abdullah's picture
Add files using upload-large-folder tool
3a258c2 verified
raw
history blame
67.4 kB
1
00:00:00,760 --> 00:00:05,260
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ู‡ุฐู‡ ู‡ูŠ ุงู„ู…ุญุงุถุฑุฉ ุงู„ุซุงู…ู†ุฉ
2
00:00:05,260 --> 00:00:10,040
ู…ุณุงู‚ ุฑูŠุงุถูŠุงุช ู…ู†ูุตู„ุฉ ุทู„ุงุจ ูˆุทุงู„ุจุงุช ุงู„ุฌุงู…ุนุฉ
3
00:00:10,040 --> 00:00:15,020
ุงู„ุฅุณู„ุงู…ูŠุฉ ู‚ุณู… ุงู„ุญูˆุณุจุฉ ุงู„ู…ุชู†ู‚ู„ุฉ ูƒู„ูŠุฉ ุงู„ุนู„ูˆู… ูˆูƒู„ูŠุฉ
4
00:00:15,020 --> 00:00:19,240
ุชูƒู†ูˆู„ูˆุฌูŠุง ุงู„ู…ุนู„ูˆู…ุงุช ุงู„ู…ุญุงุถุฑุฉ ุงู„ูŠูˆู… ุฅู† ุดุงุก ุงู„ู„ู‡
5
00:00:19,240 --> 00:00:23,460
ู‡ู†ุญูƒูŠ ุนู† ุงู„ู„ูŠ ู‡ูˆ Section 4.4 ุงู„ู„ูŠ ู‡ูˆ solving
6
00:00:23,460 --> 00:00:29,770
congruences ุฃูˆ ุญู„ ุงู„ุชุทุงุจู‚ุงุช ู‡ู†ุญู„ .. ู‡ู†ุญูƒูŠ ุนู† ุดุบู„ุชูŠู†
7
00:00:29,770 --> 00:00:34,150
ููŠ ุญู„ ุงู„ุชุทุงุจู‚ุงุช ุฃูˆู„ ุดูŠุก ุญู„ ุชุทุงุจู‚ ุฎุทูŠุฉ ู„ุญุงู„ู‡ุง ูˆ
8
00:00:34,150 --> 00:00:38,810
ุจุนุฏูŠู† ุญู„ system of linear congruences ุฃูˆ ุงู„ู„ูŠ ู‡ูŠ
9
00:00:38,810 --> 00:00:44,590
ุชุทุงุจู‚ุงุช ุขู†ูŠุฉ ููŠ ุขู† ูˆุงุญุฏ ู„ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ุชุทุงุจู‚ุงุช ูˆ
10
00:00:44,590 --> 00:00:48,200
ู‡ู†ุดูˆู ูƒูŠู ุงู„ู„ูŠ ู‡ูˆ ู†ุณุชุฎุฏู… ุงู„ chinese remainder
11
00:00:48,200 --> 00:00:53,500
theorem ูˆุงู„ู€ back substitution method ูŠุนู†ูŠ
12
00:00:53,500 --> 00:00:58,260
ุทุฑูŠู‚ุชูŠู† ู‡ู†ุญู„ ููŠู‡ู… ุงู„ุชุทุงุจู‚ุงุช ุงู„ุฃู†ูŠุฉ ููŠ ุงู„ุจุฏุงูŠุฉ
13
00:00:58,260 --> 00:01:02,380
ุฎู„ูŠู†ูŠ ู†ุชุนุฑู ุดูˆ ู…ุนู†ุงู‡ ุงู„ู€ Linear congruences
14
00:01:02,380 --> 00:01:06,660
congruences ุดูŠุก ู…ุดุงุจู‡ ู„ู„ู„ูŠ ู‡ูŠ ุงู„ู€ Linear equations
15
00:01:06,660 --> 00:01:11,080
ูˆู„ูƒู† ุจุชุธู‡ุฑ ุจุฏู„ ุนู„ุงู…ุฉ ุงู„ู…ุณุงูˆุงุฉ ุจุชุธู‡ุฑ ุนู„ุงู…ุฉ ุงู„ู„ูŠ
16
00:01:11,080 --> 00:01:15,180
ู‡ูŠ ุงู„ุชุทุงุจู‚ ูˆุจุชุธู‡ุฑ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ู‚ูŠุงุณ ุจุงู„ุถุจุท ุงูŠุด
17
00:01:15,180 --> 00:01:19,040
ุจู†ู‚ูˆู„ุŸ ุจู†ู‚ูˆู„ a congruence of the form ุงู„ู„ูŠ ู‡ูŠ Ax
18
00:01:19,040 --> 00:01:22,960
ุทุงุจู‚ B modulo M ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุจู†ุณู…ูŠู‡ุง Linear
19
00:01:22,960 --> 00:01:27,800
congruences ู„ุฃู† X ุนุจุงุฑุฉ ุนู† ุฃุณ ูˆุงุญุฏ ูˆุนู†ุฏูŠ ุงู„ู€ a ูˆุงู„ู€
20
00:01:27,800 --> 00:01:31,500
b ุจุชูƒูˆู† ุฃุนุฏุงุฏ ู…ุนุทูŠุฉ ูˆุงู„ู€ m ุนุฏุฏ ู…ุนุทูŠ ูˆุงู„ู…ุทู„ูˆุจ ุงู„ู„ูŠ
21
00:01:31,500 --> 00:01:35,840
ู‡ูˆ ุฅูŠุฌุงุฏ ู‚ูŠู…ุฉ ุงู„ู…ุฌู‡ูˆู„ x ู‡ุฐู‡ ุจู†ุณู…ูŠู‡ุง ุงู„ู„ูŠ ู‡ูŠ linear
22
00:01:35,840 --> 00:01:40,760
congruences ุญู„ ุงู„ู€ linear congruences ู‡ูˆ ูƒู…ุง ูŠู„ูŠ
23
00:01:40,760 --> 00:01:45,660
ุงู„ู„ูŠ ู‡ูˆ ุจู†ู‚ุตุฏ ููŠ ุญู„ ุงู„ู€ congruence ax ุทุงุจู‚ b
24
00:01:45,660 --> 00:01:49,520
modulo m ู‡ูŠ ุฅูŠุฌุงุฏ ูƒู„ ู‚ูŠู… x ุงู„ู„ูŠ ู‡ูŠ ุจุชุญู‚ู‚ ุงู„ู„ูŠ ู‡ูŠ
25
00:01:49,520 --> 00:01:54,050
ุงู„ุชุทุงุจู‚ ุงู„ู„ูŠ ุนู†ุฏูŠ ุงู„ุขู† ู‚ุจู„ ู…ุง ู†ุดูˆู ูƒูŠู ู†ุญู„
26
00:01:54,050 --> 00:01:58,750
ุงู„ุชุทุงุจู‚ุงุช ุงู„ุฎุทูŠุฉ ุฎู„ูŠู†ุง ู†ุชุทู„ุน ุจุณ ุนู„ู‰ ุดุบู„ุฉ ุงู„ู„ูŠ ู‡ูŠ
27
00:01:58,750 --> 00:02:03,490
ุจุชู„ุฒู…ู†ุง ููŠ ุญู„ ุงู„ุชุทุงุจู‚ุงุช ุงู„ู„ูŠ ู‡ูˆ ุจู†ู‚ูˆู„ ุนู† an
28
00:02:03,490 --> 00:02:08,010
integer a bar such that a bar ููŠ a ุทุงุจู‚ ุงู„ูˆุงุญุฏ
29
00:02:08,010 --> 00:02:12,070
modulo m ุจู†ุณู…ูŠ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ a bar ู‡ูˆ
30
00:02:12,070 --> 00:02:17,080
ุนุจุงุฑุฉ ุนู† ุงู„ู€ inverse ู„ู„ู€ a modulo m ุฅุฐุงู‹ ุงู„ุนุฏุฏ ุงู„ู„ูŠ
31
00:02:17,080 --> 00:02:21,140
ุจู†ุฌูŠุจู‡ ู„ู…ุง ู†ุถุฑุจู‡ ููŠ ุงู„ู€ A ูŠุทุงุจู‚ ุงู„ูˆุงุญุฏ modulo M
32
00:02:21,140 --> 00:02:26,140
ุจู†ู‚ูˆู„ ุนู†ู‡ ู‡ุฐุง A bar ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ู€ inverse ู„ู„ู€
33
00:02:26,140 --> 00:02:30,680
A ุงู„ู€ inverse of A modulo M ุฎู„ูŠู†ุง ู†ุชุทู„ุน ุนู„ู‰ ู…ุซุงู„
34
00:02:30,680 --> 00:02:35,460
ุจุณูŠุท ุงู„ุขู† ุจู‚ูˆู„ ู„ูŠ ุนู†ุฏูŠ ุฎู…ุณุฉ ู‡ูŠ inverse of ุชู„ุงุชุฉ
35
00:02:35,460 --> 00:02:40,430
modulo ุณุจุนุฉ ุงู„ุฎู…ุณุฉ ู‡ูŠ inverse ู„ู„ุชู„ุงุชุฉ modulo ุณุจุนุฉ
36
00:02:40,430 --> 00:02:44,630
ูŠุนู†ูŠ ุงู„ุฎู…ุณุฉ ู…ุนูƒูˆุณ ุงู„ุชู„ุงุชุฉ ุจุงู„ู†ุณุจุฉ ู„ู„ู…ู‚ูŠุงุณ ุงู„ุณุจุนุฉ
37
00:02:44,630 --> 00:02:48,730
ู„ุฃู† ู„ูˆ ุถุฑุจู†ุง ุงู„ุฎู…ุณุฉ ููŠ ุงู„ุชู„ุงุชุฉ ุจุฎู…ุณุชุนุด ุงู„ุฎู…ุณุชุนุด
38
00:02:48,730 --> 00:02:52,990
ุฏุงุฆู…ุงู‹ ุทุงุจู‚ ุงู„ูˆุงุญุฏ modulo ุณุจุนุฉ ุนุงุฑููŠู† ุงูŠุด ู…ุนู†ู‰ ุชุทุงุจู‚
39
00:02:52,990 --> 00:02:57,050
ุงู„ูˆุงุญุฏ modulo ุณุจุนุฉ ูŠุนู†ูŠ ุงู„ุฎู…ุณุชุนุด ู„ูˆ ุดูŠู„ู†ุง ู…ุถุงุนูุงุช
40
00:02:57,050 --> 00:03:01,340
ุงู„ุณุจุนุฉ ู…ู†ู‡ุง ู‡ู†ู„ุงู‚ูŠ ุจุถู„ ุงู„ู…ุชุจู‚ูŠ ุจุณ ูˆุงุญุฏ ู…ุงุดูŠ ุงู„ุญู„
41
00:03:01,340 --> 00:03:07,040
ูุนุดุงู† ูŠูƒูˆู† 15 ุทุงุจู‚ ุงู„ูˆุงุญุฏ modulo ุณุจุนุฉ ุงู„ุขู† ุนู†ุฏ ุงู„ู€
42
00:03:07,040 --> 00:03:11,820
linear congruencies ู‡ุชู†ุณุชุฎุฏู…ู‡ุง ู‡ู†ุณุชุฎุฏู… ููŠ ุฅูŠุฌุงุฏ
43
00:03:11,820 --> 00:03:16,240
ู‚ูŠู…ุฉ ุงู„ู€ X ููŠู‡ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ inverse ุชุจุน ุงู„ุนู†ุตุฑ
44
00:03:16,240 --> 00:03:21,400
ู‡ู†ุณุชุนูŠู† ููŠู‡ ู„ุฅูŠุฌุงุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุญู„ ููŠ ุงู„ุฃูˆู„ ุฎู„ูŠู†ุง
45
00:03:21,400 --> 00:03:25,580
ู†ุดูˆู ู‡ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ุจุชุดุฑู‘ุน ู„ู†ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ู‡ูŠ ุฅู†
46
00:03:25,580 --> 00:03:31,860
ูŠูƒูˆู† ููŠู‡ ุงู„ู€ congruence ุญู„ ุฃูˆ ุงู„ู„ูŠ ู…ุงู„ู‡ุงุด ุจุณ ู‚ุจู„ ู…ุง
47
00:03:31,860 --> 00:03:37,980
ู†ุงุฎุฏ ู†ุธุฑูŠุฉ ุจุชุดุฑู‘ุน ู„ู†ุง ุฅู† ุงู„ุนุฏุฏ ู„ู‡ ุงู„ู„ูŠ ู‡ูˆ inverse
48
00:03:37,980 --> 00:03:42,080
ูˆู„ุง ู…ุงู„ู‚ูˆุด ุชู‚ูˆู„ู†ุง ู†ุธุฑูŠุฉ if a and m are relatively
49
00:03:42,080 --> 00:03:47,630
prime integers ุฅุฐุง ูƒุงู† ุงู„ู€ a ูˆุงู„ู€ m ุงู„ุนุฏุฏ ูˆู…ู‚ูŠุงุณู‡
50
00:03:47,630 --> 00:03:51,050
are relatively prime integers and M ุฃูƒุจุฑ ู…ู† ูˆุงุญุฏ
51
00:03:51,050 --> 00:03:55,350
then an inverse of A modulo M exists ูŠุนู†ูŠ ุฏุงุฆู…ุงู‹
52
00:03:55,350 --> 00:03:58,510
ุฏูˆู… ู„ู…ุง ูŠูƒูˆู† ุงู„ุนุงู…ู„ ุงู„ู…ุดุชุฑูƒ ุจูŠู† ุงู„ู€ A ูˆุงู„ู€ M
53
00:03:58,510 --> 00:04:02,050
ุจุณุงูˆูŠ ูˆุงุญุฏ ุจุชุถู…ู† ูˆุฌูˆุฏ ุงู„ู„ูŠ ู‡ูˆ inverse ู„ู„ู€ A
54
00:04:02,050 --> 00:04:08,160
modulo M ู…ุงุดูŠ ุงู„ุญุงู„ ุฎู„ูŠู†ุง ู†ุดูˆู ู…ุซุงู„ู†ุง ู‡ู†ุง
55
00:04:08,160 --> 00:04:11,220
ุงู„ุฎู…ุณุฉ
56
00:04:11,220 --> 00:04:14,980
is an inverse of ุชู„ุงุชุฉ modulo M modulo ุงู„ุณุจุนุฉ ู‡ุฐู‡
57
00:04:14,980 --> 00:04:20,620
ูˆุฌุฏู†ุงู‡ุง ุงุญู†ุง ู‚ุจู„ ุดูˆูŠุฉ ู†ู„ุงุญุธ ุฅู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฎู…ุณุฉ ูˆุงู„ู€
58
00:04:20,620 --> 00:04:25,840
ู„ูŠ ู‡ูŠ ุงู„ุชู„ุงุชุฉ ุงู„ู„ูŠ ุจุฏู†ุง ู†ูˆุฌุฏ ู„ู‡ุง inverse ู‡ูŠ
59
00:04:25,840 --> 00:04:31,020
ูˆุงู„ุณุจุนุฉ ุงูŠู‡ ุดู…ุงู„ู‡ุง relatively prime ุงู„ุขู† this
60
00:04:31,020 --> 00:04:38,040
ุงู„ู„ูŠ ู‡ูˆ inverse is unique unique ุจุณ ุงูŠู‡ ุดู…ุงู„ู‡ุŸ
61
00:04:38,040 --> 00:04:41,400
modulo ุณุจุนุฉ ูŠุนู†ูŠ ูˆุญูŠุฏ ุจุงู„ู†ุณุจุฉ ู„ู…ู‚ูŠุงุณ ุณุจุนุฉุŒ ุงูŠุด ูŠุนู†ูŠุŸ
62
00:04:41,570 --> 00:04:46,150
ูŠุนู†ูŠ ุงู„ู„ูŠ ู‡ูˆ ู…ู† ูˆุงุญุฏ ู„ุนู†ุฏ ุณุจุนุฉ ู…ุงููŠุด ุบูŠุฑ inverse
63
00:04:46,150 --> 00:04:50,130
ูˆุงุญุฏ ู„ู„ุชู„ุงุชุฉ modulo ุงู„ู„ูŠ ู‡ูˆ ุณุจุนุฉ ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู† ู„ุฌู†ุงู‡
64
00:04:50,130 --> 00:04:55,250
ุฎู…ุณุฉ ู„ูƒู† ููŠ ุบูŠุฑู‡ ุจุนุฏ ุงู„ุณุจุนุฉ ูƒู„ ุงู„ุฃุนุฏุงุฏ ุงู„ู„ูŠ ู‡ูŠ ู„ู…ุง
65
00:04:55,250 --> 00:05:00,290
ู†ุถูŠู ู„ู‡ุง ู†ุถูŠู ู…ุถุงุนูุงุช ุงู„ุณุจุนุฉ ุนู„ู‰ ุงู„ุฎู…ุณุฉ ุจุชุทู„ุน ุจุฑุถู‡
66
00:05:00,290 --> 00:05:04,470
ุงูŠุด ุนุจุงุฑุฉ ุนู† inverse ุงูŠุด ูŠุนู†ูŠุŸ ูŠุนู†ูŠ ุงู„ุฎู…ุณุฉ ู„ุฌู†ุงู‡
67
00:05:04,470 --> 00:05:09,120
ุงู„ู„ูŠ ู‡ูˆ inverse ู„ู„ุชู„ุงุชุฉ modulo ุณุจุนุฉ ุงู„ุขู† ู„ูˆ ุถูู†ุง ุนู„ู‰
68
00:05:09,120 --> 00:05:12,100
ุงู„ุณุจุนุฉ ุงู„ุฎู…ุณุฉ ูƒู…ุงู† ุณุจุนุฉ ุจุตูŠุฑ ุงุชู†ุงุดุฑ ุจุฑุถู‡ inverse
69
00:05:12,100 --> 00:05:16,220
ู„ู„ุชู„ุงุชุฉ ุงู„ุชุณุนุฉ ุงุชุนุด ุจุฑุถู‡ inverse ู„ู„ุชู„ุงุชุฉ ู„ูˆ ุทุฑุญู†ุง
70
00:05:16,220 --> 00:05:19,700
ุณุจุนุฉ ู…ู† ุงู„ุฎู…ุณุฉ ู†ู‚ุต ุงุชู†ูŠู† ุจุฑุถู‡ inverse ู„ู…ูŠู† ู„ู„ุชู„ุงุชุฉ
71
00:05:19,700 --> 00:05:26,310
modulo ุณุจุนุฉ ุฅุฐุง ู†ู‚ุตุฏ ุงุญู†ุง ุงู„ู€ uniqueness ุจุนู†ูˆุงู† ู‡ุฐุง
72
00:05:26,310 --> 00:05:28,750
ูŠุนู†ูŠ ุฃู†ู‡ ูŠูˆุฌุฏ inverse ูˆุงุญุฏ
73
00:05:28,750 --> 00:05:35,590
A bar ุฃู‚ู„ ู…ู† M ูˆู‡ูˆ inverse ู„ู€ A modulo M ูˆูƒู„ inverse ุขุฎุฑ
74
00:05:35,590 --> 00:05:44,910
ู„ู€ A modulo M ุจูŠูƒูˆู† ุทุงุจู‚ ู„ู€ A bar modulo M ุงู„ู€ 12 ูˆุงู„ู€ ู†ู‚ุต 2
75
00:05:44,910 --> 00:05:50,970
ูˆุงู„ู€ 19 ูˆูƒู„ ู‡ุฐูˆู„ ุจุฑุถู‡ ุจูŠูƒูˆู†ูˆุง inverse ู„ู„ุชู„ุงุชุฉ
76
00:05:50,970 --> 00:05:55,630
modulo 7 ู„ุฃู† ุงู„ู„ูŠ ู‡ู†ุง ูƒู„ู‡ู… ุจุทุงุจู‚ูˆุง ู…ู† ุงู„ุฎู…ุณุฉ ุงู„ู„ูŠ
77
00:05:55,630 --> 00:05:57,490
ู„ุฌูŠู†ุงู‡ุง modulo 7
78
00:06:03,840 --> 00:06:08,520
ุทูŠุจ ุดูˆู ุฎู„ูˆู†ุง ู†ุฌุฏ ูƒูŠู ู†ุฌุฏ ุงู„ู€ inverse ุงู„ู„ูŠ ู‡ูˆ ู„ู„ุนุฏุฏ
79
00:06:08,520 --> 00:06:13,360
ู„ุฃูŠ ุนุฏุฏ ุจุฏู†ุง ุฅูŠุงู‡ ุจุงู„ู†ุณุจุฉ ู„ู‚ูŠุงุณ ู…ุนูŠู† ุงู„ู€ Euclidean
80
00:06:13,360 --> 00:06:15,760
algorithm ุงู„ู„ูŠ ู‡ูŠ ุฎูˆุงุฑุฒู…ูŠุฉ ุงู„ู‚ุณู…ุฉ ุงู„ุฃูˆุฑูˆุจูŠุฉ
81
00:06:15,760 --> 00:06:19,400
coefficients ุงู„ู„ูŠ ู‡ูˆ ุจุชุนุทูŠู†ุง gives us a systematic
82
00:06:19,400 --> 00:06:24,120
approach to find ุงู„ู„ูŠ ู‡ูˆ ุงูŠุด to find inverse ูƒูŠูุŸ
83
00:06:24,290 --> 00:06:27,810
ุงู„ู„ูŠ ู‡ูˆ .. ุงู„ู„ูŠ ู‡ูˆ ูƒู…ุงู„ูŠ ุงุจู†ูŠ ูŠุฌูŠุจ .. ูŠุทู„ุจ ุฅู† ู‡ูˆ
84
00:06:27,810 --> 00:06:31,650
ููŠู„ู… ุชู„ู‚ู‰ find an inverse of 3 modulo 7 ุงู„ุนุฏุฏ
85
00:06:31,650 --> 00:06:36,250
ุนุดุงู† ุฅู† ุตุบูŠุฑ ุณู‡ู„ ุฅู† ู†ุนู…ู„ู‡ู… .. ู†ูˆุฏุฏู‡ู… ุฒูŠ ู‚ุจู„ ู…ุง
86
00:06:36,250 --> 00:06:40,510
ุดูˆูŠุฉ ุจุงู„ุชุญุฐูŠุฑ ุฃูˆ ูƒุฏู‡ ุจุณ ู…ุง ูŠู†ูุนุด ุจุงู„ุชุญุฐูŠุฑ ุงู„ุขู† ุจุฏู†ุง
87
00:06:40,510 --> 00:06:43,470
ู†ูˆุฏูŠ ุงู„ุทุฑูŠู‚ุฉ .. ู†ู„ุงู‚ูŠ ุทุฑูŠู‚ุฉ ู„ุฅูŠุฌุงุฏู‡ุง ุงู„ุทุฑูŠู‚ุฉ ุนู†
88
00:06:43,470 --> 00:06:46,050
ุทุฑูŠู‚ุฉ ุงู„ู€ Euclidean ุงู„ู‚ุณู…ุฉ ุฃูˆู„ ุญุงุฌุฉ ู†ุนู…ู„ ู…ุดุชุฑูƒ ุงู„ู„ูŠ
89
00:06:46,050 --> 00:06:49,440
ุนู„ู‰ ุจูŠู† 3 ูˆ 7 ุจูŠุณุงูˆูŠ ูˆุงุญุฏ ุฅุฐุง ู…ุถู…ูˆู† ู…ู† ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ
90
00:06:49,440 --> 00:06:52,620
ู‡ูŠ ูˆุงุญุฏ ุฅู† ู†ู„ุงู‚ูŠ inverse ู„ู„ุชู„ุงุชุฉ modulo ู…ู†ูŠู† ุณุจุนุฉ
91
00:06:52,620 --> 00:06:55,940
ูŠุนู†ูŠ ุงู„ู€ inverse modulo of ุชู„ุงุชุฉ modulo ุณุจุนุฉ exist
92
00:06:55,940 --> 00:06:59,920
always ุฎู„ูŠู†ุง ู†ุดูˆู ูƒูŠู ุจุฏู†ุง ู†ูˆุฌุฏู‡ ุงู„ุขู† ุจุชูŠุฌูŠ ุงู„ุณุจุนุฉ
93
00:06:59,920 --> 00:07:02,140
ุจุชูŠุฌูŠ ุงุณู…ู‡ุง ุงู„ุชู„ุงุชุฉ ุณุจุนุฉ ุจูŠุณุงูˆูŠ 2 ููŠ ุชู„ุงุชุฉ
94
00:07:02,140 --> 00:07:06,860
ูˆุงู„ู…ุชุจู‚ูŠ ุงูŠุด ูˆุงุญุฏ ุงู„ุขู† ุฌู‡ุฒุฉ ุงู„ุขู† ุงู„ูˆุงุญุฏ ู‡ูˆ ุนุจุงุฑุฉ
95
00:07:06,860 --> 00:07:10,800
ุนู† ุงู„ุนุงู…ู„ ุงู„ู…ุดุชุฑูƒ ุงู„ุฃุนู„ู‰ ุจูŠู† ุงู„ุชู„ุงุชุฉ ูˆุงู„ุณุจุนุฉ ู‡ุฐุง
96
00:07:10,800 --> 00:07:14,130
ุนุงุฑููŠู†ู‡ ุงุญู†ุง ู…ู† ู‚ุจู„ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุทุฑูŠู‚ุฉ ุงู„ุขู† ูˆุงุญุฏ ุจู‚ุช
97
00:07:14,130 --> 00:07:16,550
ูˆุน ุตูˆุฑุฉ Linear combination ู…ู† ุงู„ุชู†ูŠู† ุงู„ู„ูŠ ู‡ูŠ
98
00:07:16,550 --> 00:07:19,950
ุจูŠุฒูˆุชุฒ ูƒูˆููŠู‡ ุนู† ุทุฑูŠู‚ ุงู„ู„ูŠ ู‡ูˆ ุงูŠู‡ ุงู„ู„ูŠ ู‡ูŠ ุจูŠุฒูˆุชุฒ
99
00:07:19,950 --> 00:07:23,430
ูƒูˆููŠู‡ coefficients ุจูŠุตูŠุฑ ุนู†ุฏ ุงู„ูˆุงุญุฏ ุจูŠุณุงูˆูŠ ุจู†ุฌู„ู‡ุง
100
00:07:23,430 --> 00:07:26,950
ุฏู‡ ุจูŠุตูŠุฑ ู†ู‚ุต ุงุชู†ูŠู† ููŠ ุชู„ุงุชุฉ ุฒุงุฆุฏ ูˆุงุญุฏ ููŠ ุณุจุนุฉ ุงู„ุขู†
101
00:07:26,950 --> 00:07:30,310
ุฃู†ุง ู…ูŠู† ุงู„ู„ูŠ ุจุฏู‡ ุงูˆุฌุฏู„ู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ inverse ุงู„ุชู„ุงุชุฉ
102
00:07:30,310 --> 00:07:35,110
modulo ู…ูŠู† modulo ุงู„ุณุจุนุฉ ู…ุนุงู…ู„ ุงู„ุชู„ุงุชุฉ ููŠ ู‡ุฐุง ุงู„ู€
103
00:07:35,110 --> 00:07:38,990
linear combination ุงู„ู„ูŠ ู‡ูˆ ู†ู‚ุต ุงุชู†ูŠู† ู‡ูˆ ุงู„ู„ูŠ ู‡ูŠุทู„ุน
104
00:07:38,990 --> 00:07:45,830
ู„ู†ุง ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู† ุงู„ุฅู†ูุฑุณ ุงู„ู…ุทู„ูˆุจ and see that ู†ู‚ุต
105
00:07:45,830 --> 00:07:49,310
ุงุชู†ูŠู† and ูˆุงุญุฏ ู‡ูŠ ุงู„ู€ Bezout coefficients ุงู„ู„ูŠ
106
00:07:49,310 --> 00:07:54,530
ู…ุนุงู…ู„ ุงู„ุชู„ุงุชุฉ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ู†ู‚ุต ุงุชู†ูŠู† ู‡ูˆ ุงู„ู„ูŠ ู‡ูŠูƒูˆู†
107
00:07:54,530 --> 00:07:59,170
inverse of ุชู„ุงุชุฉ modulo ู…ูŠู† modulo ุณุจุนุฉ ุฅุฐุง ุงู„ุฃู…ุฑ ุณู‡ู„
108
00:07:59,170 --> 00:08:04,530
ุนุดุงู† ู†ูˆุฌุฏ ุงู„ู€ inverse ุจุณ ุจู†ูŠุฌูŠ ุงู„ู„ูŠ ู‡ูˆ ุจู†ูƒุชุจ ุงู„ู€ ..
109
00:08:04,530 --> 00:08:07,970
ุจู†ุงุฎุฏ .. ุจู†ูƒุชุจ ุงู„ู€ .. ุงู„ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุดุชุฑูƒ ุงู„ุฃุนู„ู‰
110
00:08:07,970 --> 00:08:11,480
ุจูŠู†ู‡ู…ุฃุฒุงู„ูŠู†ุง ุงู„ู€ combination ุจูŠู† ุงู„ุชู„ุงุชุฉ ูˆุงู„ุณุจุนุฉ
111
00:08:11,480 --> 00:08:15,260
ูƒูŠู ู‡ุฐุง ุจุทุฑูŠู‚ุฉ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ division algorithm ุงู„ู„ูŠ
112
00:08:15,260 --> 00:08:21,160
ุงุชุนู„ู…ู†ุงู‡ุง ูˆุจูƒูˆู† ู…ุนุงู…ู„ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุชู„ุงุชุฉ ู‡ูˆ ุนุจุงุฑุฉ ุนู†
113
00:08:21,160 --> 00:08:26,750
ุงู„ู€ inverse ู„ู„ุชู„ุงุชุฉ modulo ุงู„ุณุจุนุฉ ุงู„ุขู† ุงู„ู„ูŠ ุฌูŠู†ุง ู†ู‚ุต
114
00:08:26,750 --> 00:08:30,530
ุงุชู†ูŠู† ุฅุฐุง ุจู„ุงู‚ูŠ ุงู„ุจุฌูŠู‡ุงุช ูƒู„ู‡ุง ุงู„ู„ูŠ ุจุฏูƒ ุชุถูŠู ุนู„ู‰
115
00:08:30,530 --> 00:08:34,190
ุงู„ุณุจุนุฉ ุนู„ู‰ ู†ู‚ุต ุงุชู†ูŠู† ุณุจุนุฉ ุจูŠุทู„ุน ุงู„ุฎู…ุณุฉ ุงุถูŠู ุนู„ูŠู‡
116
00:08:34,190 --> 00:08:37,370
ูƒู…ุงู† ุณุจุนุฉ ุจูŠุทู„ุน ุงุชู†ุงุดุฑ ุงุถูŠู ุนู„ูŠู‡ ูƒู…ุงู† ุณุจุนุฉ ุจูŠุทู„ุน
117
00:08:37,370 --> 00:08:41,730
ุชุณุนุฉ ุนุดุฑ ู„ูˆ ุทุฑุญุช ู…ู†ู‡ ุณุจุนุฉ ุจูŠุทู„ุน ู†ู‚ุต ุชุณุนุฉ ูƒู„ ู‡ุฐูˆู„
118
00:08:41,860 --> 00:08:47,860
ู‡ูˆ ุนุจุงุฑุฉ ุนู† Inverses ุงู„ู„ูŠ ู‡ูŠ ุงู„ุชู„ุงุชุฉ modulo ุณุจุนุฉ
119
00:08:47,860 --> 00:08:52,680
ู„ูƒู† ูˆุงุญุฏ ู…ู†ู‡ู… ุงู„ู€ unique ู‡ูˆ ุงู„ุฎู…ุณุฉ ุงู„ู„ูŠ ู…ู† ุงู„ูˆุงุญุฏ
120
00:08:52,680 --> 00:08:57,400
ู„ุนู†ุฏ ู…ูŠู† ู„ุนู†ุฏ ุงู„ุณุจุนุฉ ุฒูŠ ู…ุง ุญูƒูŠู†ุง ู‚ุจู„ ุดูˆูŠุฉ ุงู„ุขู†
121
00:08:57,400 --> 00:09:02,510
ู†ุงุฎุฏ ู…ุซุงู„ ุนู„ู‰ ุฃุนุฏุงุฏ ูƒุจูŠุฑุฉ ู†ุดูˆู ูƒูŠู ู†ูˆุฌุฏู‡ ู†ุงุฎุฏ
122
00:09:02,510 --> 00:09:06,150
ุงู„ู…ุซุงู„ ุงู„ุซุงู†ูŠ ู‡ุฐุง find an inverse of 101 modulo
123
00:09:06,150 --> 00:09:12,370
4620 ู†ุดูˆู ุงู„ุขู† ุงูŠุด ุงู„ู„ูŠ ุจู†ุณูˆูŠู‡ ุงู„ุทุฑูŠู‚ุฉ ูƒู…ุงู„ูŠ
124
00:09:12,370 --> 00:09:17,930
ุจุงุฌูŠ ุจู‚ุณู… ู‡ุฐุง ุนู„ู‰ 101 ุจุทุฑูŠู‚ุฉ ุงู„ู€ Euclidean ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ division
125
00:09:17,930 --> 00:09:22,550
algorithm ู„ู…ุง ุฃุตู„ ููŠ ุงู„ุขุฎุฑ ู„ู„ู…ุชุจู‚ูŠ ุตูุฑ ุจูŠูƒูˆู† ุฃูˆู„
126
00:09:22,550 --> 00:09:25,870
ูˆุงุญุฏ ู‚ุจู„ ุงู„ู…ุชุจู‚ูŠ ุตูุฑ ู‡ูˆ ุงู„ู€ greatest common divisor
127
00:09:25,870 --> 00:09:29,520
ุฒูŠ ู…ุง ู‚ู„ู†ุง ู‚ุจู„ ู‡ูŠูƒุŒ ุจู†ู‘ู‡ ุจุชุฌูŠุจ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ grades
128
00:09:29,520 --> 00:09:32,540
common divisor as a linear combination of ุงู„ุงุซู†ูŠู†
129
00:09:32,540 --> 00:09:36,680
ูˆุจูƒูˆู† ุงู„ู…ุนุงู…ู„ ุงู„ู€ 101 ู‡ูˆ ุงู„ู€ inverse ุงู„ู…ุทู„ูˆุจุŒ ุฎู„ู‘ูŠู†ุง
130
00:09:36,680 --> 00:09:40,540
ู†ุดูˆู ุงู„ูƒู„ุงู… ู‡ุฐุง ุนู…ู„ูŠู‹ุง ุงู„ุขู†ุŒ ุฃูˆู„ู‹ุง ุงุณุชุฎุฏู… ุงู„ู€
131
00:09:40,540 --> 00:09:43,480
Euclidean algorithm to show that ุงู„ู€ greatest common divisor
132
00:09:43,480 --> 00:09:46,860
ุจูŠู† ู‡ุฐูˆู„ ุงู„ุนุฏุฏูŠู† ุจูŠุณุงูˆูŠ ูˆุงุญุฏุŒ ุงูŠุด ุจู†ุณูˆูŠุŸ ุจู†ู‚ุณู… ู‡ุฐุง
133
00:09:46,860 --> 00:09:53,160
ุนู„ู‰ ู‡ุฐุงุŒ ุฌุณู…ู†ุง ุนู„ู‰ 101ุŒ ุญุตู„ ู‚ุณู… 45ุŒ ุงู„ู…ุชุจู‚ูŠ 75ุŒ ุจุงุฌูŠ ุฌุณู…
134
00:09:53,160 --> 00:10:00,220
101 ุนู„ู‰ 75ุŒ ุจูŠุทู„ุน ุงู„ู…ุชุจู‚ูŠ 26ุŒ ุจุนุงูˆุฏ ุงู„ู€ 75 ุจู†ูุณ ุงู„ุทุฑูŠู‚ุฉ
135
00:10:00,220 --> 00:10:05,500
ุนู„ู‰ ุงู„ู€ 26ุŒ ุจูŠุทู„ุน ุงู„ู…ุชุจู‚ูŠ 23ุŒ ุงู„ู€ 26 ู…ุน ุงู„ู€ 23ุŒ ุจุถู„ ุงู„ู…ุชุจู‚ูŠ
136
00:10:05,500 --> 00:10:09,260
3ุŒ ุงู„ู€ 23 ู…ุน ุงู„ู€ 3ุŒ ุจุถู„ ุงู„ู…ุชุจู‚ูŠ 2ุŒ ู‡ุฐุง ุนุงุฑููŠู†ุŒ ุนุดุงู† ู‡ูŠูƒ
137
00:10:09,260 --> 00:10:12,910
ุฃู†ุง ู…ู† ุงู„ุณุฑุนุฉุŒ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุชู„ุงุชุฉ ู…ุน ุงู„ุงุชู†ูŠู†ุŒ ุจุทู„ุน
138
00:10:12,910 --> 00:10:17,250
ุงู„ู…ุชุจู‚ูŠ ูˆุงุญุฏุŒ ุงู„ุงุชู†ูŠู† ุงู„ู„ูŠ ู‡ูˆ ู…ุน ุงู„ู„ูŠ ู‡ูˆ ุงู„ูˆุงุญุฏ
139
00:10:17,250 --> 00:10:22,010
ุงู„ู„ูŠ ู‡ูˆ ุจุถู„ู‘ุด ู…ุชุจู‚ูŠุŒ ูุจูƒูˆู† ุฃูˆู„ ูˆุงุญุฏ ู‚ุจู„ ุงู„ู„ูŠ ู‡ูˆ ู…ุง ุถู„ู‘ุด
140
00:10:22,010 --> 00:10:25,130
ู…ุชุจู‚ูŠุŒ ู‡ูˆ ุฏู‡ ุงู„ุนุงู… ุงู„ู…ุดุชุฑูƒ ุงู„ุฃุนู„ู‰ ุจูŠู† ุงู„ุนุฏุฏูŠู† ุงู„ู„ูŠ
141
00:10:25,130 --> 00:10:29,150
ู‡ูˆ 4621ุŒ ุงู„ุขู† ุจุฏู‡
142
00:10:29,150 --> 00:10:32,470
ู…ุด ู‡ู†ุงุŒ ุฃู†ุง ู…ุด ุบุฑุถูŠ ุจุณ ุฃูˆุฌุฏ ุงู„ุนุงู… ุงู„ู…ุดุชุฑูƒ ุงู„ุฃุนู„ู‰
143
00:10:32,470 --> 00:10:36,480
ุจูŠู† ุงู„ูˆุงุญุฏุŒ ู„ุฃุŒ ุบุฑุถูŠ ุฃู† ุฃูƒุชุจ ุงู„ูˆุงุญุฏุŒ ุจุงู„ุฑุฌูˆุน ุฒูŠ ู…ุง ูƒู†ุง
144
00:10:36,480 --> 00:10:40,160
ู†ุฑุฌุน ู‚ุจู„ ู‡ูŠูƒุŒ ุฃุฒู„ู†ุง ุงู„ู€ combination ู…ู† ุงู„ู€ 4621
145
00:10:40,160 --> 00:10:44,200
ูˆุงู„ู€ 101ุŒ ูˆุนุงุฑููŠู† ุงู„ุทุฑูŠู‚ุฉ ุงุญู†ุงุŒ ูˆุงุญุฏ ุจุชุณุงูˆูŠ ุชู„ุงุชุฉ ู†ุงู‚ุต
146
00:10:44,200 --> 00:10:48,900
ูˆุงุญุฏ ููŠ ูˆุงุญุฏ ููŠ ุงุชู†ูŠู†ุŒ ุงู„ุขู† ุงู„ุงุชู†ูŠู† ู‡ู†ุง ุจุฌูŠุจู‡ ู…ู†
147
00:10:48,900 --> 00:10:54,850
ู‡ู†ุงุŒ ุจุฌูŠุจู‡ ู‡ุฐุง ู†ุงู‚ุต ู‡ุฐุงุŒ ูˆุจุนูˆู‘ุถ ุนู†ู‡ู…ุŒ ูˆุจุงูุฑุฏู‡ุง ุงู„ุขู†
148
00:10:54,850 --> 00:10:58,030
ุงู„ู„ูŠ ุจูŠุทู„ุน ุนู†ุฏูŠ ู‡ูˆุŒ 4621 ู†ุงู‚ุต 13 ููŠ
149
00:10:58,030 --> 00:11:01,330
8 ููŠ 3ุŒ ุจุชุฌูŠุจ ุงู„ุขู† ู‚ูŠู…ุฉ ู…ู† ุงู„ุชู„ุงุชุฉุŒ ุจุดูŠู„
150
00:11:01,330 --> 00:11:05,330
ุงู„ุชู„ุงุชุฉุŒ ูˆุจุฌูŠุจ ู‚ูŠู…ุฉ ุชู‡ูŠุฆุชู‡ุงุŒ ูˆุจู†ุนูˆู‘ุถู‡ุงุŒ ูˆุจุถู„ู‘ ุจุงุณุชู…ุฑ
151
00:11:05,330 --> 00:11:08,890
ูƒู„ ุดุบู„ ุจุชุฌูŠุจู‡ุง ู…ู† ุงู„ู„ูŠ ุฌุงุจู„ู‡ุงุŒ ู„ู…ุง ู†ู‚ุตู„ ููŠ ุงู„ุขุฎุฑ
152
00:11:08,890 --> 00:11:12,970
ู„ุขุฎุฑ ู„ูŠู†ุง ุงู„ู€ combinationุŒ ุจูŠุทู„ุน ูˆุงุญุฏุŒ ุจุณู‘ูˆุก ู†ุงู‚ุต ุชู„ุงุชุฉ
153
00:11:12,970 --> 00:11:16,610
35 ููŠ 4621 ุฒุงุฆุฏ 1601 ููŠ 101ุŒ ู„ุงุญุธ ุฃู†ุง ุฃู†ุง ู‚ุฏุฑุช ุฃูƒุชุจ ุงู„ูˆุงุญุฏ
154
00:11:16,610 --> 00:11:21,510
ุจุฃุฒุงู„ูŠ ุจุงู„ู€ BรฉzoutุŒ ุงู„ู€ Bรฉzout ุงู„ู€ coefficient ุณูŠู‡ุง ู…ู‚ุตู‘
155
00:11:21,510 --> 00:11:25,170
35 ูˆ 1601 ู„ู€ 4621 ูˆ 101ุŒ ูŠุนู†ูŠ ูˆุงุญุฏ ู„ูŠู†ุง
156
00:11:25,170 --> 00:11:32,150
combination ู…ู† ู‡ุฐุง ูˆู…ู† ู‡ุฐุงุŒ ุจูŠูƒูˆู† ู…ุนุงู…ู„ ุงู„ู€ 101
157
00:11:32,150 --> 00:11:36,750
ุงู„ู„ูŠ ู‡ูˆ 1601 ู‡ูˆ ุงู„ู„ูŠ is an inverse of 101 mod
158
00:11:36,750 --> 00:11:42,810
4621ุŒ ูˆู„ูˆ ุฌูŠุช ุฃู†ุช ุชุชุฃูƒุฏ ู…ู† ูƒู„ุงู…ูƒุŒ ุงุถุฑุจ ุงู„ู€ 1601 ููŠ ุงู„ู€
159
00:11:42,810 --> 00:11:50,670
101ุŒ ู‡ุชู„ุงู‚ูŠ ุจูŠุทู„ุน ุงู„ุฑู‚ู… ู‡ุฐุงุŒ ู‡ุฐุง ุงู„ุฑู‚ู… ู„ูˆ ุฌุณู…ุชู‡ ุนู„ู‰
160
00:11:50,670 --> 00:11:55,530
4621ุŒ ู‡ูŠุทู„ุน ุงู„ู…ุชุจู‚ูŠ ูˆุงุญุฏุŒ ูŠุนู†ูŠ ู‡ุฐุง ูŠุทุงุจู‚ ุงู„ูˆุงุญุฏ mod
161
00:11:55,530 --> 00:11:58,990
4621ุŒ ุฅุฐุง ูุนู„ุงู‹ ู‡ุฐุง ุนุจุงุฑุฉ ุนู† ุงู„ู€ inverse ู„ู‡ุฐุง mod
162
00:11:58,990 --> 00:12:05,050
4621ุŒ ุญุณุจ ู…ุง ุนุฑูู†ุง ู‚ุจู„ ุจุดูˆูŠุฉุŒ ู‡ูƒุฐุง ูุฅู†ู†ุง ูˆุฌุฏู†ุง
163
00:12:05,050 --> 00:12:11,070
ุงู„ุงู†ูุฑุณ ู„ุฃุนุฏุงุฏ ุฃูˆ ุฃุฑู‚ุงู… ูƒุจูŠุฑุฉุŒ ุงู„ุขู† ุจุฏู†ุง ู†ุณุชุฎุฏู…
164
00:12:11,070 --> 00:12:16,290
ุงู„ุงู†ูุฑุณ ู„ุฅูŠุฌุงุฏ ุงู„ู€ linear congruencesุŒ ุจุฏู†ุง ู†ุณุชุฎุฏู…
165
00:12:16,290 --> 00:12:20,850
ุงู„ุงู†ูุฑุณ ููŠ ุฅูŠุฌุงุฏ ุงู„ู€ linear congruencesุŒ ุงูŠุด ุงู„ููƒุฑุฉุŸ
166
00:12:20,850 --> 00:12:26,210
ู†ุดูˆู ูƒูŠู ู†ุณุชุฎุฏู… ุงู„ุงู†ูุฑุณ ููŠ ุฅูŠุฌุงุฏ ุงู„ู€ linear congruencesุŒ ุงูŠุด ุงู„ููƒุฑุฉุŸ
167
00:12:26,210 --> 00:12:29,530
ู†ุดูˆู ูƒุฏู‡ ุงูŠุด ุงู„ููƒุฑุฉ ููŠ ุงุณุชุฎุฏุงู… ุงู„ุงู†ูุฑุณุŒ ู†ุณุชุทูŠุน
168
00:12:29,530 --> 00:12:32,950
ุชุญุณูŠู† ุงู„ุงู†ูุฑุณ AxุŒ ูˆูŠุทุงุจู‚ ุจู€ mod By multiplying
169
00:12:32,950 --> 00:12:37,210
both sides by A barุŒ ุงู„ู€ A bar ุงู„ู„ูŠ ู‡ูŠ ู…ู† ุงู„ู€ inverse
170
00:12:37,210 --> 00:12:41,050
ู„ูˆ ุถุฑุจู†ุงู‡ุง ู…ู† ุงู„ุฌู‡ุชูŠู† ููŠ A barุŒ ูุจูŠุตูŠุฑ A bar ููŠ A ููŠ
171
00:12:41,050 --> 00:12:46,230
X ุจูŠุณุงูˆูŠ A bar ููŠ BุŒ ู„ุฃู† A ููŠ A bar ููŠ XุŒ ุงู„ู€ A ููŠ A
172
00:12:46,230 --> 00:12:49,670
bar ู…ุง ู‡ูŠ ุจุทุงุจู‚ ุงู„ูˆุงุญุฏุŒ ูŠุนู†ูŠ ูˆูƒุฃู†ู†ุง ุจู†ูƒูˆู† ุดูŠู„ู†ุง
173
00:12:49,670 --> 00:12:52,970
ุงู„ู€ A ููŠ ุงู„ู€ A barุŒ ูˆุตุงุฑ ููŠ ุนู†ุฏูŠ ุงู„ูˆุงุญุฏ ู„ุญุงู„ู‡ุŒ ูŠุนู†ูŠ
174
00:12:52,970 --> 00:12:57,230
ุตุงุฑุช ุงู„ู€ X ู‚ุงุนุฏุฉ ู„ุญุงู„ู‡ุงุŒ ูŠุนู†ูŠ ุตุงุฑุช ุงู„ู€ X ุจุชุณุงูˆูŠ A bar
175
00:12:57,230 --> 00:13:05,110
ููŠ B modulo MุŒ ู‡ูŠ ุงู„ุญู„ุŒ ุจุชู†ุดูˆู ูƒูŠูุŒ What are the
176
00:13:05,110 --> 00:13:07,990
solutions of the congruence 3x ูŠุทุงุจู‚ 4
177
00:13:07,990 --> 00:13:09,430
mod 7ุŸุŸุŸุŸุŸุŸุŸุŸุŸุŸุŸุŸุŸุŸุŸุŸุŸุŸุŸุŸุŸุŸุŸุŸุŸุŸุŸุŸุŸุŸุŸูŠุทุงุจู‚
178
00:13:09,430 --> 00:13:10,390
4 mod 7ุŸ ูŠุทุงุจู‚
179
00:13:10,390 --> 00:13:11,290
4 mod 7ุŸ ูŠุทุงุจู‚
180
00:13:11,290 --> 00:13:13,050
4 mod 7ุŸ ูŠุทุงุจู‚
181
00:13:13,050 --> 00:13:16,630
4 mod 7ุŸ ูŠุทุงุจู‚
182
00:13:16,630 --> 00:13:24,030
4 mod 7ุŸ ูŠุทุงุจู‚
183
00:13:24,030 --> 00:13:29,440
4ุŒ ุงู„ุขู† ูˆุงุถุญ ุฅู†ู‡ ุงู„ู„ูŠ ู‡ูˆ ุตุงุฑ ุนู†ุฏูŠ ุงู„ูˆุงุญุฏ ู‡ูˆ ุงู„ู€
184
00:13:29,440 --> 00:13:32,040
greatest common divisor ุจูŠู† ุงู„ุชู„ุงุชุฉ ูˆุจูŠู† ุงู„ุณุจุนุฉ
185
00:13:32,040 --> 00:13:36,500
ูˆุจูŠุณุงูˆูŠ 7 ู†ุงู‚ุต 2 ููŠ 3ุŒ ูŠุนู†ูŠ ุทู„ุน ุนู†ุฏูŠ ู†ุงู‚ุต
186
00:13:36,500 --> 00:13:40,680
2 ู‡ูˆ ุงู„ู€ inverse ู„ู„ูŠ ู‡ูˆ ุงู„ุชู„ุงุชุฉ modulo 7
187
00:13:40,680 --> 00:13:45,560
ุฒูŠ ู…ุง ุงุญู†ุง ุงุชุนู„ู…ู†ุง ุงู„ุขู†ุŒ ุจุถุฑุจ ุงู„ุฌู‡ุชูŠู† ููŠ ู†ุงู‚ุต 3
188
00:13:45,560 --> 00:13:48,880
ุงุถุฑุจ ู‡ู†ุง ููŠ ู†ุงู‚ุต 3 ูˆู‡ู†ุง ููŠ ู†ุงู‚ุต 2 ุงู„ู„ูŠ ู‡ูˆ
189
00:13:48,880 --> 00:13:52,330
ุงู„ู€ inverseุŒ ู†ุงู‚ุต 2 ููŠ ู†ุงู‚ุต 2 ุจูŠุตูŠุฑ ุนุจุงุฑุฉ ุนู†
190
00:13:52,330 --> 00:13:55,910
ู†ุงู‚ุต 2 ููŠ 3 ูŠุทุงุจู‚ ู†ุงู‚ุต 2 ููŠ 4 mod
191
00:13:55,910 --> 00:13:59,990
7ุŒ ุงู„ุขู† ุงูŠุด ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† ู†ุงู‚ุต 6 ูŠุทุงุจู‚ ู†ุงู‚ุต
192
00:13:59,990 --> 00:14:04,110
8 mod 7ุŒ ุงู„ู€ ู†ุงู‚ุต 6 ู‡ูŠ ุงู„ูˆุงุญุฏุŒ ู‡ูŠ ุชุทุงุจู‚
193
00:14:04,110 --> 00:14:07,350
ุงู„ูˆุงุญุฏุŒ ู„ุฅู†ู‡ ู‡ูŠ ู†ุงู‚ุต 2ุŒ ู†ุงู‚ุต 3 ุงู„ู€ inverse ูˆู‡ุฐุง
194
00:14:07,350 --> 00:14:11,480
ุงู„ููƒุฑุฉ ุฃุตู„ู‹ุงุŒ ุงู„ุขู† ู†ุงู‚ุต 6 ูŠุทุงุจู‚ ุงู„ูˆุงุญุฏ mod 7ุŒ ู„ุฃู†
195
00:14:11,480 --> 00:14:15,140
ู†ุงู‚ุต 6 ู†ุงู‚ุต 1 ุชุตุจุญ ู†ุงู‚ุต 7ุŒ ุงู„ุณุจุนุฉ ุชุฌุณู… ู†ุงู‚ุต
196
00:14:15,140 --> 00:14:18,660
7ุŒ ุฅุฐุง ูุนู„ุงู‹ ูƒู„ุงู…ู†ุง ุตุญูŠุญุŒ ุฅุฐุง ู†ุงู‚ุต 6 ุจูŠุตูŠุฑ
197
00:14:18,660 --> 00:14:22,260
ู…ูƒุงู†ู‡ุง ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† 1ุŒ ู„ุฃู† ุงู„ูˆุงุญุฏ ูŠุทุงุจู‚ ู†ุงู‚ุต
198
00:14:22,260 --> 00:14:27,360
6ุŒ ูุจูŠุตูŠุฑ ุนู†ุฏ ุงู„ู€ X ูŠุทุงุจู‚ ู†ุงู‚ุต 8 mod 7
199
00:14:27,360 --> 00:14:34,500
ุงู„ุขู† ู†ุงู‚ุต 8 ุงู„ู„ูŠ ู‡ูŠ ุดูŠู„ู‡ุŒ ุถูู‘ูˆู„ู‡ 7ุŒ ุจูŠุตูŠุฑ ุนู†ุฏู‘ู‡
200
00:14:34,500 --> 00:14:38,880
ุงู„ู„ูŠ ู‡ูˆ ู†ุงู‚ุต 1ุŒ ู„ูˆ ุถูู‘ู†ูˆู„ู‡ 7ุŒ ุจุชุตูŠุฑ 6ุŒ
201
00:14:38,880 --> 00:14:42,660
ุทุจ ู…ุด ุงู„ู„ูŠ ุจูŠุณูˆูŠู‡ ุจุงู„ุฅุถุงูุงุชุŒ ุจุงู„ุฅุถุงูุงุชุŒ ู…ุง ู‡ูˆ ุฅุถุงูุงุช
202
00:14:42,660 --> 00:14:47,460
ุงู„ู€ 7ุŒ ุฃูŠ ุฅุถุงูุฉ ู„ู„ุณุจุนุฉ ุชุทุงุจู‚ ุตูุฑ mod 7ุŒ ูƒูŠู
203
00:14:47,460 --> 00:14:50,580
ูŠุนู†ูŠุŸ ุงูŠุด ุงู„ู„ูŠ ุจู‚ูˆู„ู‡ุŸ ุฏู‡ ู†ุดูˆูุŒ ู„ุฅู† ู‡ุฐู‡ ุงู„ู€ ู†ุงู‚ุต
204
00:14:50,580 --> 00:14:55,800
8 ูŠุทุงุจู‚ ุงู„ู€ 6 mod 7ุŒ ุงูŠุด ุนุฑููƒ ุงู„ู€ 6ุŸ
205
00:14:55,800 --> 00:15:00,980
ุถูุช ุนู„ู‰ ุงู„ู€ 7 ุนู„ู‰ ุงู„ู€ ู†ุงู‚ุตุŒ ุงู„ุขู† ุถูุช ุงู„ู„ูŠ ู‡ูŠ ู…ุถุงุนูุงุช
206
00:15:00,980 --> 00:15:04,920
ุงู„ู€ 7ุŒ 7 ูˆ 7ุŒ 14ุŒ 14 ู†ุงู‚ุต 8
207
00:15:04,920 --> 00:15:08,180
ุจุชุทู„ุน 6ุŒ ุนุดุงู† ู‡ูŠูƒ ุทู„ุนุช 6ุŒ ุทุจ ุจุชุทู„ุน ู‡ุฐุง ุงู„ูƒู„ุงู…
208
00:15:08,180 --> 00:15:13,060
ุตุญูŠุญุŸ ุงู‡ุŒ ู…ุถู…ูˆู†ุŒ ู„ูŠุดุŸ ุชุนุงู„ุŒ 7 ุจุชุฌุณู… ู†ุงู‚ุต 8ุŒ
209
00:15:13,060 --> 00:15:17,120
ู†ุงู‚ุต 6ุŒ ุงู„ู„ูŠ ู†ุงู‚ุต 14ุŒ ุงู„ู€ 7 ุจุชุฌุณู… ู…ูŠู†ุŸ ู†ุงู‚ุต
210
00:15:17,120 --> 00:15:21,720
14ุŒ ูŠุนู†ูŠ ุฏุงุฆู…ุงู‹ ุฏุงุฆู…ุงู‹ ู„ูˆ ูƒุงู† ุนู†ุฏูŠ 3ุŒ ุฎู„ูŠู†ุง
211
00:15:21,720 --> 00:15:26,120
ู†ู‚ูˆู„ 3ุŒ 3 ู„ูˆ ุถูู‘ู†ู„ู‡ุง 7ุŒ ุจูŠุตูŠุฑ 10ุŒ ุงู„ู€ 10
212
00:15:26,120 --> 00:15:30,400
ูŠุทุงุจู‚ ุงู„ู€ 3 mod 7ุŒ ุงู„ู„ูŠ ู‡ูˆ ุถูู‘ู†ู„ู‡ุง ูƒู…ุงู† 7
213
00:15:30,400 --> 00:15:35,420
ุงู„ู„ูŠ ู‡ูŠ 17ุŒ ูˆ 17 ูŠุทุงุจู‚ ุงู„ู€ 3 mod
214
00:15:35,420 --> 00:15:41,990
7ุŒ ูŠุนู†ูŠ ุฏุงุฆู…ุงู‹ ูŠุง ุฌู…ุงุนุฉุŒ ุงู„ุขู† ุงู„ุนุฏุฏ ู„ูˆ ุถูู‘ุช ู„ู‡ ุฌุฏ ู…ุง
215
00:15:41,990 --> 00:15:47,110
ุถูุชู‡ ู…ู† ุงู„ู…ู‚ูŠุงุณ ุจุธู„ู‘ ูŠุทุงุจู‚ ู†ูุณู‡ุŒ ูŠุนู†ูŠ ู„ูˆ ูƒุงู† ุนู†ุฏู†ุง ููŠ
216
00:15:47,110 --> 00:15:51,170
ุงู„ุฃุตู„ 5ุŒ ูˆุถูู‘ู†ู„ู‡ุง 7ุŒ ุจูŠุตูŠุฑ 12ุŒ ูˆูŠุทุงุจู‚ 5
217
00:15:51,170 --> 00:15:54,730
ูˆุถูู‘ู†ู„ู‡ุง ูƒู…ุงู† 7ุŒ ุจูŠุตูŠุฑ 19ุŒ ูˆูŠุทุงุจู‚ 5ุŒ ูˆู„ูˆ
218
00:15:54,730 --> 00:15:58,270
ุทุฑุญุช ู…ู†ู‡ 7ุŒ ุจุฑุถู‡ ุจุชุธู„ู‘ ุงู„ู…ุชุทุงุจู‚ุงุชุŒ ุนุดุงู† ู‡ูŠูƒ ู‡ุฐู‡
219
00:15:58,270 --> 00:16:03,930
ุจุชุณุงุนุฏู†ุง ูƒุซูŠุฑ ุจุนุฏ ุดูˆูŠุฉ ููŠ ุญู„ู‘ ุงู„ู…ุชุทุงุจู‚ุงุชุŒ ุฅุฐุง ุตุงุฑ
220
00:16:03,930 --> 00:16:08,810
ุนู†ุฏ ุงู„ู€ X ูŠุทุงุจู‚ ุงู„ู€ 6 mod ู…ูŠู†ุŸ mod 7ุŒ ูˆู…ู†ู‡ ุจูŠูƒูˆู†
221
00:16:08,810 --> 00:16:12,410
ุงู„ู€ solutions are the integers ุงู„ู„ูŠ ู‡ูŠ ู…ุฏุงู… x ูŠุทุงุจู‚
222
00:16:12,410 --> 00:16:17,110
ุงู„ู€ 6ุŒ ุฅุฐุง ุตุงุฑ ุนู†ุฏ ุงู„ู€ 6ุŒ ูˆุงู„ู„ูŠ ู‡ูˆ ุถูู‘ู„ู‡ 7ุŒ ุงู„ู„ูŠ
223
00:16:17,110 --> 00:16:22,230
ู‡ูŠ 7 ุจูŠุตูŠุฑ 6 ูˆ 7 ุงู„ู„ูŠ ู‡ูŠ 13ุŒ ุถูู‘ู„ู‡
224
00:16:22,230 --> 00:16:26,270
ูƒู…ุงู† 7 ุจูŠุตูŠุฑ ุงู„ู„ูŠ ู‡ูˆ 13 ูˆ 7ุŒ 20ุŒ ุงุทุฑุญ
225
00:16:26,270 --> 00:16:29,970
ู…ู†ู‡ 7ุŒ ู…ู† ุงู„ู€ 6 ุจุชุทู„ุน ู†ุงู‚ุต 1ุŒ ุงุทุฑุญ ู…ู†ู‡ ูƒู…ุงู†
226
00:16:29,970 --> 00:16:33,030
7ุŒ ู†ุงู‚ุต 8ุŒ ุงุทุฑุญ ู…ู†ู‡ ูƒู…ุงู† 7 ุจูŠุตูŠุฑ ู†ุงู‚ุต 15
227
00:16:33,030 --> 00:16:38,170
ุฅุฐุง ูƒู„ ุฏูˆู„ุฉ ุงู„ู„ูŠ ู‡ู†ุญู„ู‘ ุงู„ู€ x ูŠุทุงุจู‚ ุงู„ู€ 7ุŒ ุฃูˆ ุญู„ู‘
228
00:16:38,170 --> 00:16:40,650
ุงู„ู€ x ูŠุทุงุจู‚ ุงู„ู€ 6 modulo 7
229
00:16:43,670 --> 00:16:47,670
ุงู„ุขู† ุจุนุฏ ุดูˆูŠุฉ ู‡ุชู„ุงู‚ูŠู†ูŠ ุจู‚ู‰ ุฃุฑูŠุญูƒู… ููŠ ุงู„ุญู„ ู‡ุฐุงุŒ ูŠุนู†ูŠ
230
00:16:47,670 --> 00:16:50,730
ุจุฏูˆู† ุญุชู‰ ู…ุง ู†ุณุชุฎุฏู… ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ inverses ูˆูƒุฏู‡
231
00:16:50,730 --> 00:16:55,410
ู‡ุชู„ุงู‚ูŠู†ูŠ ุจุงุณุชุฎุฏู… ุงู„ู„ูŠ ู‡ูˆ ุทุฑูŠู‚ุฉ ุงู„ู„ูŠ ู‡ูŠ ุจุชุนุชู…ุฏ ุนู„ู‰
232
00:16:55,410 --> 00:17:01,270
ู…ุถุงุนูุงุช ุงู„ุณุจุนุฉุŒ ุจู†ุถูŠู ุฃูˆ ู†ุทุฑุญุŒ ูˆุจู†ุฎู„ูŠ ุงู„ู€ X ู„ุญุงู„ู‡ุŒ ูˆ
233
00:17:01,270 --> 00:17:04,950
ุงู„ุจุงู‚ูŠ ู‡ุงู† ู„ุญุงู„ู‡ุŒ ูุจุชูƒูˆู† ุงู„ุญู„ูˆู„ ุณู‡ู„ุฉ ุจุนุฏ ุดูˆูŠุฉ ุฅู†
234
00:17:04,950 --> 00:17:08,450
ุดุงุก ุงู„ู„ู‡ุŒ ู‡ู†ุดูˆู ู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉ ููŠ ุงู„ู€ Chinese remainder
235
00:17:08,450 --> 00:17:13,750
theoremุŒ ุงู„ู„ูŠ ู‡ูˆ ู†ุซุจุช ู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉ ุงู„ู„ูŠ ุฃุฎุฐู†ุงู‡ุง ุงู„ุขู†
236
00:17:13,750 --> 00:17:17,510
ุฅู† ุดุงุก ุงู„ู„ู‡ุŒ ูˆุจุนุฏ ุดูˆูŠุฉ ู†ุดูˆู ุงู„ู€ Chinese remainder
237
00:17:17,510 --> 00:17:22,010
ูŠุนู†ูŠุŒ ุฎู„ู‘ูŠู†ุง ู†ุฌูŠ ู„ู€ Chinese remainder theoremุŒ ุฃูˆ
238
00:17:22,010 --> 00:17:28,570
ู†ุธุฑูŠุฉ ุงู„ุจุงู‚ูŠ ุงู„ุตูŠู†ูŠุฉุŒ ุงู„ู…ุดู‡ูˆุฑุฉ ููŠ ุจุนุถ ุงู„ู…ุซุงู„ ูƒุงู†ุช
239
00:17:28,570 --> 00:17:34,470
ุชุทุฑุญ ู‚ุฏูŠู…ู‹ุงุŒ ุฃุญุฏ ุงู„ู…ุซุงู„ ู‡ูˆ ุฃุญุฏ ุงู„ุนู„ู…ุงุก ุงู„ุตูŠู†ูŠูŠู†ุŒ Sun
240
00:17:34,470 --> 00:17:40,210
TzuุŒ states the followingุŒ ุจูŠู‚ูˆู„ ุงู„ู„ูŠ ุจุฏูŠ ุนุฏุฏ ุงู„ู„ูŠ ู‡ูˆ
241
00:17:40,210 --> 00:17:46,370
ูŠู‚ุจู„ ุงู„ู‚ุณู…ุฉ ุนู„ู‰ 3ุŒ ูˆุงู„ู…ุชุจู‚ูŠ ู„ู‡ 2ุŒ ูˆู‡ูˆ ู†ูุณู‡ ู„ูˆ
242
00:17:46,370 --> 00:17:50,510
ู‚ุณู…ุชู‡ ุนู„ู‰ 5ุŒ ุงู„ู…ุชุจู‚ูŠ 3ุŒ ูˆู‡ูˆ ู†ูุณู‡ ู„ูˆ ู‚ุณู…ุชู‡
243
00:17:50,510 --> 00:17:54,510
ุนู„ู‰ 7ุŒ ุงู„ู…ุชุจู‚ูŠ 2ุŒ ุจูŠู‚ูˆู„ ุงูŠุด ู‡ุฐุง ุงู„ุนุฏุฏุŸ
244
00:17:54,510 --> 00:18:02,610
ุงู„ุขู† ุทุจุนู‹ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ููƒุฑุฉ ุงู„ุขู† ุงูŠุด ู‡ูŠุŸ ุฅู† ุงุญู†ุง ุจู†ุญูˆู„
245
00:18:02,610 --> 00:18:08,130
ุงู„ู„ูŠ ู‡ูŠ ุงู„ุญุฏูŠุซ ู‡ุฐุง ุฅู„ู‰ ุชุทุงุจู‚ุงุชุŒ ุงูŠุด ุนู„ุงู‚ุฉ ุงู„ู…ูˆุถูˆุน
246
00:18:08,130 --> 00:18:13,080
ุจุงู„ุชุทุงุจู‚ุงุชุŸ ุงุญู†ุง ุจู†ู‚ูˆู„ ุฏุงุฆู…ุงู‹ ุฅู† ุงู„ุนุฏุฏ ุฏุงุฆู…ุงู‹ ูŠุทุงุจู‚
247
00:18:13,080 --> 00:18:19,020
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุชุจู‚ูŠ ู„ู‡ ู„ูˆ ู‚ุณู…ู†ุงู‡ ุนู„ู‰ ุนุฏุฏ ู…ุงุŒ ูŠุนู†ูŠ ุงู„ุขู†
248
00:18:19,020 --> 00:18:24,320
ู„ูˆ ุฃุฌูŠู†ุง ู‚ุณู…ู†ุง ุนุฏุฏ ุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ 3ุŒ ูˆูƒุงู† ุงู„ู…ุชุจู‚ูŠ
249
00:18:24,320 --> 00:18:28,060
2ุŒ ู…ุนู†ุงุชู‡ ุตุงุฑ ุงู„ุนุฏุฏ ูŠุทุงุจู‚ ุงู„ู€ 2 mod 3
250
00:18:28,060 --> 00:18:33,540
ุนุดุงู† ู‡ูŠ ูุฑุถู†ุงุŒ ู†ูุฑุถ ุฅู† ุงู„ุนุฏุฏ ุงุณู…ู‡ XุŒ ู‡ุฐุง ุงู„ู€ X ุฅุฐุง
251
00:18:33,540 --> 00:18:38,020
ู‚ุณู…ุชู‡ ุนู„ู‰ ุซู„ุงุซุฉ ู‡ูŠุธู„ ุงุซู†ุงู† ุนุดุงู† ู‡ูŠูƒ ุงุฎุชุงุฑุช ู„ู‡
252
00:18:38,020 --> 00:18:43,280
ุงู„ุชุทุงุจู‚ X ุชุทุงุจู‚ ุงุซู†ูŠู† ู…ุฏูˆู„ุฉ ุซู„ุงุซุฉ ุจุณ ู‡ูˆ ู‚ุงู„ ุทุจ ุฃู†ุง
253
00:18:43,280 --> 00:18:48,280
ุจุฏูŠ ุงู„ุนุฏุฏ ู†ูุณู‡ ูŠู‚ุจู„ ู…ุง ูŠู„ูŠ ุฃู†ู‡ ู„ูˆ ุงุฌูŠุช ู‚ุณู…ุชู‡ ุนู„ู‰
254
00:18:48,280 --> 00:18:53,130
ุฎู…ุณุฉ ูŠุธู„ ุงู„ู…ุชุจู‚ูŠ ุซู„ุงุซุฉ ู…ุง ุฏุงู… ูŠู‚ุจู„ ุงู„ู„ูŠ ุจุฏูƒ ุชู‚ุณู…ู‡
255
00:18:53,130 --> 00:18:57,670
ุนู„ู‰ ุงู„ู€ X ุชู‚ุณู…ู‡ ุนู„ู‰ ุฎู…ุณุฉ ูˆ ูŠุธู„ ุซู„ุงุซุฉ ู…ุนู†ุงุชู‡ ู‡ุฐุง ุงู„ู€
256
00:18:57,670 --> 00:19:03,190
X ุญูŠุทุงุจู‚ ุงู„ู…ุชุจู‚ูŠ ู„ู‡ ุงู„ุซู„ุงุซุฉ ู…ู‚ูŠุงุณ ู…ูŠู†ุŸ ู…ู‚ูŠุงุณ ุงู„ุฎู…ุณุฉ
257
00:19:03,190 --> 00:19:07,250
ุงู„ู„ูŠ ู‚ุณู…ุชู‡ ุนู„ูŠู‡ ู„ุฃ ูˆ ุทู„ุจ ูƒู…ุงู† ุฃูƒุซุฑ ู…ู† ู‡ูŠูƒ ู‚ุงู„ ู„ุฃ ุจุฏูŠ
258
00:19:07,250 --> 00:19:12,590
ู†ูุณ ุงู„ุนุฏุฏ ุงู„ู„ูŠ ู‡ูˆ ู„ูˆ ู‚ุณู…ุชู‡ ุนู„ู‰ ุณุจุนุฉ ูŠุธู„ ุงู„ู…ุชุจู‚ูŠ
259
00:19:12,590 --> 00:19:18,280
ุงุซู†ุงู† ุชุฑุฌู…ู‡ุง ุจุฑุถู‡ ู„ุตูˆุฑุฉ ุงู„ู…ุชุทุงุจู‚ ุงุญู†ุง ู†ู‚ูˆู„ ุงู„ู€ X
260
00:19:18,280 --> 00:19:22,340
ุจูŠุทุงุจู‚ ุงู„ู…ุชุจู‚ูŠ modulo ุงู„ู…ู‚ุณูˆู… ุนู„ูŠู‡ ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู†ุŸ
261
00:19:22,340 --> 00:19:26,940
ุงู„ุณุจุนุฉ ุนุดุงู† ู‡ูŠูƒ ู‚ุงู„ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ X ุงู„ู„ูŠ ุฃู†ุชูˆ
262
00:19:26,940 --> 00:19:31,580
ุทู„ุจุชูˆู‡ุง ูŠุง ุฌู…ุงุนุฉ ุงู„ู„ูŠ ู„ูˆ ู‚ุณู…ู†ุงู‡ุง ุซู„ุงุซุฉ ุจูŠุธู„ ุงุซู†ุงู† ูˆ
263
00:19:31,580 --> 00:19:35,300
ู‚ุณู…ู†ุงู‡ุง ุฎู…ุณุฉ ุจูŠุธู„ ุซู„ุงุซุฉ ูˆ ู‚ุณู…ู†ุงู‡ุง ุณุจุนุฉ ุจูŠุธู„ ุงุซู†ุงู†
264
00:19:35,300 --> 00:19:39,240
ู†ุญู† ู†ุชุฑุฌู…ู‡ุง ุฅู„ู‰ ุงู„ู„ูŠ ู‡ูˆ system of linear
265
00:19:39,240 --> 00:19:42,940
congruences ุงู„ู„ูŠ ู‡ูˆ X ูˆุทุงุจู‚ ุงุซู†ูŠู† modulo ุซู„ุงุซุฉ X
266
00:19:42,940 --> 00:19:45,860
ูˆุทุงุจู‚ ุงู„ุซู„ุงุซุฉ modulo ุฎู…ุณุฉ X ูˆุทุงุจู‚ ุงู„ุงุซู†ูŠู† modulo
267
00:19:45,860 --> 00:19:50,280
ุณุจุนุฉ ูŠุนู†ูŠ X ูˆุทุงุจู‚ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุชุจู‚ูŠ modulo ุงู„ู…ู‚ุณูˆู…
268
00:19:50,280 --> 00:19:54,340
ุนู„ูŠู‡ ู„ู…ุง ู†ู‚ุณู… X ุนู„ู‰ ุซู„ุงุซุฉ X ุชุทุงุจู‚ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุซู„ุงุซุฉ
269
00:19:54,340 --> 00:19:57,700
ุงู„ู…ุชุจู‚ูŠุฉ ู„ู…ุง ู†ู‚ุณู… X ุนู„ู‰ ุฎู…ุณุฉ X ุชุทุงุจู‚ ุงู„ู„ูŠ ู‡ูŠ
270
00:19:57,700 --> 00:20:01,200
ุงู„ู…ุชุจู‚ูŠ ุงุซู†ุงู† ู„ู…ุง ู†ู‚ุณู…ู‡ุง ุนู„ู‰ ุณุจุนุฉ ูุงุชุญูˆู„ุช ุฅู„ู‰
271
00:20:01,200 --> 00:20:05,300
ุชุทุงุจู‚ุงุช ุงู„ู„ูŠ ู‡ูŠ ุฏู‡ ุชู†ุญู„ ููŠ ู†ูุณ ุงู„ูˆู‚ุช ุนุดุงู† ู‡ูŠ ูƒุงู†ุช
272
00:20:05,300 --> 00:20:10,420
ู†ุณู…ูŠู‡ุง system of linear congruences ูˆู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ
273
00:20:10,420 --> 00:20:13,560
ุงู„ู„ูŠ ุจูŠุญู„ู‡ุง ุนุงุฏุฉ ุงุณู…ู‡ุง ุงู„ู€ Chinese remainder
274
00:20:13,560 --> 00:20:18,100
theorem ุงู„ู„ูŠ ุงู„ุขู† ุงุญู†ุง ู‡ู†ุฏุฑุณ ุฅูŠู‡ ุงู„ู„ูŠ ู‡ูˆ ูƒูŠู ุงู„ู„ูŠ
275
00:20:18,100 --> 00:20:23,320
ู‡ูŠ ุฅูŠุด ุงู„ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ ู…ุชู‰ ุจูŠูƒูˆู† ุญู„ ูˆ ูƒูŠู ุจู†ุญู„ ุงู„ู„ูŠ
276
00:20:23,320 --> 00:20:28,860
ู‡ูˆ ุงู„ุชุทุงุจู‚ุงุช The Chinese remainder theorem ุจุชู‚ูˆู„ ู…ุง
277
00:20:28,860 --> 00:20:35,920
ูŠู„ูŠ ุจุงู„ุถุจุท Theorem 2 ุจุชู‚ูˆู„ let M1, M2, Mn be
278
00:20:35,920 --> 00:20:39,240
pairwise relatively prime positive integers
279
00:20:39,240 --> 00:20:43,620
greater than one ูŠุนู†ูŠ ู‡ุฏูˆู„ M1 ูˆ M2, Mn ูƒู„ู‡ู…
280
00:20:43,620 --> 00:20:46,300
positive integer ุฃูƒุจุฑ ู…ู† ูˆุงุญุฏ ูˆ relatively prime
281
00:20:46,570 --> 00:20:50,510
ูˆู†ูุชุฑุถ a1 ูˆ a2 ูˆ aN are arbitrary integersุŒ then
282
00:20:50,510 --> 00:20:56,310
the system X ุชุทุงุจู‚ ุงู„ู€ a1 a1 ุนุฏุฏุŒ X ุชุทุงุจู‚ ุงู„ู€ a2 a2
283
00:20:56,310 --> 00:21:01,050
ุนุฏุฏุŒ X ุชุทุงุจู‚ ุงู„ู€ aN aN ุนุฏุฏุŒ ุทุจุนุงู‹ ู‡ุฐู‡ ู…ุฏูˆู„ุฉ M1 ูˆ
284
00:21:01,050 --> 00:21:05,150
ู‡ุฐู‡ ู…ุฏูˆู„ุฉ M2 ูˆู…ุฏูˆู„ุฉ MN ู„ูˆ ูƒุงู† ููŠ ุนู†ุฏูŠ system of
285
00:21:05,150 --> 00:21:09,790
linear congruences ุจุงู„ุดูƒู„ ู‡ุฐุง ูˆ ูƒู„ู‡ู… ุงู„ู…ุฌู‡ูˆู„ ููŠู‡ู…
286
00:21:09,790 --> 00:21:15,490
X ูˆ ุงู„ู€ M1 ูˆ ุงู„ู€ M2 ูˆ ุงู„ู€ MN ูƒู„ู‡ู… relatively prime
287
00:21:15,490 --> 00:21:19,210
ุจุชู‚ูˆู„ูƒ ุงู„ู€ Chinese remainder theorem ุฅุฐุง ูŠูˆุฌุฏ ุญู„
288
00:21:19,210 --> 00:21:22,950
ู…ุดุชุฑูƒ ูˆุญูŠุฏ ู„ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุงุช ุงู„ู„ูŠ ู‡ูˆ has a unique
289
00:21:22,950 --> 00:21:29,040
solution modulo M ุงู„ู„ูŠ ู‡ูˆ Mู…1 ู…2 ููŠ ู…ูŠู†ุŸ ููŠ Mn ูŠุนู†ูŠ
290
00:21:29,040 --> 00:21:32,140
ุจุชู‚ูˆู„ูƒ ุงู„ุขู† ุงู„ู„ูŠ ู‡ูŠ chinese remainder theorem ู„ูˆ
291
00:21:32,140 --> 00:21:36,580
ูƒุงู† ุนู†ุฏูƒ ููŠู‡ system ู…ู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ linear
292
00:21:36,580 --> 00:21:40,360
congruences ู‡ุฐู‡ ุชุทุงุจู‚ ุฃูŠ ูˆุงุญุฏ ู…ุฏูˆู„ุฉ m ูˆุงุญุฏ ูˆุงู„ู€ X
293
00:21:40,360 --> 00:21:45,060
ุชุทุงุจู‚ ุงุซู†ูŠู† ู…ุฏูˆู„ุฉ m ุงุซู†ูŠู† ุชุทุงุจู‚ en modulo mn ู‡ุฐู‡
294
00:21:45,060 --> 00:21:50,840
ุจูŠูƒูˆู† solution unique ู„ู‡ุง ู…ุฏูˆู„ุฉ m ุจุณ ุจุดุฑุท ุฃู† m1 ูˆ
295
00:21:50,840 --> 00:21:54,820
m2 ูˆ mn ูŠูƒูˆู† in pair wise relatively prime ูŠุนู†ูŠ ูƒู„
296
00:21:54,820 --> 00:21:58,420
ุงุซู†ุชูŠู† ู…ุน ุจุนุถ ุงู„ุนุงู…ู„ ุงู„ู…ุดุชุฑูƒ ุงู„ุฃุนู„ู‰ ุจูŠู†ู‡ู… ุจูŠุณุงูˆูŠ
297
00:21:58,420 --> 00:22:02,610
ูˆุงุญุฏ that is there is a solution x ุฒูŠ ู…ุง ุจู‚ูˆู„ x
298
00:22:02,610 --> 00:22:06,410
ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุตูุฑ ุฃูˆ ุฃุตุบุฑ ู…ู† M ูŠุนู†ูŠ ู„ุฃู†ู‡ ู…ุฏูˆู„ุฉ M ูŠุนู†ูŠ
299
00:22:06,410 --> 00:22:10,110
ู…ู† ุนู†ุฏ ุงู„ุตูุฑ ู„ุนู†ุฏ ุงู„ู€ M ุฃูˆ ู…ู† ุนู†ุฏ ุงู„ูˆุงุญุฏ ู„ุนู†ุฏ ุงู„ู€ M
300
00:22:10,110 --> 00:22:14,390
ู†ูุณู‡ุง ุฃูˆ ู…ู† ุงู„ุตูุฑ ู„ุนู†ุฏ ุงู„ู€ M ู†ุงู‚ุต ูˆุงุญุฏ and all
301
00:22:14,390 --> 00:22:17,230
other solutions are congruent ู…ุฏูˆู„ุฉ M to this
302
00:22:17,230 --> 00:22:20,710
solution ูŠุนู†ูŠ ุฃูŠ solution ุซุงู†ูŠ ู‡ุชู„ุงู‚ูŠู‡ ู‡ูŠู„ุงู‚ูŠู‡
303
00:22:20,710 --> 00:22:25,530
ุงู„ู„ูŠ ู‡ูˆ ุงู„ุนุฏุฏ ุงู„ู„ูŠ ู„ุงุฌูŠู†ุงู‡ ุฒุงุฆุฏ ุงู„ู„ูŠ ู‡ูˆ ู…ุถุงุนูุงุช ู…ู†
304
00:22:25,530 --> 00:22:30,780
ุงู„ู€ M ูŠุนู†ูŠ ูŠุทุงุจู‚ ุงู„ู€ M ุงู„ู„ูŠ ู‡ูˆ Modulo .. ูŠุทุงุจู‚ ุงู„ู€ ..
305
00:22:30,780 --> 00:22:37,300
ุงู„ู€ .. ุงู„ู€ X Modulo ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ M ุงู„ุขู† ู†ุดูˆู ูƒูŠู ุจุฏู†ุง
306
00:22:37,300 --> 00:22:40,660
ู†ุณุชุฎุฏู… ุงู„ู€ Chinese remainder theorem to find a
307
00:22:40,660 --> 00:22:45,600
solution ุงู„ุขู† ุชุฑูƒุฒ ู…ุนุงูŠุง ู‡ุฐู‡ ุงู„ู€ .. ุงู„ู€ .. ุงู„ู€ ..
308
00:22:45,600 --> 00:22:49,740
ุงู„ุชุทุงุจู‚ุงุช ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูƒ ุจุฏูƒ ุชูˆุฌุฏ ุงู„ุญู„ ุงู„ู…ุดุชุฑูƒ
309
00:22:49,740 --> 00:22:56,320
ุจูŠู†ู‡ู… ุฃูˆู„ุงู‹ ู†ุณู…ูŠ m ูˆุงุญุฏ capital m ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูŠ
310
00:22:56,320 --> 00:23:01,380
ุนุจุงุฑุฉ ุนู† ุญุงุตู„ ุงู„ุถุฑุจ ู‡ุฐุง m ุนู„ู‰ m ูˆุงุญุฏ m ุงุซู†ูŠู†
311
00:23:01,380 --> 00:23:06,140
capital m ุงุซู†ูŠู† capital ุจุชุณุงูˆูŠ m ุนู„ู‰ m ุงุซู†ูŠู†
312
00:23:06,140 --> 00:23:09,380
small m ุซู„ุงุซุฉ capital ุจุชุณุงูˆูŠ m ุนู„ู‰ m ุซู„ุงุซุฉ
313
00:23:09,380 --> 00:23:15,400
small ูˆู‡ูƒุฐุง ู„ู…ุง ู†ุฎู„ุต ุนู„ู‰ ูƒู„ ุงู„ู…ุนุงุฏู„ุงุช ุฅุฐุง ูˆูƒุฃู† ูƒู„
314
00:23:15,400 --> 00:23:19,780
ู…ุนุงุฏู„ุฉ .. ูƒู„ ุชุทุงุจู‚ุฉ ู…ู† ู‡ุฏูˆู„ ุจุฌูŠุจู„ู‡ู… M ูˆ M ูƒุจูŠุฑุฉ
315
00:23:19,780 --> 00:23:25,220
ู‡ุฐุง ู‡ูŠ .. ู‡ุชู„ุฒู…ู†ูŠ ุจุนุฏ ุดูˆูŠุฉ ุฑูƒุฒ ููŠู‡ุง ุจุนุฏ ู…ุง ุณู…ูŠุชู‡ุง
316
00:23:25,220 --> 00:23:30,700
ุจุฏูŠ ุขุฌูŠ ุฃุญู„ ุงู„ุชุทุงุจู‚ุฉ ุงู„ุชุงู„ูŠุฉ ุงู„ุชุทุงุจู‚ุฉ ุงู„ู„ูŠ ู‡ูŠ ู…ุงูŠุง
317
00:23:30,700 --> 00:23:37,760
ู„ูŠู‡ M1 ููŠ Y1 ุชุทุงุจู‚ ุงู„ูˆุงุญุฏ ู…ุฏูˆู„ุฉ ู…ูŠู†ุŸ M1 ู…ูŠู† M1 ู‡ุฐู‡
318
00:23:37,760 --> 00:23:44,960
ุงู„ู„ูŠ ู‡ูŠ ุชุจุนุช ู‡ุฐู‡ ู…ู† M1 ู‡ุฐู‡ ุงู„ู„ูŠ ู‚ุณู…ุชู‡ุง ุนู„ู‰ M1 small
319
00:23:44,960 --> 00:23:50,060
M ุนู„ู‰ M1 small ุฅุฐุง ุจุนุฏ ู…ุง ู‚ุณู…ุช ู‡ุฐู‡ ุจุญู„ ุงู„ุชุทุงุจู‚ุงุช
320
00:23:50,060 --> 00:23:53,840
ุงู„ุชุงู„ูŠุฉ ุทุจุนุงู‹ ุงู„ุชุทุงุจู‚ุงุช ู‡ุฏูˆู„ุฉ ู‡ูŠูƒูˆู† ุนุฏุฏู‡ู† ู„ุฃู† ู‚ู„ุช
321
00:23:53,840 --> 00:23:59,320
Mk ูˆ Yk ุชุทุงุจู‚ ุงู„ูˆุงุญุฏ ู…ุฏูˆู„ุฉ Mk ุญูŠุซ ุงู„ู„ูŠ ู‡ูŠ Yk ู…ุฌู‡ูˆู„
322
00:23:59,320 --> 00:24:04,450
ู‡ูˆ ุงู„ู„ูŠ ุจุชูˆุฌุฏ ู…ู† ุญู„ ู‡ุฐู‡ ูˆุงู„ู€ k ู‡ุฐู‡ ู…ู† ูˆุงุญุฏ ู„ุนู†ุฏ n
323
00:24:04,450 --> 00:24:09,030
ุจุนุฏุฏ ู…ูŠู†ุŸ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุชุทุงุจู‚ุงุช ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ุฃุตู„
324
00:24:09,030 --> 00:24:13,430
ุฅุฐุง ุจุฏูŠ ุงู„ุขู† ุงู„ุฎุทูˆุฉ ุงู„ู„ูŠ ุจุนุฏู‡ุง ุจุนุฏ ู…ุง ุณู…ูŠุช ุงู„ู€ mk
325
00:24:13,430 --> 00:24:19,010
ุจุงู„ุทุฑูŠู‚ุฉ ู‡ุฐู‡ ุจุฏูŠ ุฃุญู„ ุงู„ุชุทุงุจู‚ mk ููŠ yk mk ุจุชูƒูˆู†
326
00:24:19,010 --> 00:24:23,010
ู…ุนุทูŠุฉ ุนุฏุฏ ุฃูˆ ุฌุฏู†ุงู‡ ูˆ ุงู„ู€ yk ู‡ูˆ ุงู„ู…ุฌู‡ูˆู„ ุงู„ู„ูŠ ุจุฏู‡
327
00:24:23,010 --> 00:24:27,890
ูŠุฌุฏู‡ ุชุทุงุจู‚ ุงู„ูˆุงุญุฏ modulo mk ุจุนุฏ ู…ุง ุญู„ ุงู„ุชุทุงุจู‚ ู‡ุฐู‡
328
00:24:27,890 --> 00:24:31,230
ูˆุฌุฏ ุงู„ู€ yk ูŠุนู†ูŠ ุฃู†ุง ุจุฏุฃ ุฃูˆุฌุฏ ุงู„ู€ y1 ูˆ ุงู„ู€ y2 ู„ุนู†ุฏ ุงู„ู€
329
00:24:31,230 --> 00:24:36,350
yn ุจุนุฏ ู…ูˆุฌูˆุฏุฉ ู‡ู†ุง ุจู‚ูˆู„ the unique solution modulo
330
00:24:36,350 --> 00:24:39,950
m is given by ุฅุฐู† ู‡ุฐุง ู‚ุงู†ูˆู† ุญูŠุทู„ุน ุนู„ูŠู‡ ุฅูŠุดุŸ ุงู„ู„ูŠ ู‡ูˆ
331
00:24:39,950 --> 00:24:44,790
ุงู„ู€ solution x ุจุชุณุงูˆูŠ a1 m1 a1 ู‡ุฐุง ุงู„ู„ูŠ ุฃู†ุง ุธู‡ุฑุชู‡ ุงู„ู€
332
00:24:44,790 --> 00:24:48,530
M1 ู‡ุฐู‡ ู…ูŠู†ุŸ ุงู„ู„ูŠ ู‡ูŠ ู…ู† ู‡ู†ุง ุงู„ู€ Y1 ุงู„ู„ูŠ ู‡ูŠ ุงู„ู„ูŠ
333
00:24:48,530 --> 00:24:51,550
ุจุชุบู„ุจู†ุง ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ solution ุงู„ู„ูŠ ู‡ู†ุฌุฏู‡ุง ุงู„ุขู†
334
00:24:51,550 --> 00:24:56,790
ุฒุงุฆุฏ ู†ูุณ ุงู„ุดูŠุก ู„ู…ูŠู†ุŸ ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ุซุงู†ูŠุฉ A2 ุงู„ู„ูŠ ู‡ูŠ ููŠ
335
00:24:56,790 --> 00:25:00,950
A2 ู‡ู†ุง ุทูŠุจ ู…ุถุฑูˆุจุฉ ููŠ M2 M2 ู‡ุฐู‡ ุงู„ู„ูŠ ุฌุจู†ุงู‡ุง ู…ู† ู‡ู†ุง
336
00:25:01,280 --> 00:25:05,180
ุงู„ู€ Y2 ุงู„ู„ูŠ ุฌุจู†ุงู‡ุง ู…ู† ู‡ู†ุง ู„ู…ุง ุฃุตู„ ู„ุขุฎุฑ ู…ุนุงุฏู„ุฉ
337
00:25:05,180 --> 00:25:11,180
ุงู„ู„ูŠ ู‡ูŠ AN ููŠ MN ุชุจุนุชู‡ุง ููŠ YN ุชุจุนุชู‡ุง ุงู„ู„ูŠ ุญู„ูŠุชู‡ุง
338
00:25:11,180 --> 00:25:15,860
ู‡ู†ุง ูุจุชุทู„ุน ู‡ุฐู‡ ู‡ูŠ ุงู„ู€ X ุงู„ู„ูŠ ุฃู…ุงู…ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ู€
339
00:25:15,860 --> 00:25:21,640
solution ุงู„ู€ unique solution ู„ุฃ ุงู„ู€ system ู‡ุฐุง ูƒู„ู‡
340
00:25:21,640 --> 00:25:27,540
ู…ุฏูˆู„ุฉ ู…ุฏูˆู„ุฉ m ูˆุญุงุตู„ ุงู„ุถุฑุจ ุงู„ูƒู„ูŠุฉ ุงู„ุขู† ู‡ูŠ ุงู„ุซู„ุงุซุฉ
341
00:25:27,540 --> 00:25:32,140
ุฎุทูˆุงุช ุงู„ู„ูŠ ุจุฏู†ุง ู†ุฎุชูˆู‡ุง ู…ู† ุฃุฌู„ ุญู„ ุงู„ู„ูŠ ู‡ูˆ system of
342
00:25:32,140 --> 00:25:36,500
linear equations ุชุณู…ูŠุฉ mk ุฃูˆู„ ุดูŠุก ูˆุจุนุฏูŠู† ู†ุญู„ ู‡ุฐู‡
343
00:25:36,500 --> 00:25:40,640
ุงู„ุชุทุงุจู‚ุฉ ูˆุจุนุฏูŠู† ู†ุนูˆุถ ููŠ ู‡ุฐู‡ ุจูŠูƒูˆู† ุฎู„ุตู†ุง ุงู„ู„ูŠ ู‡ูˆ
344
00:25:40,640 --> 00:25:44,260
ุญู„ู†ุง ุงู„ู„ูŠ ู‡ูˆ ุณุคุงู„ ุงู„ู€ Chinese remainder theorem
345
00:25:44,260 --> 00:25:50,260
ูˆุงู„ุขู† ู†ูŠุฌูŠ ุฅู„ู‰ ุงู„ู„ูŠ ู‡ูˆ ู…ุซุงู„ ุนู…ู„ูŠ ู„ุชุทุจูŠู‚ู‡ ุฎู„ู‘ูŠู†ูŠ ุฃู†ุง
346
00:25:50,260 --> 00:25:53,040
ุฃุดูˆู ู…ุซุงู„ ุนู…ู„ูŠ ุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ chinese remainder
347
00:25:53,040 --> 00:25:57,300
theorem ุจู‚ูˆู„ consider the three congruences from
348
00:25:57,300 --> 00:26:01,460
some two problem two problem ุงู„ู„ูŠ ู‚ุจู„ ุดูˆูŠุฉ ุนุฑุถู†ุงู‡ุง
349
00:26:01,460 --> 00:26:05,380
ูŠุนู†ูŠ X ุชุทุงุจู‚ ุงู„ุงุซู†ูŠู† ู…ุฏูˆู„ุฉ ุซู„ุงุซุฉ X ุชุทุงุจู‚ ุงู„ุซู„ุงุซุฉ
350
00:26:05,380 --> 00:26:08,960
ู…ุฏูˆู„ุฉ ุฎู…ุณุฉ X ุชุทุงุจู‚ ุงู„ุงุซู†ูŠู† ู…ุฏูˆู„ุฉ ุณุจุนุฉ ุงู„ุขู† ู‡ุฐู‡
351
00:26:08,960 --> 00:26:14,700
ุจุชู…ุซู„ูŠ A1 ู‡ุฐู‡ ุจุชู…ุซู„ูŠ A2 ู‡ุฐู‡ ุจุชู…ุซู„ูŠ A3 ุงู„ู„ูŠ ู‡ุญุชุงุฌูŠู†
352
00:26:14,700 --> 00:26:21,680
ุจุนุฏ ุดูˆูŠุฉ ู‡ุฐู‡ M1 ู‡ุฐู‡ M2 ู‡ุฐู‡ M3 ุฎู„ู‘ูŠู†ุง ู†ุดูˆู ุงู„ุขู† ุจุฏู†ุง
353
00:26:21,680 --> 00:26:26,200
ู†ุงุฎุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ .. ุงู„ู€ M ุงู„ู„ูŠ ู‡ูŠ ุญุงุตู„ ุถุฑุจ ุซู„ุงุซุฉ ููŠ
354
00:26:26,200 --> 00:26:30,000
ุฎู…ุณุฉ ููŠ ุณุจุนุฉ mุงุช ู…ุน ุจุนุถ ูŠุนู†ูŠ M ู‡ุฐู‡ ู‡ูŠ ุซู„ุงุซุฉ ููŠ
355
00:26:30,000 --> 00:26:33,160
ุฎู…ุณุฉ ููŠ ุณุจุนุฉ ุงู„ู„ูŠ ู‡ูŠ ู…ุฆุฉ ูˆุฎู…ุณุฉ ู…ู†ู‡ุง ุจุฏู†ุง ู†ุญุณุจ ุงู„ู€
356
00:26:33,160 --> 00:26:35,980
M ูˆุงุญุฏ capital ุฒูŠ ู…ุง ุดูˆูู†ุง ู‚ุจู„ ุดูˆูŠุฉ M ูˆุงุญุฏ capital
357
00:26:35,980 --> 00:26:39,460
ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุฆุฉ ูˆุฎู…ุณุฉ ุจู†ุฌุณู…ู‡ุง ุนู„ู‰
358
00:26:39,460 --> 00:26:43,620
ุงู„ุซู„ุงุซุฉ ุจูŠุทู„ุน ุฌุฏุงุด ุฎู…ุณุฉ ูˆุซู„ุงุซูŠู† M ุงุซู†ูŠู† capital
359
00:26:43,620 --> 00:26:47,340
ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ุฆุฉ ูˆุฎู…ุณุฉ ู…ุฌุณู…ุฉ ุนู„ู‰ ุงู„ุฎู…ุณุฉ ู‡ุฐู‡ ุงู„ู„ูŠ
360
00:26:47,340 --> 00:26:52,610
ู‡ูŠ ุจูŠุทู„ุน ูˆุงุญุฏ ูˆุนุดุฑูŠู† M3 ู‡ูŠ 105 ุนุงู„ูŠุฉ 7 ุงู„ู„ูŠ ู‡ู†ุง
361
00:26:52,610 --> 00:26:58,030
ุจุชุทู„ุน ุฌุฏุงุด 15 ุงู„ุขู† ู†ูŠุฌูŠ ู„ู„ุฎุทูˆุฉ ุงู„ู…ุฑูƒุฒูŠุฉ ุงู„ู…ู‡ู…ุฉ ู„ุฃู†
362
00:26:58,030 --> 00:27:01,430
we solve the congruences ุงู„ุชุงู„ูŠุฉ ุจุฏู†ุง ู†ุญู„ ุงู„ู…ูŠู†
363
00:27:01,430 --> 00:27:06,550
ุงู„ู„ูŠ ู‡ูˆ M1 Y1 ุชุทุงุจู‚ ุงู„ูˆุงุญุฏ ู…ุฏูˆู„ุฉ M1 ุงู„ุขู† M1 ุฌุฏุงุด
364
00:27:06,550 --> 00:27:11,550
ุฃูˆุฏุชู†ุง ู‡ูŠ ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† 35 ูŠุตูŠุฑ 35 Y1 ุชุทุงุจู‚
365
00:27:11,550 --> 00:27:17,120
ุงู„ูˆุงุญุฏ ู…ุฏูˆู„ุฉ ูˆู…ูŠู†ุŸ M1 ุงู„ู„ูŠ ู‡ูŠ ุฌุฏุงุด 3 ุจุฏู†ุง ู†ุญู„ ู‡ุฐู‡ ุงู„ุขู†
366
00:27:17,120 --> 00:27:20,740
ุทุฑูŠู‚ุฉ ุงู„ุญู„ ู‡ุฐู‡ ู…ุงุนู†ุด ู†ู‚ุนุฏ ู†ุฏูˆุฑ ุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€
367
00:27:20,740 --> 00:27:23,740
inverse ู„ู‡ุฐุง ูˆู…ุด ุนุงุฑู ุฅูŠุด ู„ุฃ ู„ุฃ ู„ุฃ ุฃุณู‡ู„ ู„ูƒู… ูƒุซูŠุฑ
368
00:27:23,740 --> 00:27:27,280
ูƒุซูŠุฑ ูƒุซูŠุฑ ุงู„ู„ูŠ ู‡ูˆ ุฅูŠุดุŸ ู…ู† ู†ูŠุฌูŠ ุจู†ุดูŠู„ ู…ู† ุฎู…ุณุฉ ูˆ
369
00:27:27,280 --> 00:27:32,540
ุซู„ุงุซูŠู† ูƒู„ ู…ุถุงุนูุงุช ู…ู† ุงู„ุซู„ุงุซุฉ ุงู„ุขู† ุจู†ุดูŠู„ ู…ู† ู‡ุฐู‡
370
00:27:32,540 --> 00:27:35,920
ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ู…ุถุงุนูุงุช ุงู„ุซู„ุงุซุฉ ุฃู‚ุฑุจ ุดูŠุก ู„ู„ุซู„ุงุซุฉ
371
00:27:35,920 --> 00:27:39,640
ุฎู…ุณุฉ ูˆุซู„ุงุซูŠู† ูŠุนู†ูŠ ุนู„ู‰ ุงู„ุซู„ุงุซุฉ ุจุชุทู„ุน ุงู„ู„ูŠ ู‡ูŠ
372
00:27:39,640 --> 00:27:45,640
ุงู„ู…ุชุจู‚ูŠ ุฌุฏุงุด ุงุซู†ุงู† ู„ุฃู†ู‡ ุจูŠุตูŠุฑ 11 ูˆุงู„ู…ุชุจู‚ูŠ ุงู„ู„ูŠ ู‡ูˆ 2
373
00:27:45,640 --> 00:27:50,000
ูŠุนู†ูŠ ุจู‚ุณู… 35 ุนู„ู‰ 3 ุจูŠุทู„ุน ุงู„ู„ูŠ ู‡ูˆ ุนุฏุฏ ู…ุฏูˆู„ุฉ ุงู„ู…ุชุจู‚ูŠ
374
00:27:50,000 --> 00:27:54,080
ุงู„ู…ุชุจู‚ูŠ ู‡ูˆ ุงู„ู„ูŠ ุจูŠุจู‚ู‰ ุจูŠุจู‚ู‰ ุจูŠุถู„ ู„ุฃู† ู‡ุฐุง ุงู„ู€ 35
375
00:27:54,080 --> 00:28:00,400
ุจูŠุตูŠุฑ ูŠุทุงุจู‚ ุงู„ู…ุชุจู‚ูŠ 32 ู…ุฏูˆู„ุฉ ู…ุฏูˆู„ุฉ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุซู„ุงุซุฉ
376
00:28:00,400 --> 00:28:04,220
ู…ุงุดูŠ ุงู„ุญุงู„ ุฅุฐุง ุงู†ุทู„ู‚ู†ุง ู…ู† 35 ู…ุถุงุนูุงุช ุงู„ุซู„ุงุซ ุงู„ู„ูŠ
377
00:28:04,220 --> 00:28:10,180
ู‡ูŠ 33 ุงู„ู„ูŠ ู‡ูŠ ุจูŠุจู‚ู‰ ุงู„ุฌุฏุงุฏ 2 ุจูŠุตูŠุฑ 2 Y1 ุชุทุงุจู‚ ุงู„ุขู†
378
00:28:10,180 --> 00:28:14,130
ุงู„ูˆุงุญุฏ ุจูŠุตูŠุฑ ุงุซู†ูŠู† ูˆ ุฃูŠ ูˆุงุญุฏ ูˆุทุงุจู‚ ุงู„ูˆุงุญุฏ ุจุณ
379
00:28:14,130 --> 00:28:19,510
ุนุดุงู† ุฃู†ุง ุจุชุฏุฌุณู… ุจุนุฏ ุดูˆูŠุฉ ุจุฏูŠ ุฃุญูˆู„ ุงู„ูˆุงุญุฏ ู„ุฑู‚ู… ุฒูˆุฌูŠ
380
00:28:19,510 --> 00:28:24,430
ุงูŠุด ุฃุญูˆู„ ุฑู‚ู… ุฒูˆุฌูŠุŸ ูˆุงุญุฏ ุจุทุงุจู‚ู‡ ุงู„ุขู† ุจุถูŠู ู„ู‡ ุซู„ุงุซุฉ
381
00:28:24,430 --> 00:28:28,150
ุฃูˆ ุจุทุฑุญ ู…ู†ู‡ ุซู„ุงุซุฉ ุจูŠุตูŠุฑ ุงู„ู„ูŠ ู‡ูˆ ุนุฏุฏ ุฒูˆุฌูŠ ุทุจ ุจู†ูุน
382
00:28:28,150 --> 00:28:31,470
ุขู‡ ู„ุฃู† ู„ูˆ ุถูุช ู„ู‡ ุซู„ุงุซุฉ ุจูŠุตูŠุฑ ุงู„ุฃุฑุจุนุฉ ุงู„ุฃุฑุจุนุฉ ุจุชุทุงุจู‚
383
00:28:31,470 --> 00:28:38,010
ุงู„ูˆุงุญุฏ ู…ุฏู„ู‡ ู…ูŠู† ู…ุฏู„ู‡ ุซู„ุงุซุฉ ุฅุฐุง ุฃู†ุช ู„ู‡ุง ู†ูˆู‘ู‡ุงู† ุถูŠู ุฒูŠ
384
00:28:38,010 --> 00:28:42,310
ู…ุง ุจุฏูƒ ู…ู† ู…ุถุงุนูุงุช ุงู„ุซู„ุงุซ ุฃูˆ ุงุทุฑุญ ู…ุถุงุนูุงุช ุงู„ุซู„ุงุซ
385
00:28:42,310 --> 00:28:46,530
ู„ู„ูˆุตูˆู„ ู„ู„ุฃุนุฏุงุฏ ุงู„ู‚ู„ูŠู„ุฉ ุงู„ู„ูŠ ุจุชู‚ุฏุฑ ุชุณุชุฎุฏู…ู‡ุง ุฒูŠ ู…ุง
386
00:28:46,530 --> 00:28:49,530
ุจุฏูƒ ุจุธู„ ู†ูุณ ุงู„ issue ู…ุชุทุงุจู‚
387
00:28:58,270 --> 00:29:02,990
ุจูŠู†ูุน ุชุฌุณู… ุฅุฐุง ุงู„ุนุงู…ู„ ุงู„ู…ุดุชุฑูƒ ุงู„ุฃุนู„ู‰ ุจูŠู† ุงู„ู„ูŠ ุจุฏู‡
388
00:29:02,990 --> 00:29:06,390
ูŠุฌุณู…ู‡ ูˆุจูŠู† ุงู„ุซู„ุงุซ ุงูŠุด ุจูŠุณุงูˆูŠ ูˆุงุญุฏ ูˆู‡ูŠ ุงู„ุนุงู…ู„
389
00:29:06,390 --> 00:29:09,570
ุงู„ู…ุดุชุฑูƒ ุงู„ุฃุนู„ู‰ ุจูŠู† ุงู„ุซู„ุงุซ ูˆุจูŠู† ุงู„ูˆุงุญุฏ ุจูŠู† ุงู„ู€ 3 ูˆ
390
00:29:09,570 --> 00:29:12,530
ุจูŠู† ุงู„ู€ 2 ูˆ 1 ุฅุฐุง ุฃู†ุง ุจู‚ูˆู„ ุดูŠุก ุณู‡ูˆู„ุฉ ุจู‚ูˆู„ ุนู„ู‰ 2
391
00:29:12,530 --> 00:29:17,270
ุจุธู‡ุฑ Y1 ุนู„ู‰ 2 ุจุธู‡ุฑ 2 ูุจูŠุตูŠุฑ Y1 ุชุทุงุจู‚ ุงู„ู€ 2 ู…ุฏู„ุฉ 3
392
00:29:17,270 --> 00:29:21,650
ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุญู„ ุงู„ู€ congruence ู‡ุฐู‡ ุดุงูŠููŠู† ู…ุซู„ู‹ุง ุญู„
393
00:29:21,650 --> 00:29:24,110
ุงู„ู€ linear congruence ุฃุณู‡ู„ ู…ู† ู…ุง ู†ู‚ุนุฏ ู†ูˆุฏุฏ ุงู„
394
00:29:24,110 --> 00:29:27,870
inverse ุฒูŠ ู…ุง ู‚ู„ู†ุง ู‚ุจู„ ุดูˆูŠุฉ ู†ูŠุฌูŠ ุงู„ุขู† ู†ุนู…ู„ู‡ุง ู…ุน
395
00:29:27,870 --> 00:29:32,410
ุงู„ุฃูˆู„ู‰ ูˆ ู†ุนู…ู„ู‡ุง ู…ุน ุงู„ุชุงู„ูŠุฉ ุจุงุฌูŠ ุจู‚ูˆู„ M2 ููŠ Y2
396
00:29:32,410 --> 00:29:38,480
ุชุทุงุจู‚ ุงู„ูˆุงุญุฏ ู…ุฏู„ุฉ M2 ู…ูŠู† M2 ู‡ูŠู‡ุง 21Y2 ู…ูŠู† ู‡ูŠ
397
00:29:38,480 --> 00:29:45,260
ุงู„ู…ุฌู‡ูˆู„ ุงู„ุขู† ูŠุตุจุญ 21 Y2 ุชุทุงุจู‚ ุงู„ูˆุงุญุฏ ู…ุถู„ู‡ ู…ูŠู† ุฃู…ุง
398
00:29:45,260 --> 00:29:49,460
2 small ู‡ูŠ ู‡ุงุฏูŠ ู‡ูŠู‡ุง ู‡ุงุฏูŠ ู‡ูŠ ุจูŠุตูŠุฑ ู…ุถู„ู‡ ุฎู…ุณุฉ ุงู„ุขู†
399
00:29:49,460 --> 00:29:54,480
ู†ุญู„ู‡ุง ู„ุญุณู† ุญุธู†ุง ู‡ุงุฏูŠ ุฃุตู„ู‹ุง ู„ูˆ ุดูŠู„ู†ุง ู…ู†ู‡ุง ู…ุถุงุนูุงุช
400
00:29:54,480 --> 00:29:59,380
ุงู„ุฎู…ุณุฉ ุงู„ู„ูŠ ู‡ูŠ ุนุดุฑูŠู† ุจุธู„ ุจุณ ู…ูŠู† ูˆุงุญุฏ ูุจุชุธู„ Y2
401
00:29:59,380 --> 00:30:03,720
ุชุทุงุจู‚ ุงู„ูˆุงุญุฏ ู…ุถู„ู‡ ุฎู…ุณุฉ ูŠุนู†ูŠ ุจุณ ุงุดุชุบู„ุช ุนู„ู‰ ู‡ุงุฏูŠ ู‚ู„ุช
402
00:30:03,720 --> 00:30:09,010
ุจู…ุง ุฃู† ุงู„ูˆุงุญุฏ ูˆุงู„ุนุดุฑูŠู† ุชุทุงุจู‚ ุงู„ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูˆ ุฅุฐุง ุตุงุฑ
403
00:30:09,010 --> 00:30:12,870
ุนู†ุฏูŠ ุงู„ู€ y .. ุงู„ 21 y2 ุชุทุงุจู‚ ุงู„ y2 ุญุทูŠุช ู…ูƒุงู†ู‡ุง
404
00:30:12,870 --> 00:30:20,050
ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ ุดู„ุช ู…ุถุงุนูุงุช ุงู„ 21 ุงู„ู„ูŠ ู‡ูŠ ุนุดุฑูŠู† ุถู„ุช
405
00:30:20,050 --> 00:30:24,670
ูˆุงุญุฏุฉ ูˆุงุญุฏ ุตุงุฑ y2 ูˆ ู‡ูˆ ุงู„ู„ูŠ ุฌุงู‡ุฒ ุตุงุฑ y2 ุชุทุงุจู‚
406
00:30:24,670 --> 00:30:27,230
ุงู„ูˆุงุญุฏ ูˆ ุฏูˆู„ุฉ ุฎู…ุณุฉ ุงู„ู„ูŠ ู…ุง ุงุณุชุจุนุจุด ู‡ุฐู‡ ุฎู„ูŠู†ุง ุงู„ู„ูŠ
407
00:30:27,230 --> 00:30:32,410
ุจุนุฏู‡ุง ุงู„ุขู† ู†ุนู…ู„ M3 Y3 ุชุทุงุจู‚ ุงู„ูˆุงุญุฏ ูŠุนู†ูŠ ุจุนุฏุฏ ู…ูŠู†
408
00:30:32,410 --> 00:30:37,210
ุงู„ุชุทุงุจู‚ุงุช ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุงู„ุขู† M3 ุงู„ู„ูŠ ู‡ูŠ ู…ูŠู† ุนุจุงุฑุฉ ุนู†
409
00:30:37,210 --> 00:30:41,570
ุฃูˆุฌุฏู†ุงู‡ุง ุงู„ู„ูŠ ู‡ูŠ ุฎู…ุณุฉ ุนุดุฑ ูŠุตูŠุฑ ุฎู…ุณุฉ ุนุดุฑ Y3 ุงู„ู…ุฌู‡ูˆู„
410
00:30:41,570 --> 00:30:46,550
ุชุทุงุจู‚ ุงู„ูˆุงุญุฏ ู…ูˆุถู„ู‡ ู…ูŠู† ู…ูˆุถู„ู‡ ุณุจุนุฉ ุงู„ุณุจุนุฉ ู…ูŠู†
411
00:30:46,550 --> 00:30:50,380
ุงู„ุณุจุนุฉ ุงู„ู„ูŠ ู‡ูŠ ุงู„ M3 ุงู„ู„ูŠ ุนู†ุฏูŠ ุทุจุนู‹ุง ู„ูŠุด ุฃู†ุช ุจุชุญู„
412
00:30:50,380 --> 00:30:53,580
ู‡ุฏูˆู„ุฉ .. ู‡ุฏูˆู„ุฉ ููŠ ุงู„ู‚ุงู†ูˆู† .. ู‡ุฏูˆู„ุฉ ุญุงู„ู‡ู† .. ู‡ู†
413
00:30:53,580 --> 00:30:57,220
ุงู„ู„ูŠ ุจุฏู†ุง ู†ุนูˆุถ ู…ู† ุญุงู„ู‡ู† ู‡ู†ุง ุจุชุทู„ุน ู„ูŠู‡ ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู†
414
00:30:57,220 --> 00:31:01,860
ุงู„ู„ูŠ ู‡ูŠ ุงู„ุญู„ ุงู„ุนุงู… ุญุณุจ ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู† ุงู„ุทุฑูŠู‚ุฉ ุชุจุนุช
415
00:31:01,860 --> 00:31:05,460
Chinese remainder theorem ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ุงู„ุขู† Y1 ูˆY3
416
00:31:05,460 --> 00:31:08,980
ู‡ุฐุง ุขุณู ู…ุด Y1 ูˆY3 ูˆุทุจุนู‹ุง ูƒู„ ูˆุงุญุฏ ู…ุฏู„ู‡ ู…ูŠู† ู…ุฏู„ู‡ ุณุจุนุฉ
417
00:31:09,210 --> 00:31:14,310
ุฅุฐุง ุตุงุฑ ู‡ูŠ ุนู†ุฏูŠ Y1 ู‡ู†ุง ูˆ Y2 ู‡ู†ุง ูˆ Y3 ู‡ู†ุง ุฏู„ุช ุนู„ูŠ
418
00:31:14,310 --> 00:31:17,750
ุงู„ุนู…ู„ูŠุฉ ุงู„ุฃุฎูŠุฑุฉ ู‡ูŠ ุนู…ู„ูŠุฉ ุงู„ุชุนูˆูŠุถ ุจูƒูˆู† ุฃูˆุฌุฏุช ุงู„ุญู„
419
00:31:17,750 --> 00:31:24,190
ุงู„ู†ู‡ุงุฆูŠ X ุจุชุณุงูˆูŠ A1 M1 Y1 A2 M2 Y2 ุฒูŠ A3 MY3 ู‡ูŠ
420
00:31:24,190 --> 00:31:28,950
ู‚ุงู†ูˆู†ู†ุง ุงู„ู„ูŠ ู‡ูˆ ู‚ุงู†ูˆู† ุงู„ู„ูŠ ู‡ูˆ ุจูŠุฌูŠุจ ู„ุญู„ ุงู„ system
421
00:31:28,950 --> 00:31:33,270
ูƒู„ู‡ ุจุนุฏ ู…ุง ุชุฃูƒุฏู†ุง ุงู„ 3 ูˆุงู„5 ูˆุงู„7 ุงู„ู„ูŠ ุชูŠุจู„ ุจุฑุงูŠู†
422
00:31:33,270 --> 00:31:38,870
ุจูƒูˆู† ู‡ุฐุง ู‡ูˆ ุญู„ ุงู„ system A1 ู…ูŠู† ู‡ูŠุŸ ู‡ูŠ ู‡ุงู„ุชู†ูŠู†ุงู…
423
00:31:38,870 --> 00:31:42,230
ูˆุงุญุฏ ุฃูˆ ุฃูˆุฌุฏู†ุงู‡ุง ุงู„ู„ูŠ ู‡ูŠ ุฎู…ุณุฉ ูˆุซู„ุงุซูŠู† Y ูˆุงุญุฏ ู‡ู… ุงู„ู„ูŠ
424
00:31:42,230 --> 00:31:45,410
ุญู„ู„ู†ุงู‡ุง ุนุดุงู† ุฎุทุฑ ุงู„ุงุซู†ูŠู† ูุจูŠุตูŠุฑ ุงุซู†ูŠู† ููŠ ุฎู…ุณุฉ ูˆ
425
00:31:45,410 --> 00:31:48,950
ุซู„ุงุซูŠู† ููŠ ุงุซู†ูŠู† ุงุซู†ูŠู† ู‡ูŠ ุงู„ุงุซู†ูŠู† ุงุซู†ูŠู† ู„ู‡ุง ุซู„ุงุซุฉ
426
00:31:49,340 --> 00:31:53,260
ุงู„ุขู† ู…ุถุฑูˆุจุฉ ููŠ ู…ูŠู† ููŠ ูˆ ุงู… ุงุซู†ูŠู† ุงู„ู„ูŠ ู‡ูŠ ุฌุฏูŠุด ูˆุงุญุฏ
427
00:31:53,260 --> 00:31:56,120
ูˆ ุนุดุฑูŠู† ู‡ุงูŠ ูˆุงุญุฏ ูˆุนุดุฑูˆู† ููŠ ูˆุงูŠ ุงุซู†ูŠู† ุงู„ู„ูŠ ู‡ูŠ
428
00:31:56,120 --> 00:32:00,220
ุฃูˆุฌุฏู†ุงู‡ุง ุงู„ู„ูŠ ู‡ูŠ ูˆุงุญุฏ ุฒุงุฏ ุซู„ุงุซุฉ ู‡ุงูŠ ุซู„ุงุซุฉ ุงู„ู„ูŠ
429
00:32:00,220 --> 00:32:04,960
ู‡ูŠ ุจุฑุถู‡ ุฌุฏูŠุด ุงุซู†ูŠู† ู…ุถุจูˆุท ู‡ุงูŠ ุงุซู†ูŠู† ููŠ ู…ูŠู† ููŠ
430
00:32:04,960 --> 00:32:07,660
ุฎู…ุณุฉ ุนุดุฑ ุงู„ู„ูŠ ู‡ูŠ ุงู… ุซู„ุงุซุฉ ููŠ ูˆุงูŠ ุซู„ุงุซุฉ ุงู„ู„ูŠ ู‡ูŠ
431
00:32:07,660 --> 00:32:13,260
ุฃูˆุฌุฏู†ุงู‡ุง ุจุชุณุงูˆูŠ ูˆุงุญุฏ ุทู„ุน ุนู†ุฏูŠ ุงู„ุฑู‚ู… ุซู„ุงุซุฉ ูˆุซู„ุงุซูŠู† ุฅุฐุง
432
00:32:13,260 --> 00:32:20,560
X ุจูŠุซุงูˆุฑ 233 ู„ูƒู† ุฃู†ุง ุจุฏุฎู„ูŠ ู‡ุฐุง ุงู„ุนุฏุฏ ู…ู† ุฃุนุฏุงุฏ
433
00:32:20,560 --> 00:32:26,400
1 ู„ุนู†ุฏ 105 ุฃูˆ ู…ู† 0 ู„ุนู†ุฏ 104 ู…ุงุดูŠ ูุจุดูŠู„ ู…ู†ู‡ ูƒู„
434
00:32:26,400 --> 00:32:32,010
ู…ุถุงุนูุงุช 105 ู…ุถุงุนูุงุช ุงู„ู€ 105 ู…ุถุงุนูุงุช ุงู„ู€ 210 ู…ุถุงุนูุงุช
435
00:32:32,010 --> 00:32:36,250
ุงู„ู€ 230 ู…ุถุงุนูุงุช ุงู„ู€ 230 ู…ุถุงุนูุงุช ุงู„ู€ 230 ู…ุถุงุนูุงุช
436
00:32:36,250 --> 00:32:37,490
ุงู„ู€ 230 ู…ุถุงุนูุงุช ุงู„ู€ 230 ู…ุถุงุนูุงุช ุงู„ู€ 230 ู…ุถุงุนูุงุช
437
00:32:37,490 --> 00:32:40,030
ุงู„ู€ 230 ู…ุถุงุนูุงุช ุงู„ู€ 230 ู…ุถุงุนูุงุช ุงู„ู€ 230 ู…ุถุงุนูุงุช
438
00:32:40,030 --> 00:32:42,170
ุงู„ู€ 230 ู…ุถุงุนูุงุช ุงู„ู€ 230 ู…ุถุงุนูุงุช ุงู„ู€ 230 ู…ุถุงุนูุงุช
439
00:32:42,170 --> 00:32:44,150
ุงู„ู€ 230 ู…ุถุงุนูุงุช ุงู„ู€ 230 ู…ุถุงุนูุงุช ุงู„ู€ 230 ู…ุถุงุนูุงุช
440
00:32:44,150 --> 00:32:50,580
ุงู„ู€ 230 ู…ุถุงุนูุงุช ุงู„ู€ 230 ู„ูƒู† .. ู„ูƒู† .. ู„ูƒู† ุนู†ุฏูŠ ุงู„ู„ูŠ
441
00:32:50,580 --> 00:32:54,620
ู‡ูˆ ุนุฏุฏ ู„ุงู†ู‡ุงุฆูŠ ู…ู† ุงู„ุญู„ูˆู„ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู„ูŠ ู…ุชุทุงุจู‚ุงุช ู‡ู†
442
00:32:54,620 --> 00:33:03,200
ุฒูŠ ุงู„ู€ 233 ูˆ ุฒูŠ ู„ู…ุง ู†ุฒูŠุฏ 105 ู„ู‡ุง ุจูŠุตูŠุฑ 338 ูˆ ู„ูˆ
443
00:33:03,200 --> 00:33:07,020
ุทุฑุญู†ุง 105 ูˆ ู„ูˆ ุทุฑุญู†ุง 105 ุจูŠุทู„ุน ุนู†ุฏูƒ ุงู„ู„ูŠ ู‡ูˆ ูƒู„
444
00:33:07,020 --> 00:33:11,770
ุงู„ู„ูŠ ุจูŠุทุงุจู‚ ู‡ู†ุง ุงู„ู€ 23 ู…ุฏู„ุฉ 105 ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุญู„ูˆู„
445
00:33:11,770 --> 00:33:16,610
ู„ู‡ุฐุง ุงู„ู€ System ุฃูˆ ุงุฎุชุตุงุฑู‹ุง ุงุฎุชุฒุงู„ู‹ุง ู†ุฎุชุฒู„ ุงู„ุญู„ ููŠ X
446
00:33:16,610 --> 00:33:21,230
ุชูˆ ุชุทุงุจู‚ ุงู„ู€ 23 ู…ุฏู„ุฉ 105 ูˆ ุงู„ู„ูŠ ุจุฏู‡ ูŠูˆุฌุฏ ุงู„ุฃุฑู‚ุงู… ุฒูŠ
447
00:33:21,230 --> 00:33:26,790
ู…ุง ุจุฏู‡ ุจูŠูˆุฌุฏู‡ุง ุจุถูŠู 105ุงุช ูˆ ูŠุทุฑุญ 105ุงุช ุจูƒูˆู† we have
448
00:33:26,790 --> 00:33:30,070
shown that 23 is the smallest positive integer
449
00:33:30,070 --> 00:33:34,950
that is simultaneous solution ุงู„ู„ูŠ ู‡ูˆ ูŠุนู†ูŠ ู‡ูˆ 23
450
00:33:34,950 --> 00:33:39,870
ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุฃุตุบุฑ ุนุฏุฏ ุจูŠุฌุณู… ุงู„ู„ูŠ ู‡ู…ุง ุงูŠุด ุงู„ู„ูŠ ู‡ูŠ
451
00:33:39,870 --> 00:33:42,890
ุงู„ุซู„ุงุซ ูˆ ุงู„ู…ุชุจู‚ูŠ ุงุซู†ูŠู† ูˆ ุจูŠุฌุณู… ุงู„ุฎู…ุณุฉ ูˆ ุงู„ู…ุชุจู‚ูŠ
452
00:33:42,890 --> 00:33:46,430
ุซู„ุงุซุฉ ูˆ ุจูŠุฌุณู… ุงู„ุณุจุนุฉ ูˆ ุงู„ู…ุชุจู‚ูŠ ุฌุฏูŠุด ุงุซู†ูŠู† ุฃูˆ ู‡ูˆ
453
00:33:46,430 --> 00:33:50,370
ุนุจุงุฑุฉ ุนู† ุงู„ุญู„ ุงู„ุนุงู… ู„ู‡ุฐุง ุงู„ system of linear
454
00:33:50,370 --> 00:33:55,510
equations ุทูŠุจ ู†ูŠุฌูŠ ุงู„ุขู† ุฅู„ู‰ ุงู„ู„ูŠ ู‡ูˆ ุทุฑูŠู‚ุฉ ุซุงู†ูŠุฉ ู„ุญู„
455
00:33:55,510 --> 00:33:59,450
ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ุนุงุฏู„ุงุช ุงู„ุชุทุงุจู‚ุงุช ุงู„ู‡ุงู„ูŠุฉ ุญุงุฌุฉ ุงุณู…ู‡ุง
456
00:33:59,450 --> 00:34:04,820
ุงู„ู€ back substitution ู†ุดูˆู ูƒูŠู ุจุฏู†ุง ู†ุญู„ ุงู„ุขู† ุจุฏู†ุง ู†ุญู„
457
00:34:04,820 --> 00:34:11,420
ุงู„ู„ูŠ ู‡ูˆ system of linear congruences ุจุงุณุชุฎุฏุงู… ุญุงุฌุฉ
458
00:34:11,420 --> 00:34:14,800
ุงุณู…ู‡ุง ุงู„ back substitution ุงู„ู€ back substitution
459
00:34:14,800 --> 00:34:19,420
ุงู„ู„ูŠ ู‡ูŠ ุจุชุนุชู…ุฏ ุฃู†ู‡ ุจู†ุญูˆู„ ุงู„ linear congruences ุฅู„ู‰
460
00:34:19,420 --> 00:34:23,400
ู…ุนุงุฏู„ุงุช ูˆู…ู† ุซู… ุจู†ุจุฏุฃ ู†ุนูˆุถ ูˆู†ุฑุฌุน ูˆ ู†ุฑุฌุน ู„ู…ุง ู†ุตู„
461
00:34:23,400 --> 00:34:26,480
ู„ุญู„ ุงู„ู†ู‡ุงุฆูŠ ู†ุดูˆู ูƒูŠู ุจุฑุถู‡ ุงู„ู„ูŠ ู‡ูˆ ุฅู† ุดุงุก ุงู„ู„ู‡
462
00:34:26,480 --> 00:34:29,970
ุงู„ุทุฑูŠู‚ุฉ ุณู‡ู„ุฉ ู„ูˆ ุชุงุจุนูˆุง ู…ุนุงูŠุง ู‡ุชู„ุงู‚ูˆุง ุญุงู„ูƒู… ุชุนุฑููˆุง
463
00:34:29,970 --> 00:34:33,530
ุชุญู„ูˆ ุฅู† ุดุงุก ุงู„ู„ู‡ example use the method of back
464
00:34:33,530 --> 00:34:37,470
substitution to find all integers x such that ุฃูˆุฌุฏ
465
00:34:37,470 --> 00:34:41,630
ูƒู„ ุงู„ุฃุนุฏุงุฏ x ุงู„ุชูŠ ุชุญู‚ู‚ x ูˆุทุงุจู‚ ุงู„ูˆุงุญุฏ ู…ุฏู„ุฉ ุฎู…ุณุฉ ุฃูˆ
466
00:34:41,630 --> 00:34:45,230
x ูˆุทุงุจู‚ ุงู„ุงุซู†ูŠู† ู…ุฏู„ุฉ ุฎู…ุณุฉ ูˆููŠ ู†ูุณ ุงู„ูˆู‚ุช x ูˆุทุงุจู‚
467
00:34:45,230 --> 00:34:48,770
ุงู„ุซู„ุงุซุฉ ู…ุฏู„ุฉ ุณุจุนุฉ ูŠุนู†ูŠ ุจุฏู†ุง ู†ุญู„ ุงู„ุนุงู…ู„ุฉ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูˆ
468
00:34:48,770 --> 00:34:54,590
ุงู„ system of linear congruences ุดูˆููˆุง ุงู„ุฃูˆู„ ู†ุจุฏุฃ
469
00:34:54,590 --> 00:34:57,770
ููŠ ุงู„ุฃูˆู„ู‰ ุงู„ุขู† x ุชุทุงุจู‚ ุงู„ูˆุงุญุฏ ู…ู† ุฏูˆู„ ุงู„ุฎู…ุณุฉ ุงู„ุบุฑุถ
470
00:34:57,770 --> 00:35:01,030
ุฅูŠุฌุงุฏ ู‚ูŠู…ุฉ x ูŠุง ุฌู…ุงุนุฉ since x ุชุทุงุจู‚ ุงู„ูˆุงุญุฏ ู…ู† ุฏูˆู„
471
00:35:01,030 --> 00:35:04,570
ุงู„ุฎู…ุณุฉ ุฅุฐุง ุญุณุจ ุงู„ู…ูู‡ูˆู… ุงู„ู„ูŠ ู‡ูˆ ุงู„ุชุทุงุจู‚ ุจุชูƒูˆู†
472
00:35:04,570 --> 00:35:07,970
ุงู„ุฎู…ุณุฉ ุจุชุฌุณู… ุงู„ x ู†ุงู‚ุต ูˆุงุญุฏ ุงูŠุด ู…ุนู†ุงู‡ ุงู„ุฎู…ุณุฉ
473
00:35:07,970 --> 00:35:10,930
ุจุชุฌุณู… ุงู„ x ู†ุงู‚ุต ูˆุงุญุฏ ูŠุนู†ูŠ ุงู„ x ู†ุงู‚ุต ูˆุงุญุฏ ุจุชุณุงูˆูŠ
474
00:35:10,930 --> 00:35:15,110
ุฎู…ุณุฉ ููŠ some integer mean T ูŠุนู†ูŠ x ู†ุงู‚ุต ูˆุงุญุฏ ุจุชุณุงูˆูŠ
475
00:35:15,110 --> 00:35:20,890
ุฎู…ุณุฉ ููŠ T ุงู„ู„ูŠ ู‡ูˆ ุญูŠุซ T ุนุฏุฏ ุตุญูŠุญ ู…ุงุดูŠ ุงู„ุขู† so ุจุณ
476
00:35:20,890 --> 00:35:24,760
ุจุชุฏู†ุฌู„ ุงู„ูˆุงุญุฏ ู‡ู†ุง ุจูŠุตูŠุฑ x ุจุชุณุงูˆูŠ ุฎู…ุณุฉ ุฒุงุฆุฏ ุงูŠุด ุฒุงุฆุฏ
477
00:35:24,760 --> 00:35:28,480
T ุงู„ุขู† ุตุงุฑุช ุนู†ุฏูŠ ุฎู…ุณุฉ ุจุงู„ุณุงูˆูŠุฉ X ุจุงู„ุณุงูˆูŠุฉ ุฎู…ุณุฉ
478
00:35:28,480 --> 00:35:32,180
ุฒุงุฆุฏ T ุจุชุนูˆุถ ุนู† ู‚ูŠู…ุฉ X ู‡ู†ุง ู„ุฃู† ุฏู‡ ูˆุฌูˆุฏ ุงู„ุญู„
479
00:35:32,180 --> 00:35:36,360
ุงู„ู…ุดุชุฑูƒ ู‡ุฐู‡ ุญู‚ู‚ุช ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃูˆู„ู‰ ุฃูˆ ุงู„ุชุทุงุจู‚ ุงู„ุฃูˆู„ู‰
480
00:35:36,360 --> 00:35:41,140
ู‡ุฐู‡ ุญู‚ู‚ุช ุงู„ุชุทุงุจู‚ ุงู„ุฃูˆู„ู‰ ุจุชุนูˆุถู‡ุง ู‡ู†ุง ุนุดุงู† ุชุญู‚ู‚
481
00:35:41,140 --> 00:35:45,860
ุงู„ุชุทุงุจู‚ ุงู„ุซุงู†ูŠุฉ ุทูŠุจ ุฅุฐุง ุนูˆุถูˆู„ูŠ ููŠ ู‡ุฐู‡ ุนู† ู‚ูŠู…ุฉ ุฎู…ุณุฉ
482
00:35:45,860 --> 00:35:49,680
T ุฒุงุฆุฏ ูˆุงุญุฏ Substituting into X ููŠ ุงู„ุชุทุงุจู‚ ุงุซู†ูŠู†
483
00:35:49,680 --> 00:35:54,500
ู…ุฏู„ุฉ ุณุชุฉ ู‡ุฐู‡ yields ุจู†ุชุฌู„ูŠ ุฎู…ุณุฉ T ุฒุงุฆุฏ ูˆุงุญุฏ ู…ูƒุงู†
484
00:35:54,500 --> 00:35:59,180
ุงู„ X ุชุทุงุจู‚ ุงู„ุงุซู†ูŠู† ู…ุฏู„ุฉ ุณุชุฉ ุงู†ุฌู„ูŠ ู‡ุฐุง ุนู„ู‰ ุงู„ุฌู‡ุฉ ู‡ุฐู‡
485
00:35:59,180 --> 00:36:03,440
ุจูŠุตูŠุฑ ู„ูŠู‡ ุฎู…ุณุฉ T ุชุทุงุจู‚ ุงู„ูˆุงุญุฏ ู…ุฏู„ู‡ ุงูŠุด ู…ุฏู„ู‡ ุณุชุฉ
486
00:36:03,440 --> 00:36:06,400
ู„ุฃู†ู‡ ุงุซู†ูŠู† ู†ุงู‚ุต ูˆุงุญุฏ ุจูŠุทู„ุน ูˆุงุญุฏ ุงู„ุขู† ุฒูŠ ู…ุง ุนู…ู„ู†ุง
487
00:36:06,400 --> 00:36:10,040
ู‚ุจู„ ุจุดูˆูŠุฉ ุจุฏูŠ ุฃุดูŠู„ ู…ู† ู‡ุฐู‡ ู…ุถุงุนูุงุช ุงู„ .. ู…ู† ู…ุถุงุนูุงุช
488
00:36:10,040 --> 00:36:17,640
ุงู„ุณุชุฉ -6-6-6
489
00:36:17,640 --> 00:36:22,160
-6-6-6
490
00:36:22,160 --> 00:36:30,400
-6-6-6-6-6-6
491
00:36:30,400 --> 00:36:32,760
-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6
492
00:36:32,760 --> 00:36:32,780
-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6
493
00:36:36,280 --> 00:36:39,300
ุงู„ุขู† ู†ุงู‚ุต ูˆุงุญุฏ ุฃู†ุง ู…ุง ุจุฏูŠุด ูŠุงู…ูˆุฏุจ ุณุงู„ุจ ุจุฏูŠ ูŠุงู…ูˆุฏุจ
494
00:36:39,300 --> 00:36:43,040
ุงู„ุขู† ุจุถูŠู ุนู„ู‰ ุงู„ู†ุงู‚ุต ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูˆ ุณุชุฉ ุฃูˆ ู…ุถุงุนูุงุช
495
00:36:43,040 --> 00:36:47,880
ุงู„ุณุชุฉ ุตุญ ุขู‡ ุทุจุนู‹ุง ุงู†ูุฌู†ุง ุนู„ูŠ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฃู†ู‡ ุจูŠุทู„ุน
496
00:36:47,880 --> 00:36:51,820
ู…ุชุทุงุจู‚ ู„ู…ุง ู†ุถูŠู ุงู„ู…ุถุงุนูุงุช ุงู„ู…ู‚ูŠุงุณ ุณุชุฉ ูˆู†ุงู‚ุต ูˆุงุญุฏ
497
00:36:51,820 --> 00:36:55,420
ุจูŠุทู„ุน ุฎู…ุณุฉ ุฅุฐุง T ุชุทุงุจู‚ ุงู„ุฎู…ุณุฉ modulo 6 ุฅุฐุง T
498
00:36:55,420 --> 00:37:01,340
ุชุจุนุชู†ุง ู‡ุงุฏูŠ ุงู„ุฌู†ู‡ ุจุชุญู‚ู‚ T ุจุทุงุจู‚ ุงู„ุฎู…ุณุฉ modulo 6
499
00:37:01,760 --> 00:37:06,860
ุทูŠุจ ู‡ุฐู‡ ุงู„ุขู† ุจุฏูŠ ุฃูƒุชุจู‡ุง ุนู„ู‰ ุตูˆุฑุฉ ู…ุนุงุฏู„ุฉ ุฒูŠ ู…ุง ุนู…ู„ุช
500
00:37:06,860 --> 00:37:10,220
ููŠ ู…ูŠู†ุŸ ููŠ ุงู„ู€ X ุงู„ู„ูŠ ููˆู‚ ุงู„ู„ูŠ ุฃู†ุตุฑุช X ุงู„ู„ูŠ ุนู†ุฏู†ุง
501
00:37:10,220 --> 00:37:15,280
ุญู‚ู‚ุช ู‡ุฐู‡ ูˆู‡ูŠ ุญู‚ู‚ุช ู‡ุฐู‡ ุจุณ ุฎู„ู‘ูŠู†ูŠ ุฃูƒู…ู„ T ุชุทุงุจู‚
502
00:37:15,280 --> 00:37:18,860
ุงู„ุฎู…ุณุฉ modulo ุณุชุฉ ุฃูŠุด ู…ุนู†ุงุชู‡ุŸ ูŠุนู†ูŠ ุงู„ุณุชุฉ ุจุชุฌุณู… ุงู„ู€
503
00:37:18,860 --> 00:37:22,240
T ู†ุงู‚ุต ุฎู…ุณุฉ ูŠุนู†ูŠ ุงู„ู€ T ู†ุงู‚ุต ุฎู…ุณุฉ ุจุงู„ุณุงูˆูŠุฉ ุณุชุฉ ููŠ
504
00:37:22,240 --> 00:37:26,180
U ู…ุซู„ุง ุฃูˆ T ุจุชุณุงูˆูŠุฉ ุณุชุฉ U ุฒุงุฆุฏ ุฎู…ุณุฉ ุฒูŠ ู…ุง ุนู…ู„ุช ููˆู‚
505
00:37:26,180 --> 00:37:29,840
ุจุงู„ุธุจุท ุจุฏูŠ ุฃุนู…ู„ ููŠ ู‡ุฐู‡ ุจุงู„ุทุฑูŠู‚ุฉ ุงู„ู„ูŠ ุญูƒูŠุช ุนู†ู‡ุง ููˆู‚
506
00:37:29,870 --> 00:37:39,670
ุจุชุฌุณู… ุงู„ู€ 6 ุจู€ T-5 ุฅุฐุง ุงู„ู€ T-5 ุจูŠุณุงูˆูŠ 6 ููŠ U ู†ุฌู„ุช
507
00:37:39,670 --> 00:37:43,410
ุงู„ุฎู…ุณุฉ ู‡ู†ุง ุตุงุฑุช T ุจูŠุณุงูˆูŠ 6 U ุฒุงุฆุฏ ุฎู…ุณุฉ where U
508
00:37:43,410 --> 00:37:47,410
ุฃุดู…ุงู„ู‡ is an integer ุงู„ู€ T ุงู„ู„ูŠ ุทู„ุนุช ุนู†ุฏูŠ ู‡ู†ุง ุจุฏูŠ
509
00:37:47,410 --> 00:37:52,870
ุฃุฑุฏ ุงู„ู„ูŠ ู‡ูŠ ุฃุนูˆุถู‡ุง ููŠ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ T ุงู„ู„ูŠ ุนู†ุฏูŠ ุงู„ู„ูŠ
510
00:37:52,870 --> 00:37:57,470
ู‡ูŠ ุจุฏูŠ ุฃุนูˆุถ substituting
511
00:37:57,470 --> 00:38:02,030
this back into X ุจุชุณุงูˆูŠ ุฎู…ุณุฉ T ุฒุงุฆุฏ ูˆุงุญุฏ ู„ุฅู† ุนู†ุฏูŠ
512
00:38:02,030 --> 00:38:05,790
ุงู„ู„ูŠ ู‡ูŠ ุงู„ X ุนู†ุฏูŠ ุฌุฏุด ู‚ูŠู…ุฉ ุทู„ุนุช ุงู„ู„ูŠ ุจุงู„ุฃุญู…ุฑ ู‡ุฐู‡
513
00:38:05,790 --> 00:38:10,130
ุฎู…ุณุฉ T ุฒุงุฆุฏ ูˆุงุญุฏ ุจุนุฏ ู…ุง ูˆุฌุฏู†ุง T ุงู„ู„ูŠ ู‡ูŠ ุงู„ู„ูŠ ุตุงุฑุช
514
00:38:10,130 --> 00:38:15,040
ุชุชุญู‚ู‚ ู‡ุฐู‡ ุงู„ุชุทุงุจู‚ ุงู„ู„ูŠ ู‡ูŠ ุญู‚ู‚ุช ุงู„ุชุทุงุจู‚ ู‡ุฐู‡ ุตุงุฑ ุนู†ุฏู‰
515
00:38:15,040 --> 00:38:21,480
ุงุนูˆุถ ุนู† T ุจู‚ูŠู…ุชู‡ุง 6U ุฒุงุฆุฏ ุฎู…ุณุฉ ู‡ุงู† ุจูŠุตูŠุฑ X ุจุชุณุงูˆูŠ
516
00:38:21,480 --> 00:38:25,600
ุดูŠู„ ุงู„ T ูˆุญุท 6U ุฒุงุฆุฏ ุฎู…ุณุฉ ุจุชุทู„ุน ุนุจุงุฑุฉ ุนู† ุฎู…ุณุฉ ููŠ
517
00:38:25,600 --> 00:38:29,080
ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฒุงุฆุฏ ูˆุงุญุฏ ุงุถุฑุจู‡ ุฌูˆุง ุจูŠุตูŠุฑ ุซู„ุงุซูŠู† U
518
00:38:29,080 --> 00:38:32,540
ุฒุงุฆุฏ ุฎู…ุณุฉ ูˆุนุดุฑูŠู† ูˆุงุญุฏ ุจูŠุทู„ุน ุฒุงุฆุฏ ุฅูŠู‡ุŸ ุณุชุฉ ูˆุนุดุฑูŠู† ุฅุฐุง
519
00:38:32,540 --> 00:38:36,100
ุตุงุฑุช ุนู†ุฏู‰ X ุจุชุณุงูˆูŠ ุซู„ุงุซูŠู† U ุฒุงุฆุฏ ุณุชุฉ ูˆุนุดุฑูŠู† ุตุงุฑุช
520
00:38:36,100 --> 00:38:41,670
ู‡ุฐู‡ ุญู‚ู‚ุช ู‡ุฐู‡ ูˆ ุญู‚ู‚ุช ู‡ุฐู‡ ุฏู„ู†ุง ู†ุดูˆู ูƒูŠู ุชุชุญู‚ู‚ ู‡ุฐู‡ ูˆ
521
00:38:41,670 --> 00:38:46,510
ู†ูƒูˆู† ุฃูˆุฌุฏู†ุง ุงู„ุญู„ ุงู„ู…ุดุชุฑูƒ ุงู„ุขู† ุงู„ุฎุทูˆุฉ ุงู„ุซุงู„ุซุฉ ู…ูƒุฑุฑุฉ
522
00:38:46,510 --> 00:38:53,230
ูŠุนู†ูŠ ู…ุดุงุจู‡ ู„ู„ุณุงุจู‚ insert this into X ุทุงุจู‚ 3 ู…ุฏู„ 7
523
00:38:53,230 --> 00:38:57,810
ุจุนุฏ ู…ุง ุนูˆุถู†ุงู‡ุง ู†ุนูˆุถู‡ุง ู†ุนูˆุถ ุงู„ุขู† ููŠ ุงู„ุฃุฎูŠุฑุฉ X ุทุงุจู‚
524
00:38:57,810 --> 00:39:01,470
3 ู…ุฏู„ 7 ุดูŠู„ ุงู„ู„ูŠ ู‡ูŠ ุงู„ X ู‡ุฐู‡ ูˆ ุญุท ู‚ูŠู…ุชู‡ ุงู„ู„ูŠ
525
00:39:01,470 --> 00:39:06,300
ุฃูˆุฌุฏู†ุงู‡ุง ู‡ุฐู‡ ููˆู‚ ุจุตูŠุฑ 30U ุฒูŠ 26 ุชุทุงุจู‚ ู…ู† ุงู„ุชู„ุงุชุฉ
526
00:39:06,300 --> 00:39:09,200
ู…ุฏุฑุณ ุณุจุนุฉ ุจุฏู†ุง ู†ุญู„ ู‡ุฐุง ุฒูŠ ู…ุง ุญู„ู†ุง ุงู„ู„ูŠ ู‚ุจู„ solving
527
00:39:09,200 --> 00:39:15,500
this ุจูŠุนุทูŠู†ูŠ ุงู„ุงู† ุงู„ู€ 26 ู…ู† ุฌู„ู‡ุง ุจูŠุตูŠุฑ ู†ุงู‚ุต 26 ูˆ ููŠ
528
00:39:15,500 --> 00:39:20,420
ุนู†ุฏูŠ 3 ุจูŠุตูŠุฑ ู†ุงู‚ุต 23 ุตุงุฑุช 30 U ุชุทุงุจู‚ ู†ุงู‚ุต 23 ูˆ ุฏูˆู„
529
00:39:20,420 --> 00:39:24,440
7 ุงู„ุงู† ู‡ุฐู‡ ุจุฏู†ุง ู†ุญู„ู‡ุง ุจุฏู†ุง ู†ุญู„ู‡ุง ู„ุฅูŠุฌุงุฏ ุงู„ inverse
530
00:39:24,440 --> 00:39:28,720
ุฒูŠ ู…ุง ู‚ู„ู†ุง ุดูŠู„ ุงู„ู…ุถุงุนูุงุช ุงู„ู„ูŠ ู‡ูŠ ุงู„ุณุจุนุฉ ุฃุฌุฑุจ ุงุดูŠ
531
00:39:28,720 --> 00:39:33,360
30 ุนู„ู‰ 7 ุจุชุทู„ุน 4 ููŠ 7 ุจ 28 ูˆ ุจุฒูŠุฏ 2 ุฎู„ุงุต ุนู†ุฏ ุงู„ 2
532
00:39:33,360 --> 00:39:39,390
ุฅุฐุง ุดูŠู„ุช 28 ุจุธู„ 2 U ู„ุงู† ู†ุงู‚ุต ุชู„ุงุชุฉ ูˆ ุนุดุฑูŠู† ูˆ ู†ุถูŠู
533
00:39:39,390 --> 00:39:47,870
ู…ุถุงุนูุงุช ุงู„ุณุจุนุฉ ู„ูƒูŠ ู†ุถูŠู ุฃู‚ุฑุจ ุฑู‚ู… ู„ูƒูŠ ู†ุถุบุฑ ู‚ูŠู…ุฉ
534
00:39:47,870 --> 00:39:48,650
ุงู„ุฑู‚ู…
535
00:39:53,690 --> 00:39:56,150
21 ู…ู† ู…ุถุงุนูุงุช ุงู„ุณุจุนุฉ ูˆ 21 ู…ู† ู…ุถุงุนูุงุช ุงู„ุณุจุนุฉ ูˆ 21
536
00:39:56,150 --> 00:39:58,790
ู…ู† ู…ุถุงุนูุงุช ุงู„ุณุจุนุฉ ูˆ 21 ู…ู† ู…ุถุงุนูุงุช ุงู„ุณุจุนุฉ ูˆ 21 ู…ู†
537
00:39:58,790 --> 00:40:02,090
ู…ุถุงุนูุงุช ุงู„ุณุจุนุฉ ูˆ 21 ู…ู† ู…ุถุงุนูุงุช ุงู„ุณุจุนุฉ ูˆ 21 ู…ู†
538
00:40:02,090 --> 00:40:03,350
ู…ุถุงุนูุงุช ุงู„ุณุจุนุฉ ูˆ 21 ู…ู† ู…ุถุงุนูุงุช ุงู„ุณุจุนุฉ ูˆ 21 ู…ู†
539
00:40:03,350 --> 00:40:04,010
ู…ุถุงุนูุงุช ุงู„ุณุจุนุฉ ูˆ 21 ู…ู† ู…ุถุงุนูุงุช ุงู„ุณุจุนุฉ ูˆ 21 ู…ู†
540
00:40:04,010 --> 00:40:06,330
ู…ุถุงุนูุงุช ุงู„ุณุจุนุฉ ูˆ 21 ู…ู† ู…ุถุงุนูุงุช ุงู„ุณุจุนุฉ ูˆ 21 ู…ู†
541
00:40:06,330 --> 00:40:07,370
ู…ุถุงุนูุงุช ุงู„ุณุจุนุฉ ูˆ 21 ู…ู† ู…ุถุงุนูุงุช ุงู„ุณุจุนุฉ ูˆ 21 ู…ู†
542
00:40:07,370 --> 00:40:08,890
ู…ุถุงุนูุงุช ุงู„ุณุจุนุฉ ูˆ 21 ู…ู† ู…ุถุงุนูุงุช ุงู„ุณุจุนุฉ ูˆ 21 ู…ู†
543
00:40:08,890 --> 00:40:10,670
ู…ุถุงุนูุงุช ุงู„ุณุจุนุฉ ูˆ 21 ู…ู† ู…ุถุงุนูุงุช ุงู„ุณุจุนุฉ ูˆ 21 ู…ู†
544
00:40:10,670 --> 00:40:13,530
ู…ุถุงุนูุงุช ุงู„ุณุจุนุฉ ูˆ 21 ู…ู† ู…ุถุงุนูุงุช ุงู„ุณุจุนุฉ ูˆ 21 ู…ู† ู…ุถ
545
00:40:13,560 --> 00:40:17,700
ุงู„ุชู„ุงุชูŠู† ูŠูˆ ุญุทูŠู†ุง ุงุชู†ูŠู† ูŠูˆ ุงู„ู„ูŠ ุฃู†ุง ุนู…ู„ุช ู‡ูŠูƒ ุนุดุงู†
546
00:40:17,700 --> 00:40:21,180
ุฃู†ุง ุนุงุฑู ุฅู†ู‡ ุฃู†ุง ุจุชุฎู„ูŠู‡ุง ุฏู‡ ุงู„ู„ูŠ ู‡ูˆ ุทู„ุน ุนู†ุฏ ุงุชู†ูŠู†
547
00:40:21,180 --> 00:40:25,380
ุจุชุฎู„ูŠู‡ุง ุฏู‡ ุจุฑุถู‡ ุจูŠุทู„ุน ููŠู‡ ุฒูˆุฌูŠ ุนุดุงู† ุงู„ู„ูŠ ู‡ูˆ ุงุฌุณู…
548
00:40:25,380 --> 00:40:29,760
ุงู„ุฌู‡ุชูŠู† ุนู„ู‰ ุงุชู†ูŠู† ูˆ ูŠุธู„ ุงู„ ูŠูˆ ู„ุญุงู„ู‡ุง ุจู†ูุน ุงู‡ ู„ุงู†
549
00:40:29,760 --> 00:40:33,440
ุฃู‡ู… ุงู„ู…ุดุชุฑูƒุฉ ุงู„ุฃุนู„ู‰ ุจูŠู† ุงู„ุณุจุนุฉ ูˆ ุงุชู†ูŠู† ูˆุงุญุฏ ุจู†ุฌุณู…
550
00:40:33,440 --> 00:40:36,000
ุนู„ู‰ ุงุชู†ูŠู† ุจูŠุทู„ุน ูŠูˆ ุชุทุงุจู‚ ุงู„ู†ุงู‚ุต ูˆุงุญุฏ ู…ุถูˆู„ ุณุจุนุฉ
551
00:40:36,000 --> 00:40:41,620
ุงู„ู†ุงู‚ุต ูˆุงุญุฏ ุถูŠูู„ู‡ ุณุจุนุฉ ุจูŠุตูŠุฑ ุงู„ู„ูŠ ู‡ูˆ ุณุชุฉ ุจูŠุตูŠุฑ due
552
00:40:41,620 --> 00:40:44,980
ุชุทุงุจู‚ ุงู„ุณุชุฉ modulo ู…ู† modulo ุณุจุนุฉ ุงุญู†ุง ุงุถุงูุฉ ุงู„ู„ูŠ
553
00:40:44,980 --> 00:40:51,560
ู‡ูˆ ุงุถุงูุฉ ุงู„ู„ูŠ ู‡ูŠ ู…ุถุงุนูุงุช ุงูˆ ุทุฑุญ ู…ุถุงุนูุงุช ุงู„ุนุฏุฏ ุงู„ู„ูŠ
554
00:40:51,560 --> 00:40:56,420
ู‡ูˆ ุงู„ู…ู‚ูŠุงุณ ู„ุฃูŠ ู…ู† ุงู„ุทุฑููŠู† ุทุจุนุง ู…ู†ุถูŠู ุณุจุนุฉ you ู‡ู†ุง
555
00:40:56,420 --> 00:41:00,820
ุฃูˆ ุฃุฑุจุน ุทุงุด you ูˆู…ุด ุณุจุนุฉ ู„ุญุงู„ู‡ุง ูˆุงู…ุง ู‡ู†ุง ู…ู†ุถูŠู
556
00:41:00,820 --> 00:41:06,320
ุงู„ุณุจุนุฉ ูˆูƒุฐุง ุนุณู‰ ุงู†ู‡ ูŠุธู„ ุงู„ู…ุชุทุงุจู‚ุงุช ุจุชู†ุทู„ุน ุนู†ุฏ U
557
00:41:06,320 --> 00:41:09,220
ุชุฑุงุจู‚ ุงู„ุณุชุฉ ู…ุถู„ูˆุง ุณุจุนุฉ ุจู†ุนู…ู„ ู‡ุฐู‡ ุฒูŠ ู…ุง ุนู…ู„ู†ุง ุงู„ู„ูŠ
558
00:41:09,220 --> 00:41:12,820
ููˆู‚ ุงู„ู„ูŠ ู‡ูˆ ุณุจุนุฉ ุจุชุฌุณู… ุงู„ U ู†ู‚ุต ุณุชุฉ ู…ุนู†ุงุชู‡ ุงู„ู„ูŠ ู‡ูˆ
559
00:41:12,820 --> 00:41:16,860
ุงู„ U ู†ู‚ุต ุณุชุฉ ุจุณุงูˆูŠุฉ ุณุจุนุฉ V ูŠุนู†ูŠ ุงู„ U ุจุณุงูˆูŠุฉ ุณุจุนุฉ V
560
00:41:16,860 --> 00:41:22,420
ุฒุงุฆุฏ ุณุชุฉ where V is an integer ุงู„ุขู† ุจุฏุฃ ุฃุนูˆุถ ุนู† ุงู„
561
00:41:22,420 --> 00:41:28,270
U ููŠ ู…ู†ุŸ ููŠ ุงู„ X ู‡ู†ุงุจุตูŠุฑ ุนู†ุฏ ุงู„ X ุจุชุณุงูˆูŠ ุดูŠู„ ุงู„ U
562
00:41:28,270 --> 00:41:33,410
ูˆุญุท ู‚ูŠู…ุชู‡ุง ุงู„ู„ูŠ ู‡ูŠ 7V ุฒุงุฆุฏ 6 ุจุตูŠุฑ ุงู„ X ุจุชุณุงูˆูŠ ุงู„ู„ูŠ
563
00:41:33,410 --> 00:41:38,850
ู‡ูŠ ุจุฏู„ 30U 30 ููŠ 7V ุฒุงุฆุฏ 6 ุฒุงุฆุฏ 26 ูˆุถุฑุจู‡ุง ุจุชุทู„ุน
564
00:41:38,850 --> 00:41:45,190
210U ุฒุงุฆุฏ 30 ููŠ 6 ุงู„ 180 ูˆ 26 ุจุชุทู„ุน 206 ูŠุนู†ูŠ
565
00:41:45,190 --> 00:41:50,950
ุงุชุตู„ุนุช ุนู†ุฏูŠ ุงู„ุขู† X ุจุชุณุงูˆูŠ 210U ุฒุงุฆุฏ 206 ูˆู‡ุฐู‡ ุทุจุนุง
566
00:41:50,950 --> 00:41:56,530
ู†ุชูŠุฌุฉ ุงู„ุญู„ ููŠ ุงู„ุฃูˆู„ู‰ ูˆููŠ ุงู„ุชุงู†ูŠุฉ ูˆููŠ ุงู„ุชุงู„ุชุฉ ูŠุนู†ูŠ
567
00:41:56,530 --> 00:42:00,830
ุงู„ X ุงู„ู„ูŠ ุนู†ุฏ ู‡ุฐู‡ ุญู‚ู‚ุช ู‡ุฐู‡ ูˆุญู‚ู‚ุช ู‡ุฐู‡ ูˆุญู‚ู‚ุช ู‡ุฐู‡
568
00:42:00,830 --> 00:42:05,030
ู…ุนู†ุงุชู‡ ุงู„ X ุงู„ู„ูŠ ุทู„ุนุช ู‡ู†ุง ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุญู„
569
00:42:05,030 --> 00:42:10,610
ุงู„ู…ุชุทุงุจู‚ุงุช ูƒู„ู‡ุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ุชู„ุงุชุฉ ููŠ ู†ูุณ ุงู„ูˆู‚ุช ูŠุนู†ูŠ
570
00:42:10,610 --> 00:42:15,010
ุตุงุฑุช ุนู†ุฏ X ุจุชุณุงูˆูŠ 210 U ุฒูŠ 206 ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ุญู„ูˆู„
571
00:42:15,010 --> 00:42:19,100
ุญูŠุซ U is an integer ุงู„ุงู† ู‡ุงุฏู‰ ุจู†ู‚ุฏุฑ ู†ูƒุชุจู‡ุง ุนู„ู‰ ุตูˆุฑุฉ
572
00:42:19,100 --> 00:42:23,280
ุงูŠุด ุชุทุงุจู‚ุฉ ุงู„ู„ู‰ ู‡ู‰ ุงูŠุด ุฃุตู„ ุงู„ุชุทุงุจู‚ุฉ X ุชุทุงุจู‚ ุงู„ู€
573
00:42:23,280 --> 00:42:30,840
206 modulo 210 ุงูŠุด ุนุฑููƒ ู‡ุงูŠ X ู†ุงู‚ุต 206 ุงู„ู„ู‰ ู‡ูˆ 210
574
00:42:30,840 --> 00:42:39,320
ุจุชุฌุณู…ู‡ุง 210 ุจุชุฌุณู… X ู†ุงู‚ุต 26 ูŠุนู†ูŠ X ู†ุงู‚ุต 26 ุจุณุงูˆูŠุฉ
575
00:42:39,320 --> 00:42:43,540
210 ููŠ some number ุณู…ูŠู†ุง U ู‡ูˆ ูุนู„ุง ุตุงุฑุช ุนู†ุฏ X
576
00:42:43,540 --> 00:42:51,150
ุจุณุงูˆูŠ 210 U ุฒุงุฆุฏ 206 ุฅุฐุง ู‡ุฐู‡ x ุจุชุณุงูˆูŠ 210 u ุฒุงุฆุฏ
577
00:42:51,150 --> 00:42:56,510
206 ู‡ูŠ ู†ูุณ ุงู„ุชุนุจูŠุฑ ุงู„ู„ูŠ ุจู†ู‚ูˆู„ู‡ x ุชุทุงุจู‚ ุงู„ 206
578
00:42:56,510 --> 00:43:03,440
modulo 210 ู„ูŠุด ู„ุฅู† ุฒูŠ ู…ุง ู‚ู„ุช X ุชุทุงุจู‚ ุงู„ู€ 206 ู…ุฏู‡
579
00:43:03,440 --> 00:43:09,900
210 ู…ุนู†ุงุชู‡ 210 ุชู‚ุณู… ุงู„ X ู†ุงู‚ุต 206 ูˆุฒูŠ ู…ุง ุนู…ู„ู†ุง
580
00:43:09,900 --> 00:43:19,340
ุจุณูŠุฑ X ู†ุงู‚ุต 206 ุชุณุงูˆูŠ 210 ููŠ U ุงู„ุชูŠ ุชุณุงูˆูŠ 210 ููŠ U
581
00:43:19,340 --> 00:43:25,730
ุฒุงุฆุฏ 206 ุฅุฐุง ู‡ุฐู‡ ู‡ูŠ ู‡ุฐุง ุงู„ุชุนุจูŠุฑ ูˆู‡ุฐุง ู…ุนู†ุงุชู‡ ุฃู†ู‡
582
00:43:25,730 --> 00:43:29,830
ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฃุฑู‚ุงู… ู…ุงุฆุชูŠู† ูˆุณุชุฉ ูˆุจุนุฏูŠู† ุถูŠู ูƒู…ุงู† ู…ุงุฆุชูŠู†
583
00:43:29,830 --> 00:43:33,110
ูˆุนุดุฑุฉ ุจูŠุตูŠุฑ ุฃุฑุจุนู…ุงุฆุฉ ูˆุณุช ุนุดุฑ ูˆุถูŠู ูƒู…ุงู† ู…ุงุฆุชูŠู† ูˆุนุดุฑุฉ
584
00:43:33,110 --> 00:43:37,150
ุจูŠุตูŠุฑ ูƒุฏู‡ ุจูŠุตูŠุฑ ูƒุฏู‡ ูƒู„ู‡ูŠู† ุญู„ูˆู„ ู…ุดุชุฑูƒุฉ ู„ู‡ุฐู‡ ุงู„ุชุทุงุจู‚
585
00:43:37,150 --> 00:43:41,290
ูˆู‡ุฐุง ุญู„ ุงู„ู„ูŠ ูƒู„ู‡ูŠู† ูˆู„ูˆ ู„ุงุญุธุช ุญุชุฉ ุชุฌูŠ ุงู„ู…ุงุฆุชูŠู†
586
00:43:41,290 --> 00:43:47,070
ูˆุนุดุฑุฉ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุณุชุฉ ููŠ ุฎู…ุณุฉ ููŠ ุณุจุนุฉ ุณุชุฉ ููŠ ุฎู…ุณุฉ
587
00:43:47,070 --> 00:43:50,490
ููŠ ุชู„ุงุชูŠู† ูˆ ุชู„ุงุชุฉ ููŠ ุณุจุนุฉ ููŠ ู…ุชูŠู† ูˆ ุนุดุฑุฉ ุฅุฐุง ุตุงุฑ
588
00:43:50,490 --> 00:43:54,350
ุนู†ุฏู‡ X ูˆุทุงุจู‚ ู…ุชูŠู† ูˆ ุณุชุฉ ู…ุฏู„ู‡ ู…ุชูŠู† ูˆ ุนุดุฑุฉ ูˆ ู‡ูŠูƒ
589
00:43:54,350 --> 00:43:58,010
ุจูŠูƒูˆู† ุงุญู†ุง ุญู„ู„ู†ุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ system of linear
590
00:43:58,010 --> 00:44:02,410
equations ุจูˆุงุณุทุฉ ุญุงุฌุฉ ุงุณู… ุงู„ back substitution ูˆ
591
00:44:02,410 --> 00:44:07,670
ู‡ุฐุง ู‡ูˆ ุงู„ homework ุงู„ู„ูŠ ู…ุทู„ูˆุจ ู…ู†ูƒู… ุญู„ ุงู„ุณุคุงู„ ุงู„ุฃูˆู„
592
00:44:07,670 --> 00:44:11,150
ูˆ ุงู„ุชุงู†ูŠ ูˆ ุงู„ุชุงู„ุช ุจุณู„ุงู…ูˆู†ูŠู‡ ูˆ ุฅู„ู‰ ู„ู‚ุงุก ุขุฎุฑ ุงู„ุณู„ุงู…
593
00:44:11,150 --> 00:44:12,790
ุนู„ูŠูƒู… ูˆ ุฑุญู…ุฉ ุงู„ู„ู‡ ูˆุจุฑูƒุงุชู‡