ู†ุต ุจูŠุธู„ X ุฃุณ ุณุงู„ุจ ู†ุต ุฒุงุฆุฏ constant C ุฎู…ุณุฉ
603
01:05:59,750 --> 01:06:10,610
ุฎู…ุณุฉ ุจุฏู†ุง cosine ู„ู…ูŠู† ู„ู€ ฯ€x ุนู„ู‰ ุงุชู†ูŠู† ุฒุงุฆุฏ ฯ€ ููŠ
604
01:06:10,610 --> 01:06:16,210
cosine ุงู„ู€ x ุจุฏู†ุง ุงู„ู€ antiderivative ู„ู‡ุง ูŠุจู‚ู‰ ุงู„
605
01:06:16,210 --> 01:06:22,530
antiderivative is ุชุนุงู„ู‰ ุชุทู„ุนู„ูŠ ู„ู„ู€ cosine ู‡ุฐุง ุงู„
606
01:06:22,530 --> 01:06:27,380
cosine ุนู†ุฏู†ุง ูŠุจู‚ู‰ ุงู„ู€ cosine ุงู„ู„ูŠ ู‡ูˆ ุฑู‚ู… ุชู„ุงุชุฉ ูŠุจู‚ู‰
607
01:06:27,380 --> 01:06:33,880
ูˆุงุญุฏ ุนู„ู‰ k ููŠ ุงู„ู€ sin ูˆูŠู† ุงู„ู€ k ู‡ู†ุง ฯ€ ุนู„ู‰ ุงุชู†ูŠู†
608
01:06:33,880 --> 01:06:42,520
ูŠุจู‚ู‰ ูˆุงุญุฏ ุนู„ู‰ ฯ€ ุนู„ู‰ ุงุชู†ูŠู† ูˆู‡ุฐู‡ ุงู„ู€ sin ฯ€x
609
01:06:42,520 --> 01:06:50,680
ุนู„ู‰ ุงุชู†ูŠู† ู‡ุฐู‡ ุงู„ู€ constant ู…ุงู„ูˆุด ุฏุนูˆุฉ ูˆ cosine X ู‡ูŠ
610
01:06:50,680 --> 01:06:56,920
ู…ูŠู†ุŸ sin X ุจู‚ูˆู„ ุฒุงุฆุฏ constant C ู„ูˆ ู‚ุนุฏู†ุง ู†ุฑุชุจ
611
01:06:56,920 --> 01:07:04,760
ู‡ูŠุจู‚ู‰ ูˆูŠุตูŠุฑ ุงุชู†ูŠู† ุนู„ู‰ ฯ€ sin ฯ€X ุนู„ู‰ ุงุชู†ูŠู† ุฒุงุฆุฏ
612
01:07:04,760 --> 01:07:13,440
ฯ€ ููŠ sin X ุฒุงุฆุฏ constant C ุทูŠุจ ุจุฏู†ุง ู†ูŠุฌูŠ ู„ุณุชุฉ
613
01:07:17,350 --> 01:07:26,090
ุณุชุฉ ุงู„ู„ูŠ ู‡ูˆ ู†ุงู‚ุต ุชู„ุงุชุฉ ุนู„ู‰ ุงุชู†ูŠู† cosec ุชุฑุจูŠุน
614
01:07:26,090 --> 01:07:34,550
ู„ุชู„ุงุชุฉ X ุนู„ู‰ ุงุชู†ูŠู† ุจุฏู†ุง ุงู„ู€ ant derivative ู„ู‡ุง
615
01:07:34,550 --> 01:07:42,010
ูŠุจู‚ู‰ ุงู„ู€ ant derivative is ุณุงู„ุจ ุชู„ุงุชุฉ ุนู„ู‰ ุงุชู†ูŠู†
616
01:07:42,010 --> 01:07:48,240
ู…ุงู„ูˆุด ุฏุนูˆุฉ ูˆู†ุฑุฌุน ู„ู…ูŠู†ุŸ ู„ู„ู€ cosec ุชุฑุจูŠุน ุงู„ู€ cosec
617
01:07:48,240 --> 01:07:54,640
ุชุฑุจูŠุน ู‡ูŠ ููˆู‚ ูŠุจู‚ู‰ ุณุงู„ุจ ูˆุงุญุฏ ุนู„ู‰ k ู„ู„ู€ cot ูŠุจู‚ู‰
618
01:07:54,640 --> 01:08:04,630
ู‡ุฐุง ู†ุตู ูˆู‡ูŠ ุณุงู„ุจ ูˆุงุญุฏ ุนู„ู‰ ุชู„ุงุชุฉ ุนู„ู‰ ุงุชู†ูŠู† ูˆู‡ู†ุง cot
619
01:08:04,630 --> 01:08:11,410
ุชู„ุงุชุฉ X ุนู„ู‰ ุงุชู†ูŠู† ุฒุงุฆุฏ constant C ุณุงู„ุจ ุชู„ุงุชุฉ ุนู„ู‰
620
01:08:11,410 --> 01:08:14,210
ุงุชู†ูŠู† ููŠ ุงู„ุจุณุท ูˆ ุณุงู„ุจ ุชู„ุงุชุฉ ุนู„ู‰ ุงุชู†ูŠู† ููŠ ุงู„ู…ู‚ุงู…
621
01:08:14,210 --> 01:08:20,270
ู…ุน ุงู„ุณู„ุงู…ุฉ ูŠุจู‚ู‰ ุจุถุงู„ุฉ ุฅู† ุจุณ ุฌุฏุงุด cot ุชู„ุงุชุฉ X ุนู„ู‰
622
01:08:20,270 --> 01:08:23,570
ุงุชู†ูŠู† ุฒุงุฆุฏ constant C
623
01:08:35,320 --> 01:08:47,800
ุทูŠุจ ู†ูŠุฌูŠ ู„ู‡ุง ุณุจุนุฉ ุณุจุนุฉ ุจุฏู†ุง ู†ุณุงู„ูŠ ฯ€ cos ฯ€x ุนู„ู‰
624
01:08:47,800 --> 01:08:57,000
ุงุชู†ูŠู† cot ฯ€x ุนู„ู‰ ุงุชู†ูŠู† ุจุฑุถู‡ ุจุฏู†ุง ู†ุฌูŠุจ ุงู„
625
01:08:57,000 --> 01:09:05,510
antiderivative ู„ู‡ุง ูŠุจู‚ู‰ ุงู„ู€ antiderivative is ุณุงู„ุจ
626
01:09:05,510 --> 01:09:11,510
ฯ€ ู…ุงู„ุงุด ุฏุนูˆุฉ ุทู„ุนู„ูŠู‡ ู‡ุฏู‰ ุงู„ู€ cosec cot ู‡ู‰ ุงู„ู€
627
01:09:11,510 --> 01:09:15,570
cosec cot ูŠุจู‚ู‰ ุณุงู„ุจ ูˆุงุญุฏ ุนู„ู‰ k ููŠ ู…ูŠู† ููŠ ุงู„ู€
628
01:09:15,570 --> 01:09:23,450
cosec ูŠุจู‚ู‰ ุณุงู„ุจ ูˆุงุญุฏ ฯ€ ุนู„ู‰ ุงุชู†ูŠู† ููŠ ู…ูŠู†
629
01:09:31,010 --> 01:09:36,270
ู†ุฎุชุตุฑ ู†ู‚ุต ู…ุน ู†ู‚ุต ุจุชุฑูˆุญ ูˆุงู„ู€ ฯ€ ู…ุน ฯ€ ุจุชุฑูˆุญ ูˆุงู„ุงุชู†ูŠู†
630
01:09:36,270 --> 01:09:42,350
ุจุชุตูŠุฑ ููŠ ุงู„ู€ bus ูŠุจู‚ูŠ ุงุชู†ูŠู† cosec ฯ€x ุนู„ู‰
631
01:09:42,350 --> 01:09:52,010
ุงุชู†ูŠู† ุฒุงุฆุฏ constant c ู†ู…ุฑู‡ ุชู…ุงู†ูŠุฉ ุชู…ุงู†ูŠุฉ ุจุฏู†ุง ุงุฑุจุน
632
01:09:52,010 --> 01:10:00,950
six ุชู„ุงุชุฉ X tan ุชู„ุงุชุฉ X ูŠุจู‚ู‰ ุงู„ู€ antiderivative
633
01:10:00,950 --> 01:10:10,390
ู„ู‡ุง is ุฎุฏ ุจุงู„ูƒ ู‡ู†ุง ุงุฑุจุน ู…ุงู„ุงุด ุฏุนูˆุฉ ุชู…ุงู…ุŸ ูˆู‡ุฐู‡ ุงู„ุขู†
634
01:10:10,390 --> 01:10:16,330
sec ููŠู‡ tan ูŠุนู†ูŠ ุนู†ุฏูŠ sec ููŠู‡ tan ูŠุจู‚ู‰ ูˆุงุญุฏ ุนู„ู‰ k ููŠ
635
01:10:16,330 --> 01:10:24,770
sec ูŠุจู‚ู‰ ูˆุงุญุฏ ุนู„ู‰ ุชู„ุงุชุฉ ููŠ sec ุชู„ุงุชุฉ X ุฒุงุฆุฏ constant
636
01:10:24,770 --> 01:10:35,700
C ูŠุนู†ูŠ ุงุฑุจุน ุงุชู„ุงุช sec ุชู„ุงุชุฉ X ุฒุงุฆุฏ constant C ุฒูŠ ู…ุง
637
01:10:35,700 --> 01:10:39,780
ุงู†ุช ุดุงูŠู ู‡ุฐุง ุงู„ูƒู„ุงู… ูƒู„ู‡ ุงุนุชู…ุฏ ุนู„ู‰ ู…ุดุชู‚ุฉ ุงู„ุฏูˆุงู„
638
01:10:39,780 --> 01:10:45,300
ุงู„ู…ุซู„ุซูŠุฉ ุงู„ุณุชุฉ ูŠุจู‚ู‰ ุงู„ู„ูŠ ุนุงุฑู ุงู„ู…ุดุชู‚ุงุช ุจูŠู„ุงู‚ูŠ ู‡ุฐุง
639
01:10:45,300 --> 01:10:52,270
ูƒู„ู‡ ูƒู„ุงู… ุจุณูŠุท ูˆุญุชู‰ ุฃุจุณุท ู…ู† ุงู„ุจุณูŠุท ู„ุฐู„ูƒ ุฅุฐุง ู…ุง
640
01:10:52,270 --> 01:10:56,550
ุฃุนุทูŠุชูƒ ุงู„ุฏูˆุงู„ ุงู„ู…ุซู„ุซูŠุฉ ุงู„ุณุชุฉ ุฌูˆุฌู„ ุชุฏูŠุฑ ุจุงู„ูƒุŒ ู…ุชูƒุฑุฑ
641
01:10:56,550 --> 01:11:01,350
ู…ุนุงูƒ ูƒุชูŠุฑ ููŠ Calculus A ูˆ Calculus B ูˆ Calculus C
642
01:11:01,350 --> 01:11:06,250
ูˆ ููŠ ุงู„ููŠุฒูŠุงุก ูˆ ุฑุจู…ุง ููŠ ุงู„ูƒูŠู…ูŠุงุก ูˆ ู…ุง ุฅู„ู‰ ุฐู„ูƒุŒ ุฅุฐุง
643
01:11:06,250 --> 01:11:09,570
ู„ุง ูŠุณุชุบู†ู‰ ุนู†ู‡ู… ุจุชุงุชุง
644
01:11:25,960 --> 01:11:31,220
ุทูŠุจ ู†ุทูˆุฑ ู…ุนู„ูˆู…ุงุชู†ุง ุญุงุฌุฉ ูˆุณูŠุทุฉ ู‡ูŠูƒ ู†ุงุฎุฏ ู‡ุฐุง ุงู„ุชุนุฑูŠู
645
01:11:31,220 --> 01:11:38,700
ูˆ ุจุนุฏูŠู† ุนู„ูŠู‡ ุดูˆูŠุฉ ุฃู…ุซู„ุฉ ูŠุจู‚ู‰ definition the set of
646
01:11:38,700 --> 01:11:47,680
all antiderivatives the set of all antiderivatives
647
01:11:47,680 --> 01:11:51,940
of
648
01:11:53,100 --> 01:11:59,620
ุฏุงู„ุฉ F is the
649
01:11:59,620 --> 01:12:02,140
indefinite integral
650
01:12:24,830 --> 01:12:39,970
ุจุงู„ู†ุณุจุฉ ู„ู€ X ุจุงู„ู†ุณุจุฉ ู„ู€ X and denoted by ุชูƒุงู…ู„
651
01:12:39,970 --> 01:12:42,670
ู„ู„ู€ F of X DX
652
01:12:47,590 --> 01:12:57,950
ุงู„ู€ F of X is called the integrand
653
01:12:57,950 --> 01:13:02,770
and
654
01:13:02,770 --> 01:13:14,350
X is the variable of integration
655
01:13:21,770 --> 01:13:27,730
ู…ุซุงู„ ูˆุงุญุฏ ุงู†ุชุฌ
656
01:13:27,730 --> 01:13:35,070
ุงุชุฌุงุฑุงุช
657
01:13:35,070 --> 01:13:37,470
ู…ุญุฏูˆุฏุฉ
658
01:13:51,900 --> 01:13:59,520
ุฃูˆู„ ูˆุงุญุฏุฉ ู…ู† ู‡ุฐู‡ ุงู„ุชูƒุงู…ู„ุงุช ุชูƒุงู…ู„ ูˆุงุญุฏ ู†ุงู‚ุต X ุชุฑุจูŠุน
659
01:13:59,520 --> 01:14:07,220
ู†ุงู‚ุต ุชู„ุงุชุฉ X ุฃุณ ุฎู…ุณุฉ ูƒู„ ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ DX
660
01:14:39,260 --> 01:14:42,580
ูŠุจู‚ู‰ ุขุฎุฑ ู†ู‚ุทุฉ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู†ุง ููŠ ู‡ุฐุง ุงู„ู€ section ุงู„ู„ูŠ
661
01:14:42,580 --> 01:14:47,480
ู‡ูˆ ู…ูˆุถูˆุน ุงู„ุชูƒุงู…ู„ ุบูŠุฑ ุงู„ู…ุญุฏูˆุฏ ุทุจุนุง ุนู†ุฏู†ุง ู†ูˆุนูŠู† ู…ู†
662
01:14:47,480 --> 01:14:51,860
ุฃู†ูˆุงุน ุงู„ุชูƒุงู…ู„ ุงู„ุชูƒุงู…ู„ ุงู„ู…ุญุฏูˆุฏ ูˆุงู„ุชูƒุงู…ู„ ุบูŠุฑ ุงู„ู…ุญุฏูˆุฏ
663
01:14:51,860 --> 01:14:56,570
ุงู„ุชูƒุงู…ู„ ุงู„ู…ุญุฏูˆุฏ ุฎู„ูŠู‡ ู„ู„ู€ chapter ุงู„ู‚ุงุฏู… ุงู„ุชูƒุงู…ู„ ุบูŠุฑ
664
01:14:56,570 --> 01:15:00,970
ุงู„ู…ุญุฏูˆุฏ ู…ุฑุชุจุท ุชู…ุงู…ุง ุจุงู„ู€ antiderivative ุฃูˆ ูƒู…ุง ู‚ู„ู†ุง
665
01:15:00,970 --> 01:15:06,150
ู‚ุจู„ ู‚ู„ูŠู„ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ู€ antiderivative ุฅุฐุง ุฃู†ุง ุจุงุฌูŠ
666
01:15:06,150 --> 01:15:10,650
ุจู‚ูˆู„ the set of all antiderivatives of ุงู„ุฏุงู„ุฉ F is
667
01:15:10,650 --> 01:15:14,950
the indefinite integral of ุงู„ุฏุงู„ุฉ F with respect to
668
01:15:14,950 --> 01:15:21,080
X and denoted by ุชูƒุงู…ู„ F of X DX ุทุจุนุง ุงู„ู€
669
01:15:21,080 --> 01:15:25,120
antiderivative ู„ุฏุงู„ุฉ F ูŠูƒูˆู† capital F of X ุฒุงุฆุฏ
670
01:15:25,120 --> 01:15:29,620
constant C ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ general
671
01:15:29,620 --> 01:15:33,340
antiderivative ูŠุจู‚ู‰ ู‡ุฐุง ู‡ูˆ ุงู„ุชูƒุงู…ู„ ุชุจุน ู…ูŠู†ุŸ ุงู„ุฏุงู„ุฉ
672
01:15:33,340 --> 01:15:38,220
ูŠุจู‚ู‰ ูƒู„ ุงู„ู€ antiderivatives ู„ุฏุงู„ุฉ ููŠ C ู‡ุฐุง ู‚ุฏ ูŠูƒูˆู†
673
01:15:38,220 --> 01:15:43,490
ุฃุฑู‚ุงู… ู…ุฎุชู„ูุฉ ุฅุฐุง ู‡ุฐุง ุจูŠูƒูˆู† ูƒู„ู‡ ุนุจุงุฑุฉ ุนู† ู…ูŠู†ุŸ ุงู„ู€
674
01:15:43,490 --> 01:15:47,610
Indefinite Integral ุฃูˆ ุงู„ุชูƒุงู…ู„ ุบูŠุฑ ุงู„ู…ุญุฏูˆุฏ ู„ู„ุฏุงู„ุฉ F
675
01:15:47,610 --> 01:15:55,170
ุจุงู„ู†ุณุจุฉ ู„ู„ู…ุชุบูŠุฑ X ูˆุจุฏูŠู„ู‡ ุงู„ุฑู…ุฒ ุชูƒุงู…ู„ F of X DX ุงู„ู€
676
01:15:55,170 --> 01:16:00,810
F of X is called the Integrand Integrand ุจุงู„ุนุฑุจูŠ
677
01:16:00,810 --> 01:16:07,950
ูŠุนู†ูŠ ุงู„ุฏุงู„ุฉ ุงู„ู…ุฑุงุฏ ุชูƒุงู…ู„ู‡ุง ูŠุจู‚ู‰ f of x ุงู„ุฏุงู„ุฉ ุงู„ู…ุฑุงุฏ
678
01:16:07,950 --> 01:16:13,190
ุชูƒุงู…ู„ู‡ุง integral ูˆุงู„ู€ x ู‡ุฐุง ุจู†ู‚ูˆู„ ุงู„ุชูƒุงู…ู„ ุจุงู„ู†ุณุจุฉ
679
01:16:13,190 --> 01:16:16,650
ู„ู…ูŠู†ุŸ ุฏู‡ ุงู„ู…ุชุบูŠุฑ x the variable of integration
680
01:16:16,650 --> 01:16:21,260
ุจู†ู‚ูˆู„ู‡ ุงู„ู…ุชุบูŠุฑ ุชุจุน ู…ู†ุŸ ุชุจุน ุงู„ุชูƒุงู…ู„ ุงู„ุขู† ุจุฏู†ุง ู†ุจุฏุฃ
681
01:16:21,260 --> 01:16:24,240
ู†ุดุชุบู„ ุฒูŠ ุงู„ู€ Antiderivative ุงู„ู„ูŠ ุชูˆุจุณ ุจุฏูŠ ุงุณู…ูŠู‡ ู…ู†
682
01:16:24,240 --> 01:16:28,760
ู‡ู†ุง ูˆุฑุงูŠุง ู‡ูŠ ุชูƒุงู…ู„ ูˆุงู†ุชู‚ู„ ุงู„ูƒู„ุงู… ุดูˆูŠุฉ ูŠุจู‚ู‰ ู‚ุงู„ ู„ูŠ
683
01:16:28,760 --> 01:16:33,360
ู‡ุงุช ู„ูŠ ู‡ุฐู‡ ุงู„ุชูƒุงู…ู„ุงุช ุบูŠุฑ ุงู„ู…ุญุฏูˆุฏุฉ ุงู„ุชุงู„ูŠุฉ ูˆุจุฏู„ูŠ
684
01:16:33,360 --> 01:16:38,060
ุจุฃูˆู„ ุชูƒุงู…ู„ ุชูƒุงู…ู„ ู„ูˆุงุญุฏ ู†ุงู‚ุต X ุชุฑุจูŠุน ู†ุงู‚ุต ุชู„ุงุชุฉ X
685
01:16:38,060 --> 01:16:46,600
ุฃุณ ุฎู…ุณุฉ DX ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ ู„ู‡ solution ู‡ุฐุง ุงู„ุชูƒุงู…ู„
686
01:16:46,600 --> 01:16:52,180
ุนุจุงุฑุฉ ุนู† ุชูƒุงู…ู„ ูˆุงุญุฏ ู†ุงู‚ุต X ุชุฑุจูŠุน ู†ุงู‚ุต ุชู„ุงุชุฉ X ุฃุณ
687
01:16:52,180 --> 01:16:59,440
ุฎู…ุณุฉ DX ูŠุจู‚ู‰ ุจุฏู‡ ูŠุณุชูˆูŠ ู‡ุฐุง ู…ู‚ุฏุงุฑ ุซุงุจุช ู„ู‡ ูˆุงุญุฏ ูŠุจู‚ู‰
688
01:16:59,440 --> 01:17:04,140
ู‡ุฐุง ุฃุตู„ุง X ุฃุณ Zero ู„ู…ุง ู…ู‚ุฏุฑ ููŠู‡ ุฅู„ุง ูˆุงุญุฏ ุจูŠุตูŠุฑ X
689
01:17:04,140 --> 01:17:12,810
ุฃุณ ูˆุงุญุฏ ูŠุจู‚ู‰ X ูู‚ุท ู„ุบุงูŠุฉ ู†ุงู‚ุต X ุชุฑุจูŠุน ูŠุนู†ูŠ X ุชูƒุนูŠุจ
690
01:17:12,810 --> 01:17:18,310
ุนู„ู‰ ุชู„ุงุชุฉ ู†ุงู‚ุต ุชู„ุงุชุฉ ู…ุงู„ูˆุด ุฏุนูˆุฉ X ุฃุณ ุฎู…ุณุฉ ุจูŠุตูŠุฑ X
691
01:17:18,310 --> 01:17:24,990
ุฃุณ ุณุชุฉ ุนู„ู‰ ุณุชุฉ ุฒุงุฆุฏ constant C ูŠุจู‚ู‰ ุงู„ุฌูˆุงุจ ุตุงุฑ X
692
01:17:24,990 --> 01:17:32,470
ู†ุงู‚ุต X ุชูƒุนูŠุจ ุนู„ู‰ ุชู„ุงุชุฉ ุชู„ุงุชุฉ ุนู„ู‰ ุณุชุฉ ุจูŠุจู‚ู‰ ู†ุตู X
693
01:17:32,470 --> 01:17:40,150
ุฃุณ ุณุชุฉ ุฒุงุฆุฏ constant C ุงู„ุณุคุงู„ ุงู„ู„ูŠ ุจุนุฏู‡ ู†ู…ุฑู‡ ุงุชู†ูŠู†
694
01:17:40,150 --> 01:17:50,570
ุจุฏู†ุง ุชูƒุงู…ู„ ู„ุฎู…ุณ ู†ุงู‚ุต ุงุชู†ูŠู† ุนู„ู‰ X ุชูƒุนูŠุจ ุฒุงุฆุฏ 2
695
01:17:50,570 --> 01:17:57,580
X ูƒู„ ูˆูŠู† ููŠ ุฏูŠ X ุจู‚ูˆู„ ู„ู‡ ุจุณูŠุทุฉ ูŠุจู‚ู‰ ุฃู†ุง
696
01:17:57,580 --> 01:18:02,500
ุจุนูŠุฏ ุชุฑุชูŠุจ ุงู„ู…ุซู„ ุฃุฌูŠุจ ุงู„ู…ุดุชุบู„ ูŠุจู‚ู‰ ุจุงู„ุฏุงุฌูŠ ุฃู‚ูˆู„
697
01:18:02,500 --> 01:18:10,480
ู„ู‡ ู‡ุฐุง integration ู„ุฎู…ุณ ู†ู‚ุตูŠ ุงุชู†ูŠู† X ุฃุณ ุณุงู„ุจ ุชู„ุงุชุฉ
698
01:18:10,480 --> 01:18:18,240
ุฒูŠุฏูŠ ุงุชู†ูŠู† X ูƒู„ู‡ ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ DX ุจู‚ูˆู„ ุงู‡ ุฎู…ุณ ู…ุงู„ูˆุด
699
01:18:18,240 --> 01:18:24,920
ุฏุนูˆุฉ ูˆุจุตูŠุฑ X ุฃุณ ูˆุงุญุฏ ุนู„ู‰ ูˆุงุญุฏ ูŠุจู‚ู‰ ุจู€ X ู†ุงู‚ุต ุงุชู†ูŠู†
700
01:18:24,920 --> 01:18:29,680
X ุจุฏูŠ ุฃุถูŠู ู„ู„ุฃุณ ูˆุงุญุฏ ูˆ ุฃู‚ุณู… ู„ู„ุฃุณ ุงู„ุฌุฏูŠุฏ ุจุตูŠุฑ
701
01:18:29,680 --> 01:18:34,780
ุฌุฏุงุด ุณุงู„ุจ ุงุชู†ูŠู† ุนู„ู‰ ุงู„ุฃุณ ุงู„ุฌุฏูŠุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุณุงู„ุจ
702
01:18:34,780 --> 01:18:40,220
ุงุชู†ูŠู† ุฒุงุฆุฏ 2 X ุชุฑุจูŠุน ุนู„ู‰ ุงุชู†ูŠู† ุฒุงุฆุฏ
703
01:18:40,220 --> 01:18:46,580
constant C ูŠุจู‚ู‰ ุงู„ู†ุชูŠุฌุฉ X ุนู„ู‰ ุฎู…ุณุฉ ู†ุงู‚ุต ุงุชู†ูŠู† ู…ุน
704
01:18:46,580 --> 01:18:51,700
ู†ุงู‚ุต ุงุชู†ูŠู† ุงู„ู„ู‡ ูŠุณู‡ู„ ุนู„ูŠู‡ุง ูŠุจู‚ู‰ X ุฃุณุงู„ุจ ุงุชู†ูŠู† ูˆ
705
01:18:51,700 --> 01:18:56,200
ุงุชู†ูŠู† ู…ุน ุงุชู†ูŠู† ู…ุน ุงู„ุณู„ุงู…ุฉ ูŠุจู‚ู‰ X ุชุฑุจูŠุน ุฒุงุฆุฏ
706
01:18:56,200 --> 01:19:05,240
constant C ุณุคุงู„ ุงู„ุชุงู„ุช ุจุฏู†ุง ุชูƒุงู…ู„ ู„ู…ู†ุŸ
707
01:19:05,240 --> 01:19:17,670
ู„ู€ X ุฃุณุงู„ุจ ุชู„ุงุชุฉ ููŠ X ุฒุงุฆุฏ ูˆุงุญุฏ ููŠ DX ู…ุงููŠุด ุญุงุฌุฉ ุงุณู…ู‡ุง
708
01:19:17,670 --> 01:19:21,950
ุชูƒุงู…ู„ ุงู„ู…ู‚ุฏุงุฑ ุงู„ุฃูˆู„ ุถุฑุจ ุชูƒุงู…ู„ ุงู„ู…ู‚ุฏุงุฑ ุงู„ุซุงู†ูŠ ูŠุจู‚ู‰
709
01:19:21,950 --> 01:19:29,610
ุจุฏูŠ ุฃููƒู‡ุง ูˆุฃุดูˆู ูƒูŠู ุจูŠุตูŠุฑ ู‡ุฐู‡ ุชูƒุงู…ู„ X ุฃุณุงู„ุจ ุงุชู†ูŠู†
710
01:19:29,610 --> 01:19:35,930
ุฒุงุฆุฏ X ุฃุณุงู„ุจ ุชู„ุงุชุฉ ูƒู„ู‡ ููŠ DX ุงู„ุขู† ุจุถูŠู ุงู„ุฃุณ ูˆุงุญุฏ
711
01:19:35,930 --> 01:19:42,850
ูˆุจู‚ุณู… ุนู„ู‰ ุงู„ุฃุณ ุงู„ุฌุฏูŠุฏ ูŠุจู‚ู‰ ู‡ุฐุง X ุฃุณ ุณุงู„ุจ ูˆุงุญุฏ ุนู„ู‰
712
01:19:42,850 --> 01:19:49,130
ุณุงู„ุจ ูˆุงุญุฏ ุฒุงุฆุฏ X ุฃุณ ุณุงู„ุจ ุงุชู†ูŠู† ุนู„ู‰ ุณุงู„ุจ ุงุชู†ูŠู† ุฒุงุฆุฏ
713
01:19:49,130 --> 01:19:56,850
constant C ุฃูˆ ุณุงู„ุจ X ุฃุณ ุณุงู„ุจ ูˆุงุญุฏ ุณุงู„ุจ ู†ุต X ุฃุณ
714
01:19:56,850 --> 01:20:03,650
ุณุงู„ุจ ุงุชู†ูŠู† ุฒุงุฆุฏ constant C ุฃุฑุจุนุฉ ุจุฏู†ุง ุชูƒุงู…ู„
715
01:20:06,200 --> 01:20:15,160
ู„ู„ู€ X ููŠ ุฌุฐุฑ ุงู„ู€ X ุฒุงุฆุฏ ุฌุฐุฑ ุงู„ู€ X ูƒู„ู‡ ุนู„ู‰ X ุชุฑุจูŠุน
716
01:20:15,160 --> 01:20:20,040
ุจุงู„ู†ุณุจุฉ ู„ู€ ุฏูŠ X ู…ุงููŠุด ุญุงุฌุฉ ุงุณู…ู‡ุง ุชูƒุงู…ู„ ุงู„ุจุณุท ุนู„ู‰
717
01:20:20,040 --> 01:20:25,420
ุชูƒุงู…ู„ ุงู„ู…ู‚ุงู… ู…ุงููŠุด ุนู†ู‡ุง ูˆู„ุง ุชูƒุงู…ู„ ุงู„ุทุฑู ุงู„ุฃูˆู„ ููŠ
718
01:20:25,420 --> 01:20:31,070
ุชูƒุงู…ู„ ุงู„ุทุฑู ุงู„ุซุงู†ูŠ ูˆ ุซู… ุงุฌู…ุน ูŠุจุฏุง ูŠุนูŠุฏ ุงู„ุชุฑุชูŠุจ ุชุจุน
719
01:20:31,070 --> 01:20:36,710
ุงู„ู…ุซู„ ูŠุจุฏุฃ ูŠุชูƒุงู…ู„ ู‡ุฐู‡ X ููŠ X ุฃุณ ู†ุต ูŠุนู†ูŠ X ุฃุณ
720
01:20:36,710 --> 01:20:41,670
ุฌุฏุงุด ุชู„ุงุชุฉ ุนู„ู‰ ุงุชู†ูŠู† ูŠุจุฏุฃ ู‡ุฐุง X ุฃุณ ุชู„ุงุชุฉ ุนู„ู‰
721
01:20:41,670 --> 01:20:47,410
ุงุชู†ูŠู† ุฒุงุฆุฏ X ุฃุณ ู†ุต ู‡ุฐู‡ ู„ูˆ ุทู„ุนุชู‡ุง ูู‡ูˆ ุชุจุตูŠุฑ X ุฃุณ
722
01:20:47,410 --> 01:20:53,490
ุฌุฏุงุด ุฃูˆ ู„ูˆ ุฃุฒุนุช ู…ุง ุนู†ุฏูŠุด ู…ุดูƒู„ุฉ ุฃุณูŠุงู† ู‡ุฐู‡ ูˆุงู„ู„ู‡ ู‡ุฐู‡
723
01:20:53,490 --> 01:21:00,610
ุจุฏูŠ ุฃุฏุฎู„ ู‡ุฐู‡ ุฌูˆุง ุงู„ุฌุฐูˆุฑ ูŠุจู‚ู‰ ุจูŠุตูŠุฑ ุชูƒุงู…ู„ X ุฃุณ ุณุงู„ุจ
724
01:21:00,610 --> 01:21:09,050
ู†ุต ุฒุงุฆุฏ ุงู„ู„ูŠ ู‡ูˆ X ุฃุณ ุณุงู„ุจ ุชู„ุงุชุฉ ุนู„ู‰ ุงุชู†ูŠู† ูƒู„ู‡ ููŠ
725
01:21:09,050 --> 01:21:14,770
DX ุชู…ุงู…ุŸ ุฅุฐุง ุจุฏุฃ ูŠูƒุงู…ู„ ุจุถูŠู ู„ู„ุฃุณ ูˆุงุญุฏ ูˆ ุฃู‚ุณู… ุนู„ู‰
726
01:21:14,770 --> 01:21:22,350
ุงู„ุฃุณ ุงู„ุฌุฏูŠุฏ ูŠุจู‚ู‰ ุจูŠุตูŠุฑ X ุฃุณ ู†ุต ุนู„ู‰ ู†ุต ุฒุงุฆุฏ X ุฃุณ
727
01:21:22,350 --> 01:21:31,130
ู†ุงู‚ุต ู†ุต ุนู„ู‰ ู†ุงู‚ุต ู†ุต ุฒุงุฆุฏ constant C ุฃูˆ ุงุชู†ูŠู† ุฌุฐุฑ ุงู„ู€
728
01:21:31,130 --> 01:21:42,030
X ู†ุงู‚ุต ุงุชู†ูŠู† X ุฃุณ ุณุงู„ุจ ู†ุต ุฒุงุฆุฏ constant C ุณุคุงู„
729
01:21:42,030 --> 01:21:48,770
ุงู„ุฎุงู…ุณ ุจุฏู†ุง ุชูƒุงู…ู„ ู„ู†ุต
730
01:21:48,770 --> 01:22:01,150
ููŠ cosec ุชุฑุจูŠุน ุงู„ู€ X ู†ุงู‚ุต cot ุงู„ู€ X ููŠ cot ุงู„ู€ X
731
01:22:01,150 --> 01:22:07,730
ูƒู„ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุงู„ู†ุณุจุฉ ู„ู…ูŠู†ุŸ ุฅู„ู‰ DX ุงู„ู…ู‚ุฏุงุฑ
732
01:22:07,730 --> 01:22:11,770
ุงู„ุซุงุจุช ู„ู‡ ุฏุนูˆุฉุŸ ู‚ุงู„ ู„ู‡ ุฅูŠุด ุฏุนูˆุฉุŸ ูŠุจู‚ู‰ ูŠุง ู†ุงุตุฑ ุฎู„ู‘ูŠูƒ
733
01:22:11,770 --> 01:22:19,710
ุจุฑุง ุจุธู‡ุฑ ุนู†ุฏู†ุง ุชูƒุงู…ู„ cosec ุชุฑุจูŠุน ุณุงู„ุจ cot ู„ุฅู†
734
01:22:19,710 --> 01:22:23,550
ุงุดุชู‚ุงู‚ cot ุจุณุงู„ุจ cosec ุชุฑุจูŠุน ุฅุฐุง ุงู†ุชูƒู…ู„
735
01:22:23,550 --> 01:22:30,310
cosec ุชุฑุจูŠุน ุจุณุงู„ุจ cot ุงู„ู€ X ู†ูŠุฌูŠ cosec cot
736
01:22:30,310 --> 01:22:38,510
ุจุณุงู„ุจ cosec ู…ุน ุณุงู„ุจ ุจูŠุตูŠุฑ ู…ูˆุฌุจ ุงู„ู„ูŠ ู‡ูˆ cosec
737
01:22:38,510 --> 01:22:46,430
ุงู„ู€ X ูƒู„ู‡ ุฒุงุฆุฏ constant C ุณุชุฉ ุจุฏู†ุง ุชูƒุงู…ู„
738
01:22:49,740 --> 01:22:58,880
ู„ู€ 2 tan ุชุฑุจูŠุน ฮธ ูƒู„ู‡ ููŠ ุฏูŠ ฮธ ุงู‡
739
01:22:58,880 --> 01:23:04,020
ู‡ุงุฏ ุงู„ู„ูŠ ู…ุงุฎุฏู†ุงุด ุงุดูˆู ู†ุงุดุทุฉ ูƒุงู…ู„ tan ุชุฑุจูŠุน ุงูŠู‡
740
01:23:04,020 --> 01:23:09,540
ุงุชูุถู„ 2 ุฃุตู„ุง ูˆุงุญุฏ ุฒูŠ ุฏูˆุฑู‡ุง ูƒูˆูŠุณ ูƒูˆูŠุณ ูŠุจู‚ู‰
741
01:23:09,540 --> 01:23:14,710
ุงุฎุชุฑุงุญ ูˆุงุญุฏ ุจูŠู‚ูˆู„ ุจุฏูŠ ุฃุดูŠู„ 2 ูˆ ุจุฏูŠ ุฃูƒุชุจู‡ุง 1
742
01:23:14,710 --> 01:23:18,330
ุฒุงุฆุฏ 1 ุฒุงุฆุฏ tan ุชุฑุจูŠุน ูˆ ุฃุดูŠู„ 1 ุฒุงุฆุฏ tan
743
01:23:18,330 --> 01:23:21,370
ุชุฑุจูŠุน ูˆ ุฃุญุท ุจุฏู„ sec ุชุฑุจูŠุน ูˆ ุจูŠู‚ูˆู„ูˆุง ูˆุงู„ู„ู‡ ูƒู„ู‡ุง
744
01:23:21,370 --> 01:23:24,230
ู…ุธุจูˆุท ู…ูŠุงู† ู…ูŠุงู† ูˆูˆุงุญุฏ ู‚ุงู„ ู„ูŠ ู„ุฃ ู„ุฃ ู„ุฃ ุฃู†ุง ุจุฏูŠ
745
01:23:24,230 --> 01:23:29,030
ุฃุดูŠู„ tan ุชุฑุจูŠุน ูˆ ุฃุญุท ุจุฏู„ sec ุชุฑุจูŠุน ู†ุงู‚ุต 1 ู…ุด ู‡ูŠ
746
01:23:29,030 --> 01:23:32,170
ู†ูุณู‡ุง ุจุฑุถู‡ ูŠุจู‚ู‰ ุณูˆุงุก ูƒุงู† ู‡ุงุฏูŠ ูˆุงู„ู„ู‡ ู‡ุงุฏูŠ ุณูŠุงู†ุฉ
747
01:23:32,170 --> 01:23:35,730
ู…ุง ุชูุฑุฌุด ุฅู† ุฃู†ุง ู„ูŠุด sec ุชุฑุจูŠุน ู„ุฅู† ุงู„ู€ sec ุชุฑุจูŠุน ุจุนุฑู ุงู„ู€
748
01:23:35,730 --> 01:23:40,130
antiderivative ุจุณ ุงู„ู€ tan ุชุฑุจูŠุน ุจุนุฑููˆุด ุชู…ุงู… ุฅุฐุง ู‡ุฐู‡
749
01:23:40,130 --> 01:23:47,290
ู„ูˆ ุฑูˆุญุช ูƒุชุจุชู‡ุง ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ุชูƒุงู…ู„ 2 ุฒุงุฆุฏ
750
01:23:47,290 --> 01:23:54,810
tan ุชุฑุจูŠุน ฮธ ู†ุงู‚ุต 1 ุฏูŠ ฮธ ูŠุนู†ูŠ ุดูŠู„ุช ุงู„ู€ tan ุชุฑุจูŠุน
751
01:23:55,060 --> 01:24:00,760
ุญุทูŠุช ุจุฏู„ู‡ุง ู…ู† ุงู„ู…ุชุทุงุจู‚ุงุช ุงู„ู…ุซู„ุซูŠุฉ ุจุชุงุนุช ุดุจุชุฑ one ุงู‡ุง
752
01:24:00,760 --> 01:24:05,680
section ุงู„ู„ูŠ ู‡ูˆ 1.3 ุญุงุทุจู‡ุง sec ุจูŠู‡ุง ู†ุงู‚ุต
753
01:24:05,680 --> 01:24:13,580
1 ุจุฏู„ ุฅู† ุชูƒุงู…ู„ 1 ุฒุงุฆุฏ sec ุชุฑุจูŠุน ฮธ ูƒู„ู‡
754
01:24:13,580 --> 01:24:18,440
ููŠ ุฏูŠ ฮธ ุชูƒุงู…ู„ 1 ุจู€ ฮธ ูˆุชูƒุงู…ู„ ุงู„ู€ sec ุชุฑุจูŠุน
755
01:24:18,440 --> 01:24:28,490
ุจู€ tan ฮธ ุฒุงุฆุฏ constant C ุทูŠุจ ุณุจุนุฉ ุจุฏู†ุง ุชูƒุงู…ู„ ุงู„ู„ูŠ
756
01:24:28,490 --> 01:24:36,130
ู‡ูˆ 1 ู†ุงู‚ุต cot ุชุฑุจูŠุน ฮธ ูƒู„ู‡ ููŠ ุฏูŠ ฮธ
757
01:24:40,270 --> 01:24:45,270
ุจูŠุฎุชู„ู ุนู† ุงู„ุณุคุงู„ ุงู„ู„ูŠ ู‚ุจู„ู‡ ู†ูุณ ุงู„ููƒุฑุฉ ุฅุฐุง ุจุงุฌูŠ ุจู‚ูˆู„
758
01:24:45,270 --> 01:24:51,550
ู‡ุฐุง ุงู„ูˆุงุญุฏ ู…ุงู„ูˆุด ุฏุนูˆุฉ ูˆู‡ูŠ ุงู„ู†ู‚ู„ cot ุชุฑุจูŠุน ู„ู€ cosec
759
01:24:51,550 --> 01:24:58,980
ุชุฑุจูŠุน ฮธ ู†ุงู‚ุต 1 ุดูƒู„ ุฅู† ูƒู„ู‡ ููŠ ุฏูŠ ฮธ ู‡ุฐุง ู„ูˆ
760
01:24:58,980 --> 01:25:05,300
ููƒุช ุงู„ู‚ูˆุณ ุจูŠุตูŠุฑ ู†ุงู‚ุต ู†ุงู‚ุต 1 ุจู€ 1 1 + 1 2
761
01:25:05,300 --> 01:25:13,420
ูŠุจู‚ู‰ ุจูŠุตูŠุฑ ุชูƒุงู…ู„ ู„ู€ 2 ู†ุงู‚ุต cosec ุชุฑุจูŠุน ฮธ ููŠ
762
01:25:13,420 --> 01:25:19,460
ุฏูŠ ฮธ ูŠุจู‚ู‰ ุงู„ุฌูˆุงุจ ุจู€ 2 ฮธ ูˆ cosec ุชุฑุจูŠุน
763
01:25:19,460 --> 01:25:25,600
ุจูŠุตูŠุฑ ุฒุงุฆุฏ cot ฮธ ุฒุงุฆุฏ constant C
764
01:25:27,860 --> 01:25:36,520
ุณุจุนุฉ ู‡ู†ุง ุจู†ุฌูŠ ู„ูŠู‡ ุชู…ุงู†ูŠุฉ ุชู…ุงู†ูŠุฉ ุชูƒุงู…ู„ ู„ู€ cosec
765
01:25:36,520 --> 01:25:43,200
ฮธ ุนู„ู‰ ู…ูŠู†ุŸ cosec ฮธ ุนู„ู‰ cosec ฮธ
766
01:25:43,200 --> 01:25:51,480
ู†ุงู‚ุต sin ฮธ ูƒู„ู‡ ููŠ ุฏูŠ ฮธ cosec
767
01:25:51,480 --> 01:25:55,740
ูˆ sin ุจูŠู†ูุนุด ุชุฎู„ูŠ ู„ูˆู†ูŠู† ููŠ ุงู„ู…ุซู„ ูƒู„ู‡ู… ุจุชุฎู„ูŠู‡ู… ู„ูˆู†
768
01:25:55,740 --> 01:26:01,210
ูˆุงุญุฏ ุงู„ู€ cosec ู‡ูŠ ู…ู‚ู„ูˆุจ ู…ูŠู†ุŸ ู…ู‚ู„ูˆุจ ุงู„ู€ sin ูŠุจู‚ู‰
769
01:26:01,210 --> 01:26:10,410
ู‡ุฐุง ุชูƒุงู…ู„ ูˆุงุญุฏ ุนู„ู‰ sin ฮธ ูˆุงุญุฏ ุนู„ู‰ sin ฮธ ู†ู‚ุต sin ฮธ
770
01:26:10,410 --> 01:26:21,120
ูƒู„ู‡ ููŠ dฮธ ูŠุจู‚ู‰ ุชูƒุงู…ู„ ูˆุงุญุฏ ุนู„ู‰ sin ฮธ ูŠุจู‚ู‰
771
01:26:21,120 --> 01:26:29,180
sin ฮธ ูŠุจู‚ู‰ 1 ู†ุงู‚ุต sin ุชุฑุจูŠุน ฮธ ุฃุธู† ุฅู†
772
01:26:29,180 --> 01:26:35,
801
01:30:36,910 --> 01:30:43,060
ุงู„ู…ู‚ุฏุงุฑ ู‡ุฐุง ูŠุตูŠุฑ ูƒู…ุŸ X ุนู„ู‰ ุงุซู†ูŠู† DX ูŠุนู†ูŠ ุจุฏุฃุช ุงุถุฑุจ
802
01:30:43,060 --> 01:30:46,700
ู‡ุฐู‡ ููŠ ุงุซู†ูŠู† ู‡ุฐู‡ X ู‡ุฐู‡ ุฌุฑุจุช ู…ุฑุฉ ุซุงู†ูŠุฉ ุงุถุฑุจ ู‡ุฐู‡ ููŠ
803
01:30:46,700 --> 01:30:51,660
ุงุซู†ูŠู† ุจุตูŠุฑ X ุนู„ู‰ ู…ู† ุนู„ู‰ ุงู„ุงุซู†ูŠู† ุจู‚ูˆู„ ู„ู‡ ูŠุง ู†ุต ุฎู„ูŠูƒ
804
01:30:51,660 --> 01:30:57,580
ุจุฑุง ู…ุงู„ูƒุด ุฏุนูˆุฉ ูˆุชูƒู…ู„ ุงู„ูˆุงุญุฏ ุจู‚ุฏ ุงูŠุด ุจ X ูˆุชูƒู…ู„ ุงู„
805
01:30:57,580 --> 01:31:04,340
cosine ุจ sine X ุนู„ู‰ ุงุซู†ูŠู† ุจุฏูƒ ุชูƒุงู…ู„ ุนู„ู‰ ู…ู† ุนู„ู‰
806
01:31:04,340 --> 01:31:10,090
ุงู„ุฒุงูˆูŠุฉ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู†ุต ุฒุงุฆุฏ constant C ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡
807
01:31:10,090 --> 01:31:17,650
ุงู„ุฌูˆุงุจ cos ุงู„ X ุฒุงุฆุฏ ุงุซู†ูŠู† tanุฌู„ุฉ ุจุชุฑูˆุญ ุฒุงุฆุฏ sin X
808
01:31:17,650 --> 01:31:28,530
ุนู„ู‰ ุงุซู†ูŠู† ุฒุงุฆุฏ constant C ู…ุซุงู„ ุฑู‚ู… ุงุซู†ูŠู† ู…ุซุงู„
809
01:31:28,530 --> 01:31:33,350
ุงุซู†ูŠู† ุจุณูŠุท ู…ุด ู…ุซู„ ุงู„ู†ู‚ุทุฉ ุงู„ูˆุงุญุฏุฉ ู…ุด ูƒุชูŠุฑ ูŠุจู‚ู‰ ุจูŠู‚ูˆู„
810
01:31:33,350 --> 01:31:43,630
ุจุฑุถู‡ ู…ู† ุงู„ูƒุชุงุจุฉ Verify ุงุชุฃูƒุฏ ุงู† ุฐุงุช ุชูƒุงู…ู„ ุซู„ุงุซุฉ X
811
01:31:43,630 --> 01:31:52,590
ุฒุงุฆุฏ ุฎู…ุณุฉ ู‚ูˆุณ ู†ุงู‚ุต ุงุซู†ูŠู† DX ุจุฏู†ุง ู†ุณุงูˆูŠ ู†ุงู‚ุต ุซู„ุงุซุฉ X
812
01:31:52,590 --> 01:31:59,010
ุฒุงุฆุฏ ุฎู…ุณุฉ ู‚ูˆุณ ู†ุงู‚ุต ูˆุงุญุฏ ุนู„ู‰ ุซู„ุงุซุฉ ุฒุงุฆุฏ
813
01:32:03,070 --> 01:32:13,970
ุชุฃูƒุฏ ุงู†ู‡ ุชูƒุงู…ู„ ู‡ุฐุง ุจุฏู‡ ูŠุณุงูˆูŠ ู‡ุฐุง ุงูŠุด
814
01:32:13,970 --> 01:32:23,250
ุฑุฃูŠูƒู…ุŸ ูƒูŠู ุจุฏู†ุง ู†ุซุจุช ู‡ุฐุง ุงู„ูƒู„ุงู…ุŸ ุจุฏูˆู† ู…ุง ู†ูƒุงู…ู„ ู…ู…ุชุงุฒ
815
01:32:23,250 --> 01:32:28,090
ุฌุฏุง ูŠุนู†ูŠ ู„ูˆ ุงุดุชู‚ูŠู†ุง ู‡ุฐู‡ ุงู„ู„ูŠ ุนู„ู‰ ุงู„ูŠู…ูŠู† ุจุฏู‡ ุชุทู„ุน
816
01:32:28,090 --> 01:32:32,510
ุงู„ู„ูŠ ุฌูˆุง ู‡ุฐู‡ุŒ ู…ุธุจูˆุทุŸ ุงุฐุง ุชุนุงู„ูˆุง ู†ุดุชู‚ ู‡ุฐู‡ ูˆู†ุดูˆู
817
01:32:32,510 --> 01:32:40,750
ูุฌุฃุฉ ุงู†ุง ุจุฏูŠ ุงู‚ูˆู„ ู„ู‡ solution ุงู‡ุง ุจุฏูŠ ุงุฎุฐ D ุนู„ู‰
818
01:32:40,750 --> 01:32:48,090
DX ู„ุณุงู„ุจ 3X ุฒุงุฆุฏ 5 ู‚ูˆุณ ุณุงู„ุจ 1 ุนู„ู‰ 3 ุฒุงุฆุฏ constant
819
01:32:48,090 --> 01:32:55,950
C ุณูˆุงุก ุณุงู„ุจ ุซู„ุงุซ ู…ุงู„ูƒุด ุฏุนูˆุฉ ุจุนุฏ ู‡ูŠูƒ ุจุฌูŠ ุจู‚ูˆู„ ุงู„ุฃุณ
820
01:32:55,950 --> 01:33:02,390
ููŠ ุงู„ู‚ูˆุณ ู…ุฑููˆุนุฉ
821
01:33:02,390 --> 01:33:08,170
ู„ู†ูุณ ุงู„ุฃุณ ู…ุทุฑูˆุญ ู…ู† ูˆุงุญุฏ ููŠ ู…ุดุชู‚ุฉ ู…ุฏุงุฎู„ ุงู„ู‚ูˆุณ ู…ุดุชู‚ุฉ
822
01:33:08,170 --> 01:33:13,330
ู…ุฏุงุฎู„ ุงู„ู‚ูˆุณ ุงู„ู„ูŠ ู‡ูŠ ูƒุฏู‡ุŸ ุซู„ุงุซุฉ ุชู…ุงู… ุชู…ุงู… ูˆู…ุดุชู‚ุฉ
823
01:33:13,330 --> 01:33:20,310
ุงู„ู€C ุฒูŠุฑูˆ ู„ุฃู†ู‡ constant ุจู‚ูˆู„ ุงู‡ ู†ุงู‚ุต ู…ุน ู†ุงู‚ุต ุจูŠุฒูŠุฏ ูˆ
824
01:33:20,310 --> 01:33:25,510
ุซู„ุงุซุฉ ู…ุน ุซู„ุงุซุฉ ู…ุน ุงู„ุณู„ุงู…ุฉ ูŠุจู‚ู‰ ุถู„ ุงู„ุฌูˆุงุจ ุซู„ุงุซุฉ X
825
01:33:25,510 --> 01:33:34,790
ุฒุงุฆุฏ ุฎู…ุณุฉ ุฃุณ ู†ุงู‚ุต ุงุซู†ูŠู† ู‡ูŠ ู‡ุฐู‡ ุตุญ ูˆู„ุง ู„ุง ูŠุจู‚ู‰ ู‡ุฐู‡
826
01:33:34,790 --> 01:33:42,510
ู„ูˆ ุณู…ูŠุชู‡ุง ุงู„ู…ุซู„ุฉ star ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ ู„ู‡ star hold
827
01:33:42,510 --> 01:33:49,570
ุตุญูŠุญุฉ ุขุฎุฑ ู…ุซุงู„ ููŠ ู‡ุฐุง ุงู„ section ุจูŠู‚ูˆู„ ู„ูŠ ู…ุง ูŠุนุทูŠ
828
01:33:49,570 --> 01:33:54,630
ู…ุซุงู„ ุซู„ุงุซุฉ ุจูŠู‚ูˆู„
829
01:33:54,630 --> 01:34:03,790
ู„ูŠ find a curve find a curve ุจุฏู†ุง ู…ู†ุญู†ู‰ Y ุชุณุงูˆูŠ f
830
01:34:03,790 --> 01:34:16,290
of x with true parties ู„ู‡ ุงู„ุฎูˆุงุต ุงู„ุชุงู„ูŠุฉ ุงู† ุฏูŠ
831
01:34:16,290 --> 01:34:26,170
square y by ุฏูŠ x square ุจุฏู‡ ูŠุณุงูˆูŠ ุณุชุฉ ุงูƒุณ ูˆ ุงุชุณ
832
01:34:26,170 --> 01:34:40,330
ุงุฌุฑุงู passes ุงุชุณ ุงุฌุฑุงู passes at zero ูˆุงุญุฏ
833
01:35:09,600 --> 01:35:17,060
ุณุคุงู„ ู…ุฑุฉ ุซุงู†ูŠุฉ ุจู‚ูˆู„ ู‡ุงุชู„ูŠ ุดูƒู„ ุงู„ู…ู†ุญู†ู‰ Y ูƒุฏุงู„ุฉ ููŠ X
834
01:35:17,060 --> 01:35:21,460
ุงู„ุฐูŠ ู„ู‡ ุงู„ุฎูˆุงุต ุงู„ุชุงู„ูŠุฉ ุฎุงุตูŠุฉ ุงู„ุฃูˆู„ู‰ ู…ุดุชู‚ุฉ ุงู„ุซุงู†ูŠุฉ
835
01:35:21,460 --> 01:35:27,900
ุงู„ู‡ ุชุณุงูˆูŠ 6X ุงู„ุฑุณู… ุงู„ุจูŠุงู†ูŠ ุงู„ู‡ ูŠู…ุฑ ุจู‡ุฐู‡ ุงู„ู†ู‚ุทุฉ ุงุฐุง
836
01:35:27,900 --> 01:35:33,010
ู‡ุฐู‡ ุงู„ู†ู‚ุทุฉ ุชุญู‚ู‚ ุงู„ู…ู†ุญู†ู‰ ุงู„ุฎุงุตูŠุฉ ุงู„ุซุงู„ุซุฉ ุงู†ู‡
837
01:35:33,010 --> 01:35:37,310
ุงู„ู‡ูŠุฑูˆุฒูŠู†ุชุงู„ ุชุงู†ุฌู†ุชุงู„ ุจู†ูุณ ุงู„ู†ู‚ุทุฉ ูŠุนู†ูŠ ุงู„ู…ู…ุงุณ ุชุจู‚ู‰
838
01:35:37,310 --> 01:35:42,590
ูŠูƒูˆู† ู…ุงู„ู‡ ุงูู‚ูŠุง ุจู‚ูˆู„ ู„ู‡ ุจุณูŠุทุฉ ุฌุฏุง ู†ุจุฏุฃ ุจุงู„ู…ุนู„ูˆู…ุฉ
839
01:35:42,590 --> 01:35:48,170
ุงู„ุฃูˆู„ู‰ ู‚ุงู„ ุฏูŠ ุณูƒูˆูŠุฑ ูˆุงูŠ ุนู„ู‰ ุฏูŠ ุงูƒุณ ุณูƒูˆูŠุฑ ูŠุณุงูˆูŠ ุณุชุฉ
840
01:35:48,170 --> 01:35:53,830
ุงูƒุณ ุงุธู† ู„ูˆ ูƒู…ู„ู†ุงู‡ุง ู…ุฑุฉ ุจุชุฑูˆุญ ุงู„ู…ุดุชู‚ุฉ ุงู„ุซุงู†ูŠุฉ ูˆูŠุธู„
841
01:35:53,830 --> 01:35:58,950
ุจูŠู†ุง ุงู†ู‡ุง ุงู„ู…ุดุชู‚ุฉ ุงู„ุฃูˆู„ู‰ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ ู„ู‡ by
842
01:35:58,950 --> 01:36:00,290
integration
843
01:36:02,630 --> 01:36:07,990
ุจุชูƒู…ู„ ุจูŠุจู‚ู‰ ุนู†ุฏู†ุง ู…ู† ุฏูŠ y ุนู„ู‰ ุฏูŠ x ู‡ุฐู‡ ุจุฏู‡ุง ุชุณุงูˆูŠ
844
01:36:07,990 --> 01:36:14,230
ุณุชุฉ x ุชุฑุจูŠุน ุนู„ู‰ ุงุซู†ูŠู† ุฒุงุฆุฏ constant ูˆู„ูŠูƒู† c one
845
01:36:14,230 --> 01:36:23,390
ุทูŠุจ ูŠุนู†ูŠ ู‡ุฐู‡ ุจุฏู‡ุง ุชุณุงูˆูŠ ุซู„ุงุซุฉ x ุชุฑุจูŠุน ุฒุงุฆุฏ c one
846
01:36:23,390 --> 01:36:31,140
ู‡ุฐุง ู…ู† ู…ุดุชู‚ู„ ุงูŠุด ุฑุงุญ ุฌู„ูŠ ู‡ู†ุง ุงู„ู…ู…ุงุณ ุงูู‚ูŠ ุนู†ุฏ
847
01:36:31,140 --> 01:36:36,500
ุงู„ู†ู‚ุทุฉ 01 ุงุฐุง ู…ู† ุฎู„ุงู„ู‡ุง ุจู‚ุฏุฑ ุงุฌูŠุจ ุงู„ constant C1
848
01:36:36,500 --> 01:36:45,870
ูุจุฌูŠ ุจู‚ูˆู„ ู„ู‡ at ุงู„ู†ู‚ุทุฉ 01 we have ูŠุจู‚ู‰ ุงู„ู‡ูŠุฑูˆุฒูˆู†ุชุงู„
849
01:36:45,870 --> 01:36:51,570
ุชุงู†ุฌู†ุช ูŠุนู†ูŠ ุงู„ุงุณู„ูˆุจ ุชุจุนู‡ ูƒุฏู‡ุŸ ุจุฒูŠุฑูˆ ูŠุจู‚ู‰ ู‡ุฐุง
850
01:36:51,570 --> 01:36:57,230
ุงู„ุงุณู„ูˆุจ ุชุจุนู‡ ุจุฒูŠุฑูˆ ู‡ูˆ dy ุนู„ู‰ dx ุชู…ุงู…ุŸ ุจุฏู‡ ูŠุณุงูˆูŠ
851
01:36:57,230 --> 01:37:04,190
ู…ู†ุŸ ุจุฏู‡ ูŠุณุงูˆูŠ ุซู„ุงุซุฉ ููŠ ุฒูŠุฑูˆ ู„ูƒู„ ุชุฑุจูŠุน ุฒุงุฆุฏ c1
852
01:37:04,190 --> 01:37:11,980
ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ c1 ูƒุฏู‡ ุจุฏู‡ ูŠุณุงูˆูŠุŸ ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ dy
853
01:37:11,980 --> 01:37:21,760
ุนู„ู‰ dx ูŠุจู‚ู‰ ุจุงุณ ุซู„ุงุซุฉ x ู…ุตุฏูˆุฑ ุทูŠุจ ู†ุฑูˆุญ ูƒุงู…ู„
854
01:37:21,760 --> 01:37:30,060
ู„ู†ุทู„ุจ ุดูƒู„ ุงู„ y as a function of x ุจู‚ูˆู„ ู„ู‡ ุงู„ุขู† ุจุฑุถู‡
855
01:37:30,060 --> 01:37:32,060
by integration
856
01:37:34,980 --> 01:37:40,360
ุจุงู„ุชูƒุงู…ู„ ู‡ุฐู‡ ุชูƒุงู…ู„ู‡ุง ุจู‚ุฏุฑุด ูŠุจู‚ู‰ Y ู‡ุฐู‡ ุชูƒุงู…ู„ู‡ุง
857
01:37:40,360 --> 01:37:46,080
ุจู‚ุฏุฑุด ูŠุจู‚ู‰ ุซู„ุงุซุฉ X ุชูƒุนูŠุจ ุน ุซู„ุงุซุฉ ุฒุงุฆุฏ ูƒู†ุต ุซุงู†ูŠ
858
01:37:46,080 --> 01:37:54,740
ูˆู„ูŠูƒู† C2 ูŠุจู‚ู‰ ู‡ุฐู‡ ุจุฏู‡ุง ุชุณุงูˆูŠ X ุชูƒุนูŠุจ ุฒุงุฆุฏ C2 ุงูŠุด
859
01:37:54,740 --> 01:38:00,280
ุฑุงุญ ุฌู„ูŠู‡ุงุŸ ุฌู„ูŠ ู‡ุฐุง ุงู„ู…ู†ุญู†ู‰ ูŠู…ุฑ ุจุงู„ู†ู‚ุทุฉ ู‡ุฐู‡ ุงุฐุง ุจุงุฌูŠ
860
01:38:00,280 --> 01:38:01,560
ุจู‚ูˆู„ ู„ู‡ at
861
01:38:05,960 --> 01:38:13,400
ูŠุจู‚ู‰ ุงู„ Y ุจู‚ุฏ ุงูŠุด ูˆุงุญุฏ ูˆC ุจู‚ุฏ ุงูŠุด ุฒูŠุฑูˆ ุฒุงุฆุฏ C ุงุซู†ูŠู†
862
01:38:13,400 --> 01:38:19,080
ูŠุจู‚ู‰ C ุงุซู†ูŠู† ุจุฏู‡ ูŠุณุงูˆูŠ ู‚ุฏ ุงูŠุด ูˆุงุญุฏ ูŠุจู‚ู‰ ุงู„ู…ู†ุญู†ู‰ ุงู„ู„ูŠ
863
01:38:19,080 --> 01:38:26,080
ุจุฏู‡ ูŠุง Y ุชุณุงูˆูŠ X ุชูƒุนูŠุจ ุฒุงุฆุฏ ูˆุงุญุฏ