abdullah's picture
Add files using upload-large-folder tool
db9b795 verified
raw
history blame
41.8 kB
1
00:00:19,490 --> 00:00:24,690
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ููŠ ุญุฏูŠุซู†ุง ุงู„ุณุงุจู‚ ููŠ ุงู„
2
00:00:24,690 --> 00:00:28,850
sections ุงู„ู…ุงุถูŠ ู…ู† ุฎู…ุณุฉ ูˆุงุญุฏ ู„ุบุงูŠุฉ ุฎู…ุณุฉ ุฎู…ุณุฉ ูƒู†ุง
3
00:00:28,850 --> 00:00:33,130
ุจู†ุชูƒู„ู… ุนู„ู‰ ุงู„ homogenous
4
00:00:33,130 --> 00:00:38,000
differential equationููŠ ุฎู…ุณุฉ ุณุชุฉ ุงุนุทูŠู†ุง ู…ู‚ุฏู…ุฉ
5
00:00:38,000 --> 00:00:41,860
ุจุณูŠุทุฉ ุงู†ู‡ ุงู†ุง ู„ูˆ ุจุฏู‡ ุงุฌูŠุจ ุญู„ ุงู„ non homogeneous
6
00:00:41,860 --> 00:00:46,540
equation star ู‡ุฐุง ุจุฏู‡ ุงู‚ุณู… ุงู„ู…ุณุฃู„ุฉ ุงู„ู‰ ุฌุฒุฆูŠู† ุงู„
7
00:00:46,540 --> 00:00:49,540
homogeneous ูˆ ุงู„ non homogeneous ุงู„ homogeneous
8
00:00:49,540 --> 00:00:53,320
ุจุญู„ู‡ุง ุฒู‰ ู…ุง ูƒู†ุช ุญู„ ููŠ ุงู„ sections ุงู„ู…ุงุถูŠุฉ ูˆ ุจุฏู‡
9
00:00:53,320 --> 00:00:57,340
ุงุณู…ูŠู‡ ุงู„ complementary solution ุงู„ุญู„ ุงู„ู…ุชู…ุฉ ูˆุฏูŠู„ู‡
10
00:00:57,340 --> 00:01:01,840
ุฑู…ุฒ YC ุจุนุฏ ู‡ูŠูƒู‡ูˆ ูŠู‚ูˆู„ ู„ูˆ ุนู†ุฏูŠ particular solution
11
00:01:01,840 --> 00:01:07,400
ุญู„ ุฎุงุต ู„ู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ a star ุจุงุฌู…ุน ุงู„ุญุงู„ูŠู† ุชุจุน ุงู„
12
00:01:07,400 --> 00:01:10,400
homogenous ูˆุงู„ non homogenous ุจูŠุนุทูŠู†ูŠ ุญู„ ู…ุญุชุฑู…
13
00:01:10,400 --> 00:01:14,640
ู„ู…ูŠู† ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ู‡ูŠ ุฑู‚ู… a star ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู„ูŠ
14
00:01:14,640 --> 00:01:20,860
ู‚ู„ู†ุงู‡ุง ููŠ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉุงู„ุงู† ุจุฏู‰ ุงู†ุชู‚ู„ ุงู„ู‰ ู‡ุฐุง ุงู„
15
00:01:20,860 --> 00:01:24,540
section ูˆู‡ูˆ ุทุฑูŠู‚ุฉ ุงู„ undetermined coefficients
16
00:01:24,540 --> 00:01:28,400
ุงู„ู…ุนุงุฏู„ุงุช ุงู„ู„ู‰ ู…ู† ู‡ุฐุง ุงู„ู‚ุจูŠู„ ูŠุงุจุงู†ุงุช ุงู†ู‡ุง ุซู„ุงุซ ุทุฑู‚
17
00:01:28,400 --> 00:01:32,240
ู„ู„ุญู„ ุงู„ุทุฑูŠู‚ุฉ ุงู„ุฃูˆู„ู‰ ุงู„ undetermined coefficients
18
00:01:32,240 --> 00:01:36,940
ุงู„ุทุฑูŠู‚ุฉ ุงู„ุซุงู†ูŠุฉ ุงู„ variation of parameters ุงู„ุทุฑูŠู‚ุฉ
19
00:01:36,940 --> 00:01:40,400
ุงู„ุซุงู„ุซุฉ ุงู„ reduction of orders ูˆุงู„ุชู„ุช ุทุฑู‚ ุณู†ุงุฎุฏู‡ู…
20
00:01:40,400 --> 00:01:44,040
ููŠ ู‡ุฐุง ุงู„ section ูˆ ุงู„ sectionุงู„ุฐูŠ ูŠู„ูŠู‡ ู„ู‡ ุฎู…ุณุฉ
21
00:01:44,040 --> 00:01:48,780
ุชู…ุงู†ูŠุฉ ุงู† ุดุงุก ุงู„ู„ู‡ ุชุจุงุฑูƒ ูˆุชุนุงู„ู‰ ุงู„ูŠูˆู… ูู‚ุท ู‡ู†ุงุฎุฏ ุงู„
22
00:01:48,780 --> 00:01:51,760
undetermined coefficients ูƒู„ ุงู„ู…ุนู„ูˆู…ุงุช ุงู„ู†ุธุฑูŠุฉ
23
00:01:51,760 --> 00:01:54,200
ุงู„ู„ูŠ ุจู†ูŠู‡ุง ู…ู† ู‡ุฐุง ุงู„ section ู‡ูŠ ู‚ุฏุงู…ูƒ ุนู„ู‰ ุงู„ู„ูˆุญ
24
00:01:54,200 --> 00:01:59,440
ูˆู„ู… ูŠุจู‚ู‰ ุงู„ุง ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ุฃู…ุซู„ุฉ ุทูŠุจ ู†ูŠุฌูŠ ู„ู„ุทุฑูŠู‚ุฉ
25
00:01:59,440 --> 00:02:02,780
ู‡ุฐู‡ ุจูŠู‚ูˆู„ูŠ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃุตู„ูŠุฉ ุงู„ู„ูŠ ู‡ูŠ non
26
00:02:02,780 --> 00:02:07,600
homogeneous ุงู„ู…ุนุงู…ู„ุงุช ุฏูˆู„ ูŠุง ุจู†ุงุช ูƒู„ู‡ู… ุซูˆุงุจุช ุชู…ุงู…ุŸ
27
00:02:07,710 --> 00:02:12,210
ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ุณุฃู‚ูˆู… ุจุชู‚ุณูŠู…ู‡ุง ู„ู‡ู…ูˆุฌูŠู†ูŠุงุณ ูˆู†ูˆู†
28
00:02:12,210 --> 00:02:15,830
ู‡ู…ูˆุฌูŠู†ูŠุงุณ ุณุฃู‚ูˆู… ุจุชู‚ุณูŠู… ุงู„ู‡ู…ูˆุฌูŠู†ูŠุงุณ ุจุงู„ุฃูˆู„ ุงู„ู„ูŠ ู‡ูŠ
29
00:02:15,830 --> 00:02:20,510
ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฏู‰ ุจุฏูˆู† f of x ู„ูˆ ูƒุงู†ุช ุชุณุงูˆูŠ
30
00:02:20,510 --> 00:02:24,750
ุฒูŠุฑูˆ ูŠุจู‚ู‰ ุงู„ุญู„ ุชุจุนู‡ุง ู‡ูŠูƒูˆู† ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ู„ูŠ ุฃู†ู†ุง ูƒู†ุง
31
00:02:24,750 --> 00:02:28,770
ุจู†ุทู„ุนู‡ููŠ ุงู„ sections ุงู„ู…ุงุถูŠุฉ ุณูˆุงุก ูƒุงู† ุงู„ complex
32
00:02:28,770 --> 00:02:34,130
roots or repeated roots ุงู„ roots are all different
33
00:02:34,130 --> 00:02:37,090
ูŠุจู‚ู‰ ุจุงู„ุทุฑู‚ ุงู„ุชู„ุงุชุฉ ุงู„ุณุงุจู‚ุฉ ุงู„ู„ูŠ ูƒู†ุง ุจูŠุนู…ู„ู‡ุง
34
00:02:37,090 --> 00:02:41,630
ูˆู‚ู„ุนู†ุง ู‡ุฐุง ุงู„ุญู„ ุชู…ุงู…ุŸ ุงู„ุขู† ุจุฏุฃ ุงูุชุฑุถ ุงู† ู‡ุฐุง ุงู„ุญู„
35
00:02:41,630 --> 00:02:45,630
ู‡ูˆ ู„ู…ูŠู„ุง ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ู†ูุฑุถ Y ุชุณุงูˆูŠ ูŠุตุฑ X ูˆู†ุฌูŠุจ ุงู„
36
00:02:45,630 --> 00:02:50,050
characteristic ูƒูˆุงุดูŠ ูˆู†ุฐู‡ุจ ู„ู„ุญู„ ู‡ู†ุง ูˆู†ุฌูŠุจู‡ุง ุฎู„ุตู†ุง
37
00:02:50,050 --> 00:02:54,530
ุญู„ ุงู„ homogeneous ุจุฏุงุฌูŠ ู„ู„ุญู„ ุงู„ุฎุงุต ุชุจุน ุงู„ non
38
00:02:54,530 --> 00:02:57,670
homogeneous ุงู„ู„ูŠ ุงู†ู‡ุง ุฏูŠ ูุจุงุฌูŠ ุจู‚ูˆู„ we use the
39
00:02:57,670 --> 00:03:01,030
method of undetermined coefficients ุจุฏู†ุง ู†ุณุชุฎุฏู…
40
00:03:01,030 --> 00:03:05,870
ุทุฑูŠู‚ุฉ ุงู„ู…ุนุงู…ู„ุงุช ุงู„ู…ุฌู‡ูˆู„ุฉ ูˆุงู„ุญูŠู† ู‡ู†ู‚ูˆู„ูƒ ู„ุณู‡ ู…ู†ู‡ุง
41
00:03:05,870 --> 00:03:12,140
ู…ุนุงุฏู„ุงุช ู…ุฌู‡ูˆู„ุฉุนู† ุทุฑูŠู‚ ุงู„ุจุญุซ ุนู† ุญู„ ู„ุฅูŠุฌุงุฏ
42
00:03:12,140 --> 00:03:16,420
ุญู„ ุฎุงุต ู„ู„ู†ู‡ูˆู…ูˆุฌูŠู†ูŠุณ ุงู„ู€ differential equation ู…ู†
43
00:03:16,420 --> 00:03:20,540
ุงู„ู€ start ุงู„ู„ูŠ ููˆู‚ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ non homogenous ุงุญู†ุง
44
00:03:20,540 --> 00:03:24,100
ู‡ุฐุง ุฌูŠุจู†ุง ู„ู‡ ุงู„ homogenous ุจุฏู†ุง ุงู„ non homogenous
45
00:03:24,100 --> 00:03:29,560
ูŠุนุทูŠู‡ ุฑู…ุฒ YPูƒูŠู ุจู†ุฌูŠุจู‡ุŸ ุจู†ุณุชุฎุฏู… ุทุฑูŠู‚ุฉ ุงู„ู€
46
00:03:29,560 --> 00:03:33,060
Undetermined coefficients ุฅุฐุง ุชุญู‚ู‚ ููŠ ุงู„ู…ุนุงุฏู„ุฉ
47
00:03:33,060 --> 00:03:38,040
ุฃู…ุฑุงู† ู…ุง ู‡ู… ุงู„ุฃู…ุฑุงู† ู‡ุฐู‡ุŸ ุงู„ุฃู…ุฑ ุงู„ุฃูˆู„ ุฐูƒุฑู†ุงู‡ ุฅู†
48
00:03:38,040 --> 00:03:43,480
ุงู„ู…ุนุงู…ู„ุงุช ู‡ุฐูˆู„ ูƒู„ู‡ู… ุซูˆุงุจุชุงู„ุฃู…ุฑ ุงู„ุซุงู†ูŠ ูŠุฌุจ ุฃู† ูŠูƒูˆู†
49
00:03:43,480 --> 00:03:49,420
ุงู„ f of x ุนู„ู‰ ุดูƒู„ ู…ุนูŠู† ู…ุงู‡ูˆ ู‡ุฐุง ุงู„ุดูƒู„ ุงู„ู…ุนูŠู† ุงู„ู„ูŠ
50
00:03:49,420 --> 00:03:53,700
ู„ูˆ ุชุญู‚ู‚ ููŠ ุงู„ f of x ุจู‚ุฏุฑ ุงุณุชุฎุฏู… ุงู„ undetermined
51
00:03:53,700 --> 00:04:00,550
coefficients ุฏูˆู† ุบูŠุฑู‡ุง ุจู‚ูˆู„ ุจุณูŠุทุฉ ุฌุฏุงู„ูˆ ุฌูŠุช ุนู„ู‰
52
00:04:00,550 --> 00:04:05,690
ุงู„ููˆููŠูƒุณ ู„ุงุฌูŠุชู‡ุง polynomial ุจุฏูŠ ุงูƒุชุจ ุดูƒู„ ุงู„
53
00:04:05,690 --> 00:04:09,690
particular solution ุนู„ู‰ polynomial ุฒูŠู‡ุง ู…ู† ู†ูุณ
54
00:04:09,690 --> 00:04:15,050
ุงู„ุฏุฑุฌุฉ ุจุณ ุงู„ู…ุนุงู…ู„ุงุช ู…ุด ู‡ู… ูŠุจู‚ู‰ ู‡ุฏูˆู„ ู‡ู… ุงู„
55
00:04:15,050 --> 00:04:19,450
undetermined coefficients ุชุจุนุช ุทุฑูŠู‚ุชู†ุง ู‡ุฐู‡ ู…ุถุฑูˆุจุฉ
56
00:04:19,450 --> 00:04:23,830
ูƒู„ู‡ุงูู‰ x to the power s ู…ูŠู† ุงู„ x to the power s
57
00:04:23,830 --> 00:04:29,250
ู‡ุฐุง ู…ุง ุณู†ุฌูŠุจ ุนู„ูŠู‡ ุจุนุฏ ู‚ู„ูŠู„ ูŠุจู‚ู‰ ุฎู„ู‘ูŠูƒู… ุตุญูŠู† ู…ุนุงู†ุง
58
00:04:29,250 --> 00:04:34,890
ู„ุฃู† ู‡ุฐุง very important ู…ูŠู† ู‡ูŠ ุงู„ x ุฃุณ s ู‡ุฐุง very
59
00:04:34,890 --> 00:04:41,680
important ูˆู‡ูŠ ุนู…ูˆุฏ ููŠ ู‚ุฑูŠู ุงู„ุญู„ ูˆุงู„ุฅุฌุงุจุฉู„ูˆ ูƒุงู†ุช ุงู„
60
00:04:41,680 --> 00:04:45,460
F of X ู‡ุฐู‡ ุนู„ู‰ ุดูƒู„ polynomial ููŠ exponential
61
00:04:45,460 --> 00:04:49,620
polynomial ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ู†ูˆู†ูŠุฉ ููŠ exponential ุฅุฐุง
62
00:04:49,620 --> 00:04:53,620
ุดูƒู„ ุงู„ุญู„ ุงู„ุฎุงุต ุจุฏูŠ ูŠูƒูˆู† X to the power S
63
00:04:53,620 --> 00:04:57,460
polynomial ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ู†ูˆู†ูŠุฉ ุฒูŠ ุงู„ polynomial ู‡ุฐู‡
64
00:04:57,460 --> 00:05:02,380
ุจุงู„ุถุจุท ููŠ ู†ูุณ ุงู„ exponential ุงู„ู„ูŠ ุนู†ุฏูŠ ุทูŠุจ ุงู„ุญุงู„ุฉ
65
00:05:02,380 --> 00:05:07,300
ุงู„ุชุงู„ุชุฉ ูˆ ุงู„ุฃุฎูŠุฑุฉ ู„ูˆ ูƒุงู†ุช ุงู„ F of X ุงู„ู„ูŠ ุนู†ุฏูŠ
66
00:05:07,900 --> 00:05:15,700
ุจูˆู„ูˆู†ูˆู…ูŠุงู„ ููŠ exponential ููŠ cosine ุจูŠ ุฅูƒุณ ุฃูˆ sin
67
00:05:15,700 --> 00:05:24,620
ุจูŠ ุฅูƒุณ ุฃูˆ ู…ุฌู…ูˆุนู‡ู…ุง ุฃูˆ ุงู„ูุฑู‚ ููŠู…ุง ุจูŠู†ู‡ู…ุง ูŠุจู‚ู‰ ุนู†ุฏูŠ
68
00:05:24,620 --> 00:05:30,930
ุจูˆู„ูˆู†ูˆู…ูŠุงู„ ููŠ exponential ููŠ ุงู„ cosineุจูƒุณ ุฃูˆ ุงู„
69
00:05:30,930 --> 00:05:35,510
polynomial ููŠ ุงู„ exponential ููŠ ุงู„ sign ุจูƒุณ ุฃูˆ ุงู„
70
00:05:35,510 --> 00:05:39,290
polynomial ููŠ ุงู„ exponential ููŠ ุงู„ cosine ุจูƒุณ ุฒูŠ
71
00:05:39,290 --> 00:05:45,010
ุงู„ sign ุจูƒุณ ุงู„ุญุงู„ุงุช ู‡ุฏูˆู„ ูƒู„ู‡ู… ุฐูƒุฑุชู‡ู… ู„ู‡ู… ู†ูุณ ุงู„
72
00:05:45,010 --> 00:05:48,390
particular solution ุดูˆ ุงู„ particular solution ุจุญุท
73
00:05:48,390 --> 00:05:52,260
ุงู„ x to the power s ูƒู…ุง ููŠ ุงู„ุญุงู„ุชูŠู† ุงู„ุณุงุจู‚ุชูŠู†ุจุนุฏ
74
00:05:52,260 --> 00:05:55,740
ุฐู„ูƒ ุจูƒุชุจ polynomial ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ู†ูˆู†ูŠุฉ ููŠ cosine
75
00:05:55,740 --> 00:06:00,620
ุจูƒุณ ุฒุงุฆุฏ polynomial ุฃุฎุฑู‰ ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ู†ูˆู†ูŠุฉ ููŠ sin
76
00:06:00,620 --> 00:06:04,340
ุจูƒุณ ูˆูƒู„ู‡ ุจุถุฑุจู‡ ููŠ ู…ูŠู†ุŸ ููŠ ุงู„ exponential ุงู„ู„ูŠ
77
00:06:04,340 --> 00:06:10,080
ุนู†ุฏู†ุง ุฎู„ุตู†ุงุŸ ุฎู„ุตู†ุง ูŠุจู‚ู‰ ู…ู† ุญุฏ ู…ุง ุฌุงุญู„ ุจุฏู‡ ุฃุทู„ุน ุนู„ู‰
78
00:06:10,080 --> 00:06:13,840
ุงู„ุดูƒู„ ู„ูู‡ ููŠูƒ ู…ุด ู‡ุงู† ุฃุดูˆู ู‡ู„ ุจู†ูุนู„ ู‡ุงู„ polynomial
79
00:06:13,840 --> 00:06:18,800
ู‡ู„ ุจู†ูุนู„ ู‡ุงู„ undetermined coefficients ุฃู… ู„ุง ุชู…ุงู…
80
00:06:18,800 --> 00:06:24,010
ุจุนุฏ ู…ุง ุนุฑูุช ุฃู†ู‡ ู…ุนุงู…ู„ุงุช ุซูˆุงุจุชุจุงุฌูŠ ุจุชุทู„ุนู‡ุฐุง ุงู„ู€ F
81
00:06:24,010 --> 00:06:28,030
of X polynomial ูŠุจู‚ู‰ ุดูƒู„ ุงู„ particular solution
82
00:06:28,030 --> 00:06:32,070
polynomial ููŠ X to the power S ู…ู† ู†ูุณ ุงู„ุฏุฑุฌุฉ ุฅุฐุง ูˆ
83
00:06:32,070 --> 00:06:34,610
ุงู„ู„ู‡ polynomial ููŠ exponential ูŠุจู‚ู‰ ูƒู…ุงู†
84
00:06:34,610 --> 00:06:38,150
polynomial ููŠ exponential ููŠ X to the power S ุฅุฐุง
85
00:06:38,150 --> 00:06:41,190
polynomial ููŠ exponential ููŠ ุตูŠู† ุฃูˆ ูƒูˆุณูŠู† ุฃูˆ
86
00:06:41,190 --> 00:06:44,730
ู…ุฌู…ูˆุญู…ุฉ ุฃูˆ ุงู„ูุฑู‚ ููŠู…ุง ุจูŠู†ู‡ู…ุง ูŠุจู‚ู‰ X to the power S
87
00:06:44,730 --> 00:06:47,950
polynomial ููŠ ุงู„ูƒูˆุณูŠู† ุฒุงุฆุฏ polynomial ู…ู† ู†ูุณ
88
00:06:47,950 --> 00:06:50,990
ุงู„ุฏุฑุฌุฉ ููŠ ุงู„ุตูŠู† ูˆูƒู„ู‡ ู…ุถู…ูˆู† ููŠ ู…ูŠู†ุŸ ููŠ ุงู„
89
00:06:50,990 --> 00:06:54,980
exponentialู†ุฌูŠ ู„ู‚ุตุฉ ุงู„ X to the powers ุงู„ุดูŠ ู‡ุฐู‡
90
00:06:54,980 --> 00:07:00,360
ุดุงูŠููŠู† ู‡ุฐุง ุงู„ุญู„ ูŠุง ุจู†ุงุช ุงู„ complementary solution
91
00:07:00,360 --> 00:07:05,670
ู‡ุฐุงู„ูˆ ุญู„ ุงู„ homogenous ู…ู† ุญุฏ ู…ุง ุงุชุทู„ุนู‡ ุจุชุญุท ู„ูŠู‡ ููŠ
92
00:07:05,670 --> 00:07:11,330
ุจุฑูˆุงุฒ ูˆ ู‡ู†ุฌูŠ ู†ุฑุฌุนู„ู‡ ุงูŠุด ู†ุฌูŠ ู†ุฑุฌุนู„ู‡ ุงู†ุง ูƒุชุจุช ุดูƒู„ ุงู„
93
00:07:11,330 --> 00:07:15,570
particular solution ูˆ ุบุทูŠุช ู‡ู†ุง ูƒุฃู†ู‡ุง ู…ุด ู…ูˆุฌูˆุฏุฉ ูˆ
94
00:07:15,570 --> 00:07:22,210
ุฌูŠุช ุทู„ุนุช ููŠ ุงู„ุญู„ ู‡ู„ ุงูŠ ุฌุฒุก ู‡ู†ุง ูŠุดุจู‡ ุงูŠ ุฌุฒุก ู‡ู†ุง ูˆู„ุง
95
00:07:22,210 --> 00:07:28,150
ู„ุฃ ุงุฐุง ููŠุด ุชุดุงุจู‡ ูŠุจู‚ู‰ S ุจ Zero ูŠุจู‚ู‰ ุจุตูŠุฑ X of Zero
96
00:07:28,150 --> 00:07:32,550
ุจู‚ุฏุงุดูŠุจู‚ู‰ ุงู„ู„ูŠ ูƒุชุจุชู‡ ู‡ูˆ ูˆ ุจุฏูˆู† X to the power S
97
00:07:32,550 --> 00:07:40,970
ุฅุฐุง ููŠ term ูˆุงุญุฏ ูŠุดุงุจู‡ ุฃูŠ term ู…ู† ู‡ุฏูˆู„ ุจุญุท S ุจูˆุงุญุฏ
98
00:07:40,970 --> 00:07:47,230
ุจุตูŠุฑ ู‡ุฐู‡ ู…ุถุฑูˆุจุฉ ูƒู„ู‡ุง ููŠ X ุจุงุฌูŠ ุจุทู„ุน ุจุนุฏ ู‡ูŠูƒ ุงุฎุชู„ู
99
00:07:47,230 --> 00:07:52,820
ูƒู„ term ุนู† ุงู„ term ู‡ู†ุง ูŠุจู‚ู‰ ุดุบู„ูŠ ุชู…ุงู… 100% ุฎู„ุตุชุฅุฐุง
100
00:07:52,820 --> 00:07:58,060
ู„ุงุฌูŠุช ู„ุง ูŠุฒุงู„ ุฃูŠ term ู…ู† ุงู„ particular solution
101
00:07:58,060 --> 00:08:03,800
ูŠุดุจู‡ ุฃูŠ term ู…ู† ุงู„ complementary solution ุจุญุท S ุจ
102
00:08:03,800 --> 00:08:08,540
2 ูŠุนู†ูŠ ุฅุฐุง ูˆุงุญุฏ ู…ุงุฌุจุชุด ุงู„ู†ุชูŠุฌุฉ ุจุญุท ุจ 2 ุชู…ุงู…ุŸ ูˆ
103
00:08:08,540 --> 00:08:13,460
ุจุงุฌูŠ ุจุถุฑุจ ููŠู‡ุง ุจุตูŠุฑ ุนู†ุฏูŠ X ุชุฑุจูŠุน ู…ุถุฑุจุฉ ููŠ ุงู„ุฌุซุฉ ูˆ
104
00:08:13,460 --> 00:08:17,730
X ุชุฑุจูŠุน ููŠ ุงู„ุฌุซุฉ ูˆ X ุชุฑุจูŠุน ููŠ ุงู„ุฌุซุฉ ูˆ ุจุงุฌูŠ ุจุทู„ุนู‡ู„
105
00:08:17,730 --> 00:08:22,170
ุฃูŠ term ู…ู† ู‡ู†ุง ูŠุดุจู‡ ุฃูŠ term ุฅุฐุง ู…ุงููŠุด ุดุจู‡ ุฎู„ุงุต
106
00:08:22,170 --> 00:08:27,450
ูŠุจู‚ู‰ ุงู„ S ุจู‚ุฏุงุดุŸ ุจุงุชู†ูŠู†ุŒ ููŠ ุดุจู‡ ุจุญุท ุงู„ S ุจุชู„ุงุชุฉ ูˆ
107
00:08:27,450 --> 00:08:32,130
ู‡ูƒุฐุง ูˆุงุถุญุฉ ุงู„ุตูˆุฑุฉ ุงู„ู„ูŠ ู‡ุงู†ุŸ ูŠุจู‚ุงุด ุจู‚ูˆู„ here ุงู„ S
108
00:08:32,130 --> 00:08:35,510
ู…ู…ูƒู† ุชุงุฎุฏ zero ูˆ ู…ู…ูƒู† ูˆุงุญุฏ ูˆ ู…ู…ูƒู† ุงุชู†ูŠู† ูˆ ู…ู…ูƒู†
109
00:08:35,510 --> 00:08:38,550
ุชู„ุงุชุฉ ูˆ ู…ู…ูƒู† ุฅู„ู‰ ู…ุง ุดุงุก ุงู„ู„ู‡ ุญุตู„ ุทุจูŠุนุฉ ุงู„ู…ุนุงุฏู„ุฉ
110
00:08:38,940 --> 00:08:45,180
ุจุญูŠุซ no term of the solution ip ูˆู„ูŠู‡ ุฌุฒุก ููŠ ุงู„ุญู„
111
00:08:45,180 --> 00:08:51,040
yp ุงู„ู„ูŠ ุทู„ุนู†ุง ู‡ุฐุง is a term in the solution yc ู‡ูˆ
112
00:08:51,040 --> 00:08:55,240
ุนุจุงุฑุฉ ุนู† term ู…ูˆุฌูˆุฏ ู‡ู†ุง ููŠุด ูˆุจุญูŠุซ ู…ุงูŠูƒูˆู†ุด ุนู†ุฏูŠ
113
00:08:55,240 --> 00:09:01,040
term ุจุงู„ู…ุนู†ู‰ ูˆุจุงู„ุชุงู„ูŠ ู„ู…ุง ุจุฃุฌูŠุฎ ุจุฎู„ุตูƒ ุจุฌู…ุน ุงู„ yp
114
00:09:01,040 --> 00:09:05,580
ู…ุน ุงู„ yc ุจูŠุนุทูŠู†ูŠ ุงู„ general solution ุชุจุน ุงู„ู…ุนุงุฏู„ุฉ
115
00:09:05,580 --> 00:09:12,050
starุฃุธู† ูˆุงุถุญุฉ ุงู„ุตูˆุฑุฉุŸ ู‡ุง ุจุฏู†ุง ู†ุทุจู‚ู‡ุง ุนู„ู‰ ุฃุฑุถ
116
00:09:12,050 --> 00:09:16,970
ุงู„ูˆุงู‚ุน ูŠุจู‚ู‰ ุฌุงุจ ุงู„ู„ุงุจุฏุฉ ูŠุจุฏุฃ ุชุทู„ุน ู„ุดุบู„ ุชูŠู… ู‡ู„
117
00:09:16,970 --> 00:09:22,110
ุงู„ู…ุนุงุฏู„ุฉ ู…ุนุงู…ู„ุชู‡ุง ุซูˆุงุจุช ูˆู„ุง ู„ุฃุŸ ุงุชู†ูŠู† ู‡ู„ ุงู„ F of X
118
00:09:22,110 --> 00:09:25,870
ุนู„ู‰ ุฃูŠ ุดูƒู„ ู…ู† ุงู„ุฃุดูƒุงู„ ุงู„ู„ูŠ ุนู†ุฏูŠ ู‡ุฐูˆู„ ูˆู„ุง ู„ุฃุŸ ุฅุฐุง
119
00:09:25,870 --> 00:09:29,210
ูˆุงู„ู„ู‡ ุชุญู‚ู‚ ุงู„ุดุฑุทุงู† automatic ุจุฑูˆุญ ุงู„ undetermined
120
00:09:29,210 --> 00:09:32,790
coefficients ู…ุง ุชุญู‚ู‚ ูŠุจู‚ู‰ ุฑูˆุญ ุฏูˆุฑ ุน ุงู„ variation
121
00:09:32,790 --> 00:09:35,690
of parameters ุฃูˆ ุงู„ reduction of order ุฃูˆ ู…ุง ุฅู„ู‰
122
00:09:35,690 --> 00:09:39,860
ุฐู„ูƒุจู†ุงุฎุฏ ุฃู…ุซู„ุฉ ุจู‚ูˆู„ ู‡ุงุชู„ ุงู„ general solution
123
00:09:39,860 --> 00:09:44,040
ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ู‚ุฏุงู…ูŠ ุจู‚ูˆู„ู‡ ูƒูˆูŠุณ ูŠุจู‚ู‰ ุฃู†ุง ุจุฏูŠ ุฃุจุฏุฃ
124
00:09:44,040 --> 00:09:47,860
ุจู…ูŠู† ุจุงู„ homogeneous differential equation ูŠุจู‚ู‰
125
00:09:47,860 --> 00:09:55,040
ุงู„ุญู„ ูƒุชุฑูŠ ุจุฏูŠ ุฃู‚ูˆู„ู‡ let Y ุชุณุงูˆูŠ E ุฃุต RX be a
126
00:09:55,040 --> 00:10:05,800
solution of the homogeneous differential equation
127
00:10:06,110 --> 00:10:12,970
Equation ู„ู„ู…ุนุงุฏู„ุฉ y double prime ุฒุงุฆุฏ ุชู„ุงุชุฉ y
128
00:10:12,970 --> 00:10:20,990
prime ุฒุงุฆุฏ ุงุชู†ูŠู† y ูŠุณุงูˆูŠ zero then
129
00:10:20,990 --> 00:10:25,710
the characteristic
130
00:10:27,280 --> 00:10:35,640
Equation is R ุชุฑุจูŠุน ุฒุงุฆุฏ ุชู„ุงุชุฉ R ุฒุงุฆุฏ ุงุชู†ูŠู† ูŠุณุงูˆูŠ
131
00:10:35,640 --> 00:10:41,900
ุฒูŠุฑูˆ ุจุฏูŠ ุงุญู„ ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ูŠุจู‚ู‰ ู‡ุฐู‡ R ุฒุงุฆุฏ ูˆุงุญุฏ ููŠ
132
00:10:41,900 --> 00:10:49,560
Rุฒุงุฆุฏ ุงุชู†ูŠู† ูŠุณุงูˆูŠ ุฒูŠุฑูˆ ูˆู…ู†ู‡ุง R1 ุชุณุงูˆูŠ ุณุงู„ุจ ูˆุงุญุฏ
133
00:10:49,560 --> 00:10:55,040
ูˆR2 ุชุณุงูˆูŠ ุณุงู„ุจ ุงุชู†ูŠู† ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุฃุตุจุญ ุงู„
134
00:10:55,040 --> 00:11:01,760
complementary solution YC ูŠุณุงูˆูŠ C ูˆุงุญุฏ ููŠ E ุฃุซู†ุงู‚
135
00:11:01,760 --> 00:11:09,040
X ุฒุงุฆุฏ C ุงุชู†ูŠู† E ุฃุซู†ุงู‚ ุงุชู†ูŠู† X ูˆุจุจุฑุฒู‡ ูˆุจุฑูˆุญู‡ ุจุฎู„ูŠู‡
136
00:11:09,560 --> 00:11:16,760
ุฎู„ุตู†ุง ุงู„ homogenous ุจุฏู†ุง ู†ุฑูˆุญ ู†ุฏูˆุฑ ุนู„ู‰ ุงู„
137
00:11:16,760 --> 00:11:21,000
particular solution ุชุจุน ุงู„ non homogenous
138
00:11:21,000 --> 00:11:25,940
differential equation ู…ุดุงู† ู‡ูŠูƒ ุจุฏุฑูˆุญ ุงูุญุต ุงู„ุดุฑุทูŠู†
139
00:11:25,940 --> 00:11:29,940
ุงู„ู„ูŠ ุนู†ุฏู†ุง ุจุฌูŠุจ ุงุทู„ุน ุนู„ู‰ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ุนู†ุฏู‰ ู‡ุฐู‡
140
00:11:31,200 --> 00:11:36,060
ูุงู„ุนูˆู„ูŠ ู‡ู†ุง ุงู„ู…ุนุงู…ู„ุงุช ูƒู„ู‡ู… ุซูˆุงุจุช ูŠุจู‚ู‰ ุงุชุญู‚ู‚ ุงู„ุดุฑุท
141
00:11:36,060 --> 00:11:40,940
ุงู„ุฃูˆู„ ู‡ู†ุง ุงู„ F of X ุณุชุฉ ูˆุชู„ุงุชูŠู† X ููŠ U6 ูŠุจู‚ู‰
142
00:11:40,940 --> 00:11:45,420
polynomial ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ู…ุถุฑูˆุจุฉ ููŠ ุงู„
143
00:11:45,420 --> 00:11:49,200
exponential ุงู„ู„ูŠ ู‡ูˆ ู…ู‡ู… ุงู„ุญุงู„ุฉ ุงู„ุชุงู†ูŠุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง
144
00:11:49,200 --> 00:11:58,800
ุงุฐุง ุจุงุฌูŠ ุจู‚ูˆู„ู‡ they particular solution
145
00:12:00,390 --> 00:12:11,590
of the differential equation is in the form ุนู„ู‰
146
00:12:11,590 --> 00:12:19,620
ุงู„ุดูƒู„ูŠ ุงู„ุชุงู„ูŠ yp ูŠุณูˆู‰ x to the power svุงู„ุงู† ุจุฏู‰
147
00:12:19,620 --> 00:12:22,680
ุงุฌูŠ ู„ู„ polynomial ุงู„ polynomial ุนู†ุฏู‰ ู…ู† ู…ูŠู†ุŸ ู…ู†
148
00:12:22,680 --> 00:12:30,100
ุงู„ุฏุฑุฌุฉ ุงู„ุงูˆู„ู‰ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ a node x ุฒุงุฆุฏ a1 ููŠ
149
00:12:30,100 --> 00:12:36,240
a ุฃูุณ ุณุงู„ูŠ ุจ 2x ู…ุธุจูˆุทุŸ ุณุงู„ูŠ ุจ 2x ุจุงู„ุดูƒู„ ุงู„ู„ู‰ ุนู†ุฏู†ุง
150
00:12:36,240 --> 00:12:43,360
ูˆ ุจุงุฌูŠ ุจู‚ูˆู„ ุงุณุชู†ู‰ ุดูˆูŠุฉ ุงู„ุงู† ุจุฏู‰ ุงุดูˆู ู‚ุฏุงุด ู‚ูŠู…ุฉ S
151
00:12:43,360 --> 00:12:48,560
ุชู…ุงู…ุŸ ู‡ุฏูˆู„ ู„ู…ุง ุบุทูŠ ู‡ุฐุง ู…ู† ู‡ู†ุง ูƒุงู… term ุจูŠูƒูˆู†ูˆุงุŸ
152
00:12:50,830 --> 00:12:59,390
ู‡ู„ a1 ููŠ eยฒx ู„ู‡ุง ุชุฑู… ุดุจู‡ ููŠ yc ูˆู„ุง ู„ุฃุŸ ูˆู‡ู„ aโปx ููŠ
153
00:12:59,390 --> 00:13:03,590
eยฒx ู„ู‡ุง ุชุฑู… ุดุจู‡ ููŠ yc ูˆู„ุง ู„ุฃุŸ
154
00:13:06,660 --> 00:13:13,920
ุฅูŠ ูˆุงู„ุณุงู„ุจ X ู‡ุฐู‡ ู…ููŠุด ุฒูŠู‡ุง ู‡ุฐูŠ C2E ูˆุงู„ุณุงู„ุจ 2X ูˆู‡ุฐู‡
155
00:13:13,920 --> 00:13:19,760
constant ููŠ E ูˆุงู„ุณุงู„ุจ 2X ู‡ุฐู‡ ู…ุน ู‡ุฐู‡ ู…ุงููŠุด ุชุดุงุจู‡
156
00:13:19,760 --> 00:13:25,020
ุชู…ุงู…ุŸ ุฅุฐุง ุงู„ุชุดุงุจู‡ constant ููŠ ู…ูŠู†ุŸ ููŠ E ูˆุงู„ุณุงู„ุจ 2X
157
00:13:25,020 --> 00:13:30,940
ุฅุฐุง ู…ู† ุดุฃู† ุฃุดูŠู„ ู‡ุฐุง ุงู„ุชุดุงุจู‡ ุจุญุท S ุจู‚ุฏุงุดู„ูˆ ุญุทูŠุช S
158
00:13:30,940 --> 00:13:36,160
ุจูˆุงุญุฏ ุจุตูŠุฑ
159
00:13:36,160 --> 00:13:39,880
ุนู†ุฏูŠ X ุชุฑุจูŠุน ู…ุงุนู†ุฏูŠุด X ุชุฑุจูŠุน ููŠ ุงู„ exponential
160
00:13:39,880 --> 00:13:46,580
ุจุตูŠุฑ ุนู†ุฏูŠ X ููŠ A1 ููŠ ุงู„ exponential ููŠู‡ ุฒูŠู‡ุง ูŠุจู‚ู‰
161
00:13:46,580 --> 00:13:52,040
ู…ุงุนู†ุฏูŠุด ุฅู„ุง S ุจู‚ุฏุงุด ูู‚ุท ู„ุง ุบูŠุฑ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡
162
00:13:52,040 --> 00:13:58,610
hereุงู„ู€ S ุชุณุงูˆูŠ ูˆุงุญุฏ ุงู„ู„ู‰ ุจุชุบู„ู‚ ูู‰ ู‡ุฐู‡ ุงู„ุจู†ุงุช
163
00:13:58,610 --> 00:14:03,310
ุจูŠูƒูˆู† ุถูŠุนุฉ ุงู„ู…ุณุฃู„ุฉ ู„ุฃู† ู‡ุฐุง ุนู…ูˆุฏ ูู‚ุฑูŠ ุนู†ุฏู‰ ูู‰
164
00:14:03,310 --> 00:14:10,470
ุงู„ู…ุณุฃู„ุฉ ุฅุฐุง ุจู†ุงุก ุนู„ูŠู‡ ุจุฏูŠ ูŠุตูŠุฑ ุงู„ Y P ูƒุชุงู„ูŠ X ูู‰ A
165
00:14:10,470 --> 00:14:17,440
ู†ูˆุฏ Xุฒุงุฆุฏ a1x ููŠ a ุฃุซู†ุงู‚ ุฃุซู†ูŠู† x ูŠุนู†ูŠ ูƒุฃู†ู‡ ุจุฏูŠ
166
00:14:17,440 --> 00:14:24,620
ูŠุตูŠุฑ a ู†ูˆุฏ x ุชุฑุจูŠุน ุฒุงุฆุฏ a1x ููŠ a ุฃุซู†ุงู‚ ุฃุซู†ูŠู† x
167
00:14:35,120 --> 00:14:44,100
ุงู†ุง ู…ุด ุณุงุฑู‚ ูˆุงุญุฏ ุงูƒุณ ุงู†ุง ู…ุด ุณุงุฑู‚ ูˆุงุญุฏ ุงูƒุณ ุงู†ุง ู…ุด
168
00:14:44,100 --> 00:14:50,480
ุณุงุฑู‚ ูˆุงุญุฏ ุงูƒุณ ุงู†ุง ู…ุด ุณุงุฑู‚ ูˆุงุญุฏ ุงูƒุณู‡ุฐู‡ ูŠุง ุจู†ุงุช ู‡ูŠ E
169
00:14:50,480 --> 00:14:56,780
of 6 ูˆู„ูŠุณ E ุณู„ุจูŠ 2 X ูŠุนู†ูŠ ุฃู†ุง ุจุชุทู„ุน ู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡
170
00:14:56,780 --> 00:15:01,960
ุทุจุนุง polynomial ููŠู‡ 6 ุฅุฐุง ุจู†ุงุก ุนู„ูŠ ูƒู„ ุงู„ูƒู„ุงู… ุงู„ู„ูŠ
171
00:15:01,960 --> 00:15:06,960
ู‚ู„ุชู‡ ู‡ุฐุง ู…ุงู„ู‡ ู…ุงู‡ูˆุด ุตุญ ูŠุจู‚ู‰ ู…ุงู‡ูˆ ุงู„ุตุญูŠุญ ุงู†ู‡ S
172
00:15:06,960 --> 00:15:12,200
ุจู‚ุฏุงุด ุจุฒูŠุฑู‡ ู„ุฅู† ู…ุงููŠุด E of 6 ุนู†ุฏูŠ ุจุงู„ู…ุฑุฉ ุทุจุนุง ูŠุจู‚ู‰
173
00:15:12,200 --> 00:15:18,390
ุจุงุฌูŠ ุจู‚ูˆู„ู‡ hereุงู„ู€ S ุชุณุงูˆูŠ 0 ูŠุจู‚ู‰ ุจู†ุงู†ุง ุนู„ูŠู‡ุง ุฃุตุจุญ
174
00:15:18,390 --> 00:15:27,850
YP ุจุฏูŠ ุณุงูˆูŠ A ู†ูˆุช X ุฒุงุฆุฏ A1 ููŠ ุงู„ู€ E ูˆ ุงู„ 6 ู‡ู„
175
00:15:27,850 --> 00:15:32,690
ุงุญู†ุง ุฌูŠุจู†ุง ุดูƒู„ ุงู„ particle ุงู„ุตูŠู†ูŠุดุŸู…ุฌู‡ูˆู„ูŠู† ุจุฏูŠ
176
00:15:32,690 --> 00:15:37,410
ุงุนุฑูู‡ู… ู‡ุฏูˆู„ ู‡ู… ุงู„ undetermined coefficients ุงูŠ ู†ูˆุฏ
177
00:15:37,410 --> 00:15:43,590
ูˆ ุงูŠ ูˆุงุญุฏ ุจุฏูŠ ุงุนุฑูู‡ู… ูƒูŠู ุจุณูŠุทุฉ ุฌุฏุง ุจุฏู†ุง ู†ุฑุฌุน ู†ุนูˆุถ
178
00:15:43,590 --> 00:15:48,090
ููŠ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃุตู„ูŠุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุชู…ุงู…ุŸ ู…ุนู†ุงุชู‡ ุจุฏูŠ
179
00:15:48,090 --> 00:15:55,730
ู„ุฒู…ู†ูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ YP' ูˆ YPW'ู‡ุฐู‡ ู…ุด ู‡ู†ูุถู„ู‡ุง ู…ุดุชู‚ุฉ
180
00:15:55,730 --> 00:16:02,490
ุญุงุตู„ ุถุฑุจ ุฏุงู„ุชูŠู† ูŠุจู‚ู‰ ู…ุดุชู‚ุฉ ุงู„ุฃูˆู„ู‰ ููŠ ุงู„ุซุงู†ูŠุฉ ุฒุงุฆุฏ
181
00:16:02,490 --> 00:16:07,070
a node x ุฒุงุฆุฏ a1 ู…ุดุชู‚ุฉ ุงู„ exponential ุจุงู„
182
00:16:07,070 --> 00:16:13,920
exponential itselfุจุฏู†ุง ุงู„ุงู† ypw prime ู‡ุฐูŠ ู…ุดุชู‚ุฉ
183
00:16:13,920 --> 00:16:19,100
ุชูƒูˆู† ุงุตู„ุง ุซุงุจุช ูˆ ุงู„ exponential ุจู†ูุณู‡ุง ู‡ุฐูŠ ุญุตู„ ุถุฑุจ
184
00:16:19,100 --> 00:16:26,120
ุฏุงู„ุชูŠู† ูŠุจู‚ู‰ ู…ุดุชู‚ุฉ ุงู„ุฃูˆู„ู‰ ููŠ ุงู„ุซุงู†ูŠุฉ ุฒุงุฆุฏ ุงู„ a node
185
00:16:26,120 --> 00:16:30,520
x ุฒุงุฆุฏ ุงู„ a1 ู…ุดุชู‚ุฉ ุงู„ exponential ุจุงู„ exponential
186
00:16:30,520 --> 00:16:39,030
itself ูŠุจู‚ู‰ ุตุงุฑุช ู‡ุฐูŠ ุงุชู†ูŠู† a node us xุฒุงุฆุฏ a
187
00:16:39,030 --> 00:16:48,010
naught x ุฒุงุฆุฏ ุงู„ a one ูƒู„ ู‡ุฐุง ู…ุถุฑูˆุจ ููŠ ุงู„ EOSX
188
00:16:48,010 --> 00:16:52,010
ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุงู„ุงู† ุจุฏูŠ ุงู…ุณูƒ ุงู„ู…ุนู„ูˆู…ุงุช ุงู„ู„ูŠ
189
00:16:52,010 --> 00:16:57,210
ุญุตู„ุช ุนู„ูŠู‡ุง ูˆุงุฑูˆุญ ุงุนูˆุถ ููŠ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃุตู„ูŠุฉ ู‡ุฐู‡ ู…ู†ู‡ุง
190
00:16:57,210 --> 00:17:02,290
ุงู„ู„ูŠ ุจุฏูŠ ุงุณู…ูŠู‡ุง star ูุจุฌูŠุจ ุงู‚ูˆู„ ู‡ู†ุง substitute
191
00:17:06,030 --> 00:17:14,510
N equation star we get ุงู„ุฃูˆู„ YW prime ูŠุจู‚ู‰ ุจุฏู‡ ู†ุฒู„
192
00:17:14,510 --> 00:17:24,850
ู‡ุฐูˆู„ ุฒูŠ ู…ุง ู‡ู…ุง ุงุชู†ูŠู† A node U6 ุฒุงุฆุฏ A1 X ุฒุงุฆุฏ A
193
00:17:24,850 --> 00:17:33,200
node X ุฒุงุฆุฏ ุงู„ A1 ูƒู„ู‡ ููŠ ุงู„ U6 ู‡ุฐุง ู…ู‡ู…ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€
194
00:17:33,200 --> 00:17:37,620
YW' ุจุฏูŠ ุชู„ุงุชุฉ ููŠ ุงู„ู€ Y' ูˆูŠู†ู‡ ุงู„ู€ Prime ู‡ุงูŠุง ุจุฏูŠ
195
00:17:37,620 --> 00:17:44,640
ุฃุถุฑุจู‡ุง ููŠ ุชู„ุงุชุฉ ูŠุจู‚ู‰ ุฒุงุฆุฏ ุชู„ุงุชุฉ A node EO6 ุฒุงุฆุฏ
196
00:17:44,640 --> 00:17:51,730
ุชู„ุงุชุฉ A node Xุฒุงุฆุฏ ุชู„ุงุชุฉ a one ููŠ ุงู„ a ูˆ ุงู„ six
197
00:17:51,730 --> 00:18:00,130
ุจุนุฏู‡ุง ุฒุงุฆุฏ ุงุชู†ูŠู† y ู‡ูŠ ุงู„ y ูŠุจู‚ู‰ ุฒุงุฆุฏ ุงุชู†ูŠู† a node
198
00:18:00,130 --> 00:18:06,450
x ุฒุงุฆุฏ ุงุชู†ูŠู† a one ููŠ ุงู„ a ูˆ ุงู„ six ูƒู„ู‡ ุจุฏู‡ ูŠุณูˆู‰
199
00:18:06,450 --> 00:18:15,190
ุณุชุฉ ูˆ ุชู„ุงุชูŠู† x a ูˆ ุงู„ sixุฃูŠุด ุฑุฃูŠูƒูˆุงุŸ ุจุฏูŠ ุฃู‚ุณู… ูƒู„ู‡
200
00:18:15,190 --> 00:18:18,970
ุนู„ู‰ U6 ุงู„ุทุฑููŠู† ู…ุฑุฉ ูˆุงุญุฏุฉ ุญุชู‰ ู†ุชุฎู„ุต ู…ู† ู‡ุฐู‡ ุงู„ุดุบู„ู‡
201
00:18:18,970 --> 00:18:26,570
ุจุตูŠุฑ ุนู†ุฏูŠ ุงุชู†ูŠู† A node ุฒุงุฆุฏ A node X ุฒุงุฆุฏ ุงู„ A1
202
00:18:26,570 --> 00:18:35,010
ุฒุงุฆุฏ ุชู„ุงุชุฉ A node ุฒุงุฆุฏ ุชู„ุงุชุฉ A node X ุฒุงุฆุฏ ุชู„ุงุชุฉ
203
00:18:35,010 --> 00:18:43,610
A1 ุฒุงุฆุฏ ุงุชู†ูŠู† A node Xุฒุงุฆุฏ ุงุชู†ูŠู† ุงูˆ ุงุชู†ูŠู† ุงูˆ ุงุชู†ูŠู†
204
00:18:43,610 --> 00:18:44,950
ุงูˆ ุงุชู†ูŠู† ุงูˆ ุงุชู†ูŠู† ุงูˆ ุงุชู†ูŠู† ุงูˆ ุงุชู†ูŠู† ุงูˆ ุงุชู†ูŠู† ุงูˆ
205
00:18:44,950 --> 00:18:47,610
ุงุชู†ูŠู† ุงูˆ ุงุชู†ูŠู† ุงูˆ ุงุชู†ูŠู† ุงูˆ ุงุชู†ูŠู† ุงูˆ ุงุชู†ูŠู† ุงูˆ ุงุชู†ูŠู†
206
00:18:47,610 --> 00:18:51,090
ุงูˆ ุงุชู†ูŠู† ุงูˆ ุงุชู†ูŠู† ุงูˆ ุงุชู†ูŠู† ุงูˆ ุงุชู†ูŠู† ุงูˆ ุงุชู†ูŠู† ุงูˆ
207
00:18:51,090 --> 00:18:53,370
ุงุชู†ูŠู† ุงูˆ ุงุชู†ูŠู† ุงูˆ ุงุชู†ูŠู† ุงูˆ ุงุชู†ูŠู† ุงูˆ ุงุชู†ูŠู† ุงูˆ ุงุชู†ูŠู†
208
00:18:53,370 --> 00:18:54,090
ุงูˆ ุงุชู†ูŠู† ุงูˆ ุงุชู†ูŠู† ุงูˆ ุงุชู†ูŠู† ุงูˆ ุงุชู†ูŠู† ุงูˆ ุงุชู†ูŠู† ุงูˆ
209
00:18:54,090 --> 00:18:54,870
ุงุชู†ูŠู† ุงูˆ ุงุชู†ูŠู† ุงูˆ ุงุชู†ูŠู† ุงูˆ ุงุชู†ูŠู† ุงูˆ ุงุชู†ูŠู† ุงูˆ ุงุชู†ูŠู†
210
00:18:54,870 --> 00:19:02,180
ุงูˆ ุงุชู†ูŠู† ุงู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ููŠู‡ุง X ูˆู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ููŠู‡ุง X
211
00:19:02,180 --> 00:19:06,560
ุงุด ุบูŠุฑ ูˆ ุณุงู„ุจ ู…ุงุนู†ุฏูŠุด ุจุงู„ู…ุฑุฉ ููŠ ุงู„ู…ุนุงุฏู„ุฉ ู…ุด ู…ุดูƒู„ุฉ
212
00:19:06,560 --> 00:19:12,160
ูŠุจู‚ู‰ ุนู†ุฏ ู‡ู†ุง ุจู†ุงุช ูƒุฏู‡ ุงุด A node X ูˆ ุชู„ุงุชุฉ A node X
213
00:19:12,160 --> 00:19:19,060
ูŠุจู‚ู‰ ุงุฑุจุนุฉ A node X ูˆ ุงุชู†ูŠู† A node X ูŠุจู‚ู‰ ุณุชุฉ A
214
00:19:19,060 --> 00:19:26,670
node Xุงู„ุงู† ุนู†ุฏู†ุง ู…ูŠู†ุŸ ุนู†ุฏู†ุง ุงุชู†ูŠู† a ู†ูˆุช ูˆ ุงุชู†ูŠู† a
215
00:19:26,670 --> 00:19:33,230
one ูˆ ุชู„ุงุชุฉ a note ูˆ ุชู„ุงุชุฉ a one ูˆ ุงุชู†ูŠู† a one ู†ุฌูŠ
216
00:19:33,230 --> 00:19:38,890
ู†ุฌู…ุน ุนู†ุฏู†ุง ุชู„ุงุชุฉ a note ูˆ ุงุชู†ูŠู† a note ูŠุจู‚ู‰ ุฎู…ุณุฉ a
217
00:19:38,890 --> 00:19:45,000
noteู†ุฌู…ุน A1 ูˆ A1 ูˆ A1 ูˆ A1 ูˆ A1 ูˆ A1 ูˆ A1 ูˆ A1 ูˆ
218
00:19:45,000 --> 00:19:57,620
A1 ูˆ A1 ูˆ A1 ูˆ A1 ูˆ A1 ูˆ A1 ูˆ A1 ูˆ A1 ูˆ A1 ูˆ A1
219
00:19:58,110 --> 00:20:02,270
ุงู„ุงู† ุจุนุฏ ู…ุง ูˆุตู„ู†ุง ู‡ูƒุฐุง ุจุฑูˆุญ ุจู‚ุงุฑู† ุงู„ู…ุนุงู…ู„ุงุช ููŠ
220
00:20:02,270 --> 00:20:06,710
ุงู„ุทุฑููŠู† ุฅุฐุง ู„ูˆ ุฑูˆุญู†ุง ู‚ุงุฑู†ู†ุง ุงู„ู…ุนุงู…ู„ุงุช ููŠ ุงู„ุทุฑููŠู†
221
00:20:06,710 --> 00:20:14,790
ุจุตูŠุฑ 6A ู†ูˆุฏ ุจุฏู‡ ูŠุณุงูˆูŠ 36 ูŠุจู‚ู‰ A ู†ูˆุฏ ูŠุจู‚ู‰ 13 ุจู†ุงุช
222
00:20:15,660 --> 00:20:23,420
ุจุณุชุฉ ุชู…ุงู… and ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชุงู†ูŠุฉ ุฎู…ุณุฉ a node ุฒุงุฆุฏ
223
00:20:23,420 --> 00:20:28,780
ุณุชุฉ a one ุจุฏู‡ ูŠุณุงูˆูŠ ู‚ุฏุงุด zero ู‡ุงู„ุญูŠู† a node ุนู†ุฏูŠ
224
00:20:28,780 --> 00:20:37,400
ุจุณุชุฉ ูŠุจู‚ุงุด ุจุตูŠุฑ ุนู†ุฏ ู‡ู†ุง ุจุตูŠุฑ ุฎู…ุณุฉ ููŠ ุณุชุฉ ุฒุงุฆุฏ ุงู„ู„ูŠ
225
00:20:37,400 --> 00:20:46,210
ู‡ูˆ ุณุชุฉ a one ุจุฏู‡ ูŠุณุงูˆูŠ zero ุฎู…ุณุฉ ููŠ ุณุชุฉุณุงู„ุจ ุชู„ุงุชูŠู†
226
00:20:46,210 --> 00:20:55,650
ุนู„ู‰ ุณุชุฉ ุจุตูŠุฑ ุงู„ A1 ุณุงู„ุจ ุฎู…ุณุฉ ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุงุตุจุญ
227
00:20:55,650 --> 00:21:01,990
ุงู„ particular solution YP ูŠุณุงูˆูŠ ู‡ุฐุง ุดูƒู„ ุงู„
228
00:21:01,990 --> 00:21:06,510
particular solution ู‡ุดูŠู„ ุงู„ A node ูˆ ุงุญุท ู…ูƒุงู†ู‡ุง
229
00:21:06,510 --> 00:21:15,050
ุณุชุฉ ูŠุจู‚ู‰ ู‡ุงูŠ 6 Xู†ุงู‚ุต ุฎู…ุณุฉ ูƒู„ู‡ ููŠ ู…ู†ุŸ ููŠ ุงู„ู€EO6
230
00:21:15,050 --> 00:21:21,070
ุจุฏู†ุง ุดูƒู„ ุงู„ general solution ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ุดูƒู„
231
00:21:21,070 --> 00:21:25,950
ุงู„ general solution ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ุฏู‡
232
00:21:40,470 --> 00:21:43,270
general solution
233
00:21:46,420 --> 00:21:56,140
Y ุชุณุงูˆูŠ YC ุฒุงุฆุฏ YP ูŠุจู‚ู‰ Y ูŠุณุงูˆูŠ ู†ุฌูŠ YC ูˆูŠู† YC ู‡ูŠูˆ
234
00:21:56,140 --> 00:22:07,700
ูŠุจู‚ู‰ C1 E-X ุฒุงุฆุฏ C2 E-2X ุฒุงุฆุฏ ุงู„ุญู„ ุงู„ู„ูŠ ุทู„ุนู†ุงู‡ YP
235
00:22:07,700 --> 00:22:16,910
ุฒุงุฆุฏ 6X-5 ูƒู„ู‡ ููŠ E-X ูŠุจู‚ู‰ ู‡ุฐุงุงู„ุฌู†ุฑุงู„ ุตู„ูŠูˆุดูŠ ุงู„ุงู…ุงู…
236
00:22:16,910 --> 00:22:23,510
ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู†ุฌูŠ ู†ุงุฎุฏ ู…ุซุงู„ ุซุงู†ูŠ
237
00:22:23,510 --> 00:22:27,490
example
238
00:22:27,490 --> 00:22:32,190
two solve
239
00:22:32,190 --> 00:22:39,930
the differential equation
240
00:22:39,930 --> 00:22:46,550
ุญู„ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉุฃุตู„ ุงู„ู€ initial value problem
241
00:22:46,550 --> 00:23:01,850
ูŠุจู‚ู‰ ุงู„ู€ initial value problem ูŠุจู‚ู‰
242
00:23:01,850 --> 00:23:02,790
ุงู„ู€ initial value problem ูŠุจู‚ู‰ ุงู„ู€ initial value
243
00:23:02,790 --> 00:23:04,550
problem ูŠุจู‚ู‰ ุงู„ู€ initial value problem ูŠุจู‚ู‰ ุงู„ู€
244
00:23:04,550 --> 00:23:04,590
initial value problem ูŠุจู‚ู‰ ุงู„ู€ initial value
245
00:23:04,590 --> 00:23:04,730
initial value problem ูŠุจู‚ู‰ ุงู„ู€ initial value
246
00:23:04,730 --> 00:23:08,010
initial value problem ูŠุจู‚ู‰ ุงู„ู€ initial value
247
00:23:08,010 --> 00:23:09,990
problem ูŠุจู‚ู‰ ุงู„ู€ initial value problem ูŠุจู‚ู‰ ุงู„ู€
248
00:23:09,990 --> 00:23:10,550
initial value problem ูŠุจู‚ู‰ ุงู„ู€ initial value
249
00:23:10,550 --> 00:23:15,400
problem ูŠูˆ ุงู„ y ุนู†ุฏ ุงู„ zero ุจุฏู‡ ูŠุณุงูˆูŠ ุณุงู„ุจ ูˆุงุญุฏ ูˆ
250
00:23:15,400 --> 00:23:21,400
ุงู„ y prime ุนู†ุฏ ุงู„ zero ุจุฏู‡ ูŠุณุงูˆูŠ ูˆุงุญุฏ ูˆ ู‡ุงุฏ ูŠุณู…ูŠู‡ุง
251
00:23:21,400 --> 00:23:24,140
ู„ู‡ู…ูŠู† ุงู„ู…ุนุงุฏู„ุฉ star
252
00:23:46,020 --> 00:23:55,040
ู‡ุฐุง ุฎู„ุตู†ุง ู…ู†ู‡ ู†ุฑุฌุน
253
00:23:55,040 --> 00:23:56,220
ู„ุณุคุงู„ ู…ุฑุฉ ุชุงู†ูŠุฉ
254
00:24:01,960 --> 00:24:08,220
ุจู†ู‚ูˆู„ ุจุณูŠุทุฉ ูŠุจู‚ู‰ ุงุญู†ุง ุจุฏู†ุง ู†ูŠุฌูŠ ู„ู„ุญู„ ุนู„ู‰ ุงู„ุดูƒู„
255
00:24:08,220 --> 00:24:14,900
ุงู„ุชุงู„ูŠ ุจุฏู†ุง ู†ุงุฎุฏ ุงู„ homogeneous ูˆู†ูุฑุถ ุงู„ู„ูŠ ุญู„ ูŠุจู‚ู‰
256
00:24:14,900 --> 00:24:23,600
let Y ุชุณุงูˆูŠ E ู‚ุตุฉ RX ุจูŠู‡ solution of the
257
00:24:23,920 --> 00:24:29,780
Differential equation ุงู„ู„ู‰ ุน ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ุฒู‰ prime
258
00:24:29,780 --> 00:24:33,700
ู†ู‚ุต ุงุชู†ูŠู† ูˆุงุญุฏ ุณุงูˆูŠ ุฒูŠุฑูˆ ุงู„ู„ู‰ ู‡ู‰ ุงู„ homogeneous
259
00:24:33,700 --> 00:24:38,200
ุจุนุฏ ู‡ูŠูƒ ุจุงุฌู‰ ุจู‚ูˆู„ู‡ the characteristic
260
00:24:41,660 --> 00:24:49,880
Equation is R ุชุฑุจูŠุน ุฒุงุฆุฏ ุงู„ุงุฑ ู†ุงู‚ุต ุงุชู†ูŠู† ูŠุณุงูˆูŠ
261
00:24:49,880 --> 00:24:55,460
ุฒูŠุฑูˆ ู‡ุฐู‡ ู„ูˆ ุฌูŠุช ุญู„ู„ุช ุจุญู„ู„ู‡ุง ุงู„ู‰ ู‚ูˆุณูŠู† ูƒู„ู‡ ุจุฏู‡
262
00:24:55,460 --> 00:25:01,180
ูŠุณุงูˆูŠ ุฒูŠุฑูˆ ูŠุจู‚ู‰ ู‡ู†ุง R ูˆ ู‡ู†ุง R ู‡ู†ุง ูˆุงุญุฏ ู‡ู†ุง ุงุชู†ูŠู†
263
00:25:01,180 --> 00:25:07,570
ู‡ู†ุง ุฒุงุฆุฏ ู†ุงู‚ุตูŠุจู‚ู‰ ุจุงู„ู†ุณุจุฉ ุนู„ูŠู‡ ุตุงุฑุช ุงู„ุงุฑ ุชุณุงูˆูŠ
264
00:25:07,570 --> 00:25:13,890
ูˆุงุญุฏ ูˆุงู„ุงุฑ ุชุณุงูˆูŠ ุณุงู„ุจ ุงุชู†ูŠู† ูŠุจู‚ู‰ ุจุงู„ู†ุณุจุฉ ุนู„ูŠู‡ ุจุฌูŠุจ
265
00:25:13,890 --> 00:25:21,190
ุญู„ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู…ุชุฌุงู†ุณุฉ ูˆ ุจุณู…ูŠู‡ YC ูŠุจู‚ู‰ C ูˆุงุญุฏ EOS X
266
00:25:21,190 --> 00:25:27,310
ุฒุงุฆุฏ C ุงุชู†ูŠู† EOS ู†ุงู‚ุต ุงุชู†ูŠู† X ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง
267
00:25:28,160 --> 00:25:32,960
ุงู„ุงู† ุจุฑูˆุญ ุงุฏูˆุฑ ุนู„ู‰ ุดูƒู„ ุงู„ particular solution ุจุงุฌูŠ
268
00:25:32,960 --> 00:25:37,920
ุจุทู„ุน ููŠ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ู‰ ุนู†ุฏู‰ ุงู„ุดุฑุท ุงู„ู„ู‰ ู‡ูˆ ุงู„ู…ุชุญู‚ู‚
269
00:25:37,920 --> 00:25:44,680
ูƒู„ู‡ ุซูˆุงุจุช ุงู„ุดุฑุท ุงู„ุชุงู†ู‰ two exponential ุชู†ุชูŠู†
270
00:25:44,680 --> 00:25:50,160
ู…ุฎุชู„ูุงุช ุนู† ุจุนุถ ุชู…ุงู…ุงุฃุฐุง ุณุฃุฐู‡ุจ ู„ุญูุธ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชูŠ
271
00:25:50,160 --> 00:25:54,460
ู„ุฏูŠ ุฅู„ู‰ ู…ุนุงุฏู„ุชูŠู† ูŠุนู†ูŠ ุจุฏู„ ู…ุง ูƒู†ุช ุฃุฑูŠุฏ ุญู„ ู…ุซู„ุง ุฃุฑูŠุฏ
272
00:25:54,460 --> 00:25:59,480
ุญู„ ู…ุงู† ุชู†ุชูŠู† ู…ุนุงูƒู… ุงู„ู…ุฑุฉ ุงู„ุชูŠ ูุงุชุช ุฃุฎุฑ ู†ู‚ุทุฉ ููŠ
273
00:25:59,480 --> 00:26:04,580
ู…ุญุงุถุฑุฉ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ู‚ู„ู†ุง ู„ูˆ L of Y ูŠุณุงูˆูŠ F of X ูˆ
274
00:26:04,580 --> 00:26:08,900
L of Y ูŠุณุงูˆูŠ G of X ู‡ุฐู‡ ู„ู€particular solution ูˆู‡ุฐู‡
275
00:26:08,900 --> 00:26:11,240
ู„ู€particular solution ูŠุจู‚ู‰ ุงู„ู€particular solution
276
00:26:11,240 --> 00:26:15,440
ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ุฃุตู„ูŠุฉ ู‡ูˆ ู…ุฌู…ูˆุน ู„ุฅุชู†ูŠู† ุชู…ุงู… ูŠุจู‚ู‰ ุงู„ุขู†
277
00:26:15,440 --> 00:26:21,830
ุจุฏู†ุง ู†ุฐู‡ุจ ู†ุณุชุฎุฏู…ู‡ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ the differential
278
00:26:21,830 --> 00:26:30,910
equation a star is written as ุจุฑูˆุญ ุจูƒุชุจ ุนู„ู‰ ุงู„ุดูƒู„
279
00:26:30,910 --> 00:26:38,510
ุงู„ุชุงู„ูŠ y w prime ุฒุงุฆุฏ y prime ู†ุงู‚ุต ุงุชู†ูŠู† y ูŠุณูˆู‰
280
00:26:38,510 --> 00:26:45,110
ุณุชุฉ e ูˆ ู†ุงู‚ุต x ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชุงู†ูŠุฉ y w prime ุฒุงุฆุฏ y
281
00:26:45,110 --> 00:26:51,670
primeู†ู‚ุต ุงุชู†ูŠู† Y ูŠุณูˆู‰ ุงุฑุจุนุฉ E ุฃุณ ู†ุงู‚ุต ุชู„ุงุชุฉ X
282
00:26:51,670 --> 00:26:55,110
ูˆุงุถุญุฉ
283
00:26:56,200 --> 00:27:01,000
ู†ุธุฑุฉ ู„ุฃู† F of X ู…ุฌู…ูˆุนุฉ ุฏู„ุชูŠู† ูˆูƒู„ ูˆุงุญุฏุฉ ู…ู†ูุตู„ุฉ ุนู†
284
00:27:01,000 --> 00:27:05,300
ุงู„ุชุงู†ูŠุฉ ูุฌุณู…ุช ุงู„ู…ุนุงุฏู„ุฉ ุฅู„ู‰ ู…ุนุงุฏู„ุชูŠู† ูŠุนู†ูŠ ู„ูˆ ุฑูˆุญุช
285
00:27:05,300 --> 00:27:10,300
ุฑุฌุนุชู‡ู… ู„ุฃุตู„ู‡ู… ุจุตูŠุฑ ู‡ุฐุง ู‡ูˆ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃุตู„ูŠุฉ ุงู„ู„ูŠ
286
00:27:10,300 --> 00:27:15,240
ุนู†ุฏู‰ ุจุณ ู…ุถุฑูˆุจุฉ ููŠ ู†ุต ุจูŠุฃุซุฑ ุนู„ู‰ ุดูƒู„ ุงู„ุญู„ ู„ุง ุจูŠุฃุซุฑุด
287
00:27:15,240 --> 00:27:19,080
ุงู„ู†ุต ุจูŠุฌูŠ ู…ุน ุงู„ constants ูˆูƒุงู† ุงู„ู„ู‡ ุจุงู„ุณุฑ ุนู„ูŠู…ุง
288
00:27:19,080 --> 00:27:27,930
ู†ุฌูŠ ู„ู‡ุฐู‡ ุจุฏู†ุง ุงู„ Y P1ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ X to the power
289
00:27:27,930 --> 00:27:33,910
S ููŠ Ion ุจู‚ูˆู„
290
00:27:33,910 --> 00:27:37,510
ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ู†ุธุฑุง ู„ุฅู† ุงู„ exponential
291
00:27:37,510 --> 00:27:41,630
ู‡ุฐูŠ ุชุฎุชู„ู ุนู† ุงู„ exponential ู‡ุฐูŠ ุจุฌุฒุก ุงู„ู…ุนุงุฏู„ุฉ ุฅู„ู‰
292
00:27:41,630 --> 00:27:46,150
ู…ุนุงุฏู„ุชูŠู† ุชู…ุงู… ุจุฌูŠุจ ุงู„ุญู„ ุงู„ุฎุงุต ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ุฃูˆู„ู‰ ูˆ
293
00:27:46,150 --> 00:27:50,050
ุจุฌูŠุจ ุงู„ุญู„ ุงู„ุฎุงุต ู„ู…ุนุงุฏู„ุฉ ุชุงู†ูŠุฉ ูŠุจู‚ู‰ ุงู„ุญู„ ุงู„ุฎุงุต ุงู„ูƒู„
294
00:27:50,050 --> 00:27:55,230
ู‡ูˆ ู…ุฌู…ูˆุน ู„ูŠู…ูŠู† ู…ุฌู…ูˆุน ู„ุงุชู†ูŠู†ุทุจุนุง ู‚ุฏ ุชุณุชุบุฑุจูˆุง ุงู†ู‡
295
00:27:55,230 --> 00:27:59,390
ุงู†ุง ู„ูˆ ุฌู…ุนุช ุงู„ู…ุนุงุฏู„ุฉ ุชู„ ุงุชู†ูŠู† ู‡ุฏูˆู„ ุจูŠุนุทูŠู‡ู…
296
00:27:59,390 --> 00:28:03,070
ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃุตู„ูŠุฉ ู‡ุฏู‡ ุฒู…ุงู† ู‡ูŠ ุจุณ ุงู„ุทุฑู ู‡ุฐุง ู…ุถุฑูˆุจ ููŠ
297
00:28:03,070 --> 00:28:06,730
ู†ุต ู„ุฅู†ู‡ ุจูŠุตูŠุฑ ุงุชู†ูŠู† ุงู„ู…ุนุงุฏู„ุฉ ุน ุงู„ุดู…ุงู„ ูŠุณูˆุก ุงู„ู…ุฌู…ูˆุน
298
00:28:06,730 --> 00:28:11,090
ู„ุงุชู†ูŠู† ู†ุตู‡ุง ุงู„ู„ูŠ ูŠุคุซุฑ ุนู„ู‰ ุดูƒู„ ุงู„ุญู„ ู„ุฃู† ู†ุตู‡ุง ุนู†ุฏ
299
00:28:11,090 --> 00:28:14,530
ู…ู†ุงุณุจ ุงู„ุญู„ ุจูŠูƒูˆู† ุฏุงุฎู„ ู…ุน ู…ูŠู† ู…ุน ุงู„ constants ูˆูƒุงู†
300
00:28:14,530 --> 00:28:18,290
ุงู„ู„ู‡ ุจุงู„ุณุฑ ุนู„ูŠู‡ ุชู…ุงู… ูŠุจู‚ู‰ ุจุงุฌูŠ ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ุฃูˆู„ู‰
301
00:28:18,290 --> 00:28:22,620
ุจู‚ูˆู„ X to the power S ูˆ ุจุงุฌูŠ ุจุทู„ุนููŠ ุนู†ุฏูŠ ู‡ู†ุง
302
00:28:22,620 --> 00:28:27,320
polynomial ูŠุง ุจู†ุงุชุŸ ุงู‡ ููŠ ุจุณ polynomial ู…ู† ุงู„ุฏุฑุฌุฉ
303
00:28:27,320 --> 00:28:36,560
ุงู„ุตูุฑูŠุฉ ุจู‚ู‰ ุจู‚ูˆู„ู‡ ุงูŠู‡ ุงูŠู‡ ุฃุณ ู†ุงู‚ุต X ุจุณ ู…ุด ุฃูƒุชุฑ ุจุฏูŠ
304
00:28:36,560 --> 00:28:41,300
ุฃุฑูˆุญ ุฃุฏูˆุฑ ุนู„ู‰ ุงู„ S ุจุงุฌูŠ ุจุงุทู„ุน ู‡ู„ ุงู„ู„ูŠ ุจูŠู† ู‚ุณูŠู†
305
00:28:41,300 --> 00:28:44,020
ูŠุดุจู‡ ุฃูŠ term ุนู†ุฏู†ุงุŸ
306
00:28:51,250 --> 00:29:03,920
ูŠุจู‚ู‰ ูŠุจู‚ู‰ ูŠุจู‚ู‰ ูŠุจู‚ู‰ ูŠุจู‚ู‰ ูŠุจู‚ู‰ ูŠุจู‚ู‰ ูŠุจู‚ู‰ูŠุฌูŠ
307
00:29:03,920 --> 00:29:13,660
ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ุชุงู†ูŠุฉ ุงู„ YP2 YP2 ุจุฏู‡ ูŠุณุงูˆูŠ ู‡ุฐุง ุงู„ X to
308
00:29:13,660 --> 00:29:18,920
the power S ููŠู‡ ูƒู…ุงู† ู†ูุณ ุงู„ู‚ุตุฉ ุจุณ ุจุบูŠุฑ ุงู„
309
00:29:18,920 --> 00:29:25,040
polynomial ุงู„ู„ูŠ ู‡ู†ุงูƒ ุจุฑูˆุญ ุจู‚ูˆู„ู‡ ู‡ุฐู‡ P ููŠ E ุฃุณ ู†ุงู‚ุต
310
00:29:25,040 --> 00:29:34,940
ุชู„ุงุชุฉ X ุชู„ุงุชุฉ X ููŠ ุฒูŠู‡ุงูŠุจู‚ู‰ ุงู„ู€ S ูŠุณุงูˆูŠ 0 ุชู…ุงู…ุŸ ู…ู†
311
00:29:34,940 --> 00:29:40,400
ุฃูŠู† ุฌุงุก ุงู„ุชู„ุงุชุฉ ู‡ุฐู‡ุŸ ุขู‡ุŒ ุงู„ุญูŠู‡ุง ููˆู‚ุŒ ู„ุง ู„ุง ู„ุงุŒ
312
00:29:40,400 --> 00:29:46,220
ุงุณุชู†ู‰ ุดูˆูŠุฉ ู‡ูŠ E ุฃุณ ุชู„ุงุชุฉ X ููŠ ุงู„ู…ุณุฃู„ุฉุŒ ู…ุธุจูˆุทุŸ ุขู‡ุŒ
313
00:29:46,220 --> 00:29:52,200
ูŠุจู‚ู‰ ู‡ูŠ E ุฃุณ ุชู„ุงุชุฉ X ููŠ ุงู„ู…ุณุฃู„ุฉ ุงู„ู…ูˆุฌูˆุฏุฉุŒ ูŠุจู‚ู‰ ููŠุด
314
00:29:52,200 --> 00:29:57,140
ุชุดุงุจู‡ ู…ุง ุจูŠู†ู‡ุง ูˆุจูŠู† ุฃูŠ term ู‡ู†ุง ูŠุจู‚ู‰ ูƒู…ุงู† ู‡ู†ุงุŒ
315
00:29:57,140 --> 00:30:04,970
hereS is equal to zero ูŠุจู‚ู‰ ุฃุตุจุญ ุงู„ YP2 ุจูŠุณุงูˆูŠ B
316
00:30:04,970 --> 00:30:10,010
ููŠ E ุฃุซ ู†ุงู‚ุต ุชู„ุงุชุฉ X ุฅุฐุง ุตุงุฑ ุดูƒู„ ุงู„ particular
317
00:30:10,010 --> 00:30:18,590
solution YP ูŠุณุงูˆูŠ YP1 ุฒุงุฆุฏ YP2 ูŠุจู‚ู‰ A ููŠ E ุฃุซ ู†ุงู‚ุต
318
00:30:18,590 --> 00:30:25,050
X ุฒุงุฆุฏ B ููŠ E ุฃุซ ู†ุงู‚ุต ุชู„ุงุชุฉ X ูŠุจู‚ู‰ ุตุงุฑ ุดูƒู„ ุงู„
319
00:30:25,050 --> 00:30:26,530
general solution
320
00:30:33,070 --> 00:30:44,770
Y ุชุณุงูˆูŠ YC ุฒุงุฆุฏ YP ูˆูŠู† ุงู„ Y ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ Y ูŠุณุงูˆูŠ YC
321
00:30:52,230 --> 00:30:59,650
ุจู†ุทู„ุน ุดูƒู„ a ู‚ุฏ ู‚ูŠู…ุฉ a ูˆb ูŠุจู‚ู‰ ุจุฏู‰ ุงุฑุฌุน ูˆูŠู† ุจุฏู‰
322
00:30:59,650 --> 00:31:04,490
ุงุฑุฌุน ุงู‡ ุงู‡ ุงู‡ ุงุณุชู†ู‰ ุงุณุชู†ู‰ ุดูˆูŠุฉ ู‡ุฐุง ุดูƒู„ู‡ ุจุณ ุจุฏู‰
323
00:31:04,490 --> 00:31:11,390
ุงุทู„ุน ู‚ุฏ ู‚ูŠู…ุฉ a ูˆb ูŠุจู‚ู‰ ุจุฏุงุฌูŠ ู‡ู†ุง y p one prime
324
00:31:11,390 --> 00:31:15,310
ู†ุงู‚ุต a ููŠ u ู†ุงู‚ุต x ุชู…ุงู…
325
00:31:19,020 --> 00:31:25,340
ูˆYP1W' ูŠุณุงูˆูŠ A ููŠ E ุฃุณ ู†ุงู‚ุต X ู†ุฑุฌุน ู†ุนูˆุถ ู†ุงุฎุฏ
326
00:31:25,340 --> 00:31:29,840
ุงู„ู…ุนู„ูˆู…ุงุช ู‡ุฐู‡ ูˆู†ุนูˆุถ ููŠ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ููˆู‚ ูŠุจู‚ู‰ ุงู„
327
00:31:29,840 --> 00:31:39,340
YW' ุตุงุฑุช A ููŠ E ุฃุณ ู†ุงู‚ุต X ุฒุงุฆุฏ Y' ุงู„ู„ูŠ ู‡ูŠ ู†ุงู‚ุต A
328
00:31:39,340 --> 00:31:46,860
ููŠ E ุฃุณ ู†ุงู‚ุต Xูˆู‡ู†ุง ู†ุงู‚ุต ุงุชู†ูŠู† a ููŠ ุงู„ E ุงุต ู†ุงู‚ุต X
329
00:31:46,860 --> 00:31:52,840
ูƒู„ู‡ ุจุฏูŠ ูŠุณุงูˆูŠ ุงู„ุณุชุฉ E ุงุต ู†ุงู‚ุต X ุงุธู† ู‡ุฏูˆู„ ุงุชู†ูŠู† ู…ุน
330
00:31:52,840 --> 00:31:57,860
ุจุนุถ ุงู„ู„ู‡ ุณู‡ู„ ุนู„ูŠู‡ู… ูˆุจู†ุงุก ุงู† ุนู„ูŠู‡ ุจุตูŠุฑ ุณุงู„ูŠ ุจุงุชู†ูŠู†
331
00:31:57,860 --> 00:32:05,460
a ูŠุณุงูˆูŠ ุณุชุฉ ูŠุจู‚ู‰ ุงู„ a ุชุณุงูˆูŠ ู‚ุฏุงุดุณุงู„ุจ ุชู„ุงุชุฉ ู†ุฌูŠ
332
00:32:05,460 --> 00:32:10,380
ุจุงู„ู…ุซู„ ู‡ู†ุง ูŠุณุงูˆูŠ
333
00:32:10,380 --> 00:32:18,080
ู†ุงู‚ุต ุชู„ุงุชุฉ ุจูŠ ุงุซ ู†ุงู‚ุต ุชู„ุงุชุฉ ุงูƒุณ ูˆ ุงู„ YPW prime
334
00:32:18,080 --> 00:32:24,440
ูŠุณุงูˆูŠ ุชุณุนุฉ ุจูŠ ุงุซ ู†ุงู‚ุต ุชู„ุงุชุฉ ุงูƒุณ ุจุฏู†ุง ู†ุงุฎุฏ ุงู„ู…ุนู„ูˆู…ุฉ
335
00:32:24,440 --> 00:32:28,960
ุงู„ู„ูŠ ุญุตู„ู†ุง ุนู„ูŠู‡ุง ูˆ ู†ุฑุฌุน ู†ุนูˆุถ ููŠ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ููˆู‚
336
00:33:00,010 --> 00:33:06,460
ูŠุจู‚ู‰ ุงูŠุด ุจูŠุตูŠุฑ ุนู†ุฏู†ุงุชุงู„ุด ู…ุนูŠ ู„ูŠู‡ุŸู‡ุฏูˆู„ ู‚ุฏุงุดุŸ ุฎู…ุณุฉุŒ
337
00:33:06,460 --> 00:33:11,700
ู…ุธุจูˆุทุŸ ุฎู…ุณุฉ ู‡ูˆุŒ ู‡ุฐู‡ ูˆุงุญุฏุฉุŒ ุชุณุนุฉุŒ ูŠุจู‚ู‰ ุจุตูŠุฑ ุนู†ุฏูƒ
338
00:33:11,700 --> 00:33:18,200
ู‚ุฏุงุดุŸ ุฃุฑุจุนุฉ ุจูŠ ุชุณุงูˆูŠุŒ ู‡ุฏุง ุจุฏูŠ ูŠุนุทูŠู†ูŠ ุฃุฑุจุนุฉ ุจูŠ
339
00:33:18,200 --> 00:33:24,380
ุชุณุงูˆูŠ ู‚ุฏุงุดุŸ ุฃุฑุจุนุฉุŒ ูŠุจู‚ู‰ ุจูŠ ุชุณุงูˆูŠ ูˆุงุญุฏุŒ ูŠุจู‚ู‰ ุฃุตุจุญ
340
00:33:24,380 --> 00:33:31,280
YP2 ูŠุณุงูˆูŠ E ุฃุตู†ุงุน ู‚ุตุฉ ุซู„ุงุซุฉ X ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง
341
00:33:31,280 --> 00:33:41,490
ู‡ุฐุงูŠุจู‚ู‰ ุงู„ุงู† ุงุตุจุญ YP ูŠุณูˆู‰ YP1 ุฒุงุฆุฏ YP2 ูŠุณูˆู‰ ุงู„ุงู†
342
00:33:41,490 --> 00:33:44,630
YP1
343
00:33:44,630 --> 00:33:50,330
ูŠุณูˆู‰
344
00:33:50,330 --> 00:33:58,350
YP1 ูŠุณูˆู‰ YP1 ูŠุณูˆู‰ YP1 ูŠุณูˆู‰ YP1 ูŠุณูˆู‰ YP1 ูŠุณูˆู‰ YP1
345
00:33:58,350 --> 00:33:58,810
ูŠุณูˆู‰ YP1 ูŠุณูˆู‰ YP1 ูŠุณูˆู‰ YP1 ูŠุณูˆู‰ YP1 ูŠุณูˆู‰ YP1 ูŠุณูˆู‰
346
00:33:58,810 --> 00:34:00,170
YP1 ูŠุณูˆู‰ YP1 ูŠุณูˆู‰ YP1 ูŠุณูˆู‰ YP1 ูŠุณูˆู‰ YP1 ูŠุณูˆู‰ YP1
347
00:34:00,170 --> 00:34:00,570
ูŠุณูˆู‰ YP1 ูŠุณูˆู‰ YP1 ูŠุณูˆู‰ YP1 ูŠุณูˆู‰ YP1 ูŠุณูˆู‰ YP1 ูŠุณูˆู‰
348
00:34:00,570 --> 00:34:01,730
YP1 ูŠุณูˆู‰ YP1 ูŠุณูˆู‰ YP1 ูŠุณูˆู‰ YP1 ูŠุณูˆู‰ YP1 ูŠุณูˆ ู‡ุฏุง ุงู„
349
00:34:01,730 --> 00:34:10,930
P1 ุจุงู„ุฒุงุฆุฏ ุฒุงุฆุฏ E ุงุต ู†ุงู‚ุต ุชู„ุงุชุฉ X ุจุงู„ุถุจุท ุชู…ุงู… ุทูŠุจ
350
00:34:10,930 --> 00:34:15,290
ุงู„ุงู† ุจุฏูŠ ุงู„ general solution ุจุงุฌูŠ ุจู‚ูˆู„ ู„ู‡ that
351
00:34:15,290 --> 00:34:19,110
general solution
352
00:34:25,570 --> 00:34:31,490
YCYP YCYP YCYP
353
00:34:31,490 --> 00:34:32,730
YCYP YCYP YCYP YCYP YCYP YCYP YCYP YCYP YCYP YCYP
354
00:34:32,730 --> 00:34:33,470
YCYP YCYP YCYP YCYP YCYP YCYP YCYP YCYP YCYP YCYP
355
00:34:33,470 --> 00:34:37,870
YCYP YCYP YCYP YCYP YCYP YCYP YCYP YCYP YCYP YCYP
356
00:34:37,870 --> 00:34:40,570
YCYP YCYP YCYP YCYP YCYP YCYP YCYP YCYP YCYP YCYP
357
00:34:40,570 --> 00:34:41,730
YCYP YCYP YCYP
358
00:34:49,970 --> 00:34:54,770
ุงู„ุงู† ู…ุฏูŠู†ูŠ initial conditions ุงุชู†ูŠู† ูŠุจู‚ู‰ ุจู‚ุฏุฑ ุงู†ุง
359
00:34:54,770 --> 00:34:59,520
ุงุฌูŠุจ ู„ู‡ y ุนู†ุฏูŠ ุงู„ zero y prime ุจุนุฏ ู…ุง ู†ุดุชู‚ ู‡ุฐู‡ูŠุจู‚ู‰
360
00:34:59,520 --> 00:35:07,840
ู„ูˆ ุฌูŠุช ูƒู„ูุฉ Y' ูŠุจู‚ู‰ C1EOS X ู†ุงู‚ุต ุงุชู†ูŠู† C2EOS ู†ุงู‚ุต
361
00:35:07,840 --> 00:35:15,760
ุงุชู†ูŠู† X ูˆู‡ู†ุง ุฒุงุฆุฏ ุชู„ุงุชุฉ EOS ู†ุงู‚ุต X ูˆู‡ู†ุง ู†ุงู‚ุต ุชู„ุงุชุฉ
362
00:35:15,760 --> 00:35:23,230
EOS ู†ุงู‚ุต ุชู„ุงุชุฉ Xุงู„ุงู† ู†ุฌูŠ ูŠู‚ูˆู„ ูŠ ุนู†ุฏ ุงู„ zero ุชุณุงูˆูŠ
363
00:35:23,230 --> 00:35:27,790
ู‚ุฏุฑ ุงู„ุณู„ุจ ูˆุงุญุฏ ูˆูŠ ุนู†ุฏ ุงู„ zero ุชุณุงูˆูŠ ุณู„ุจ ูˆุงุญุฏ
364
00:35:27,790 --> 00:35:35,330
implies ุณู„ุจ ูˆุงุญุฏ ูŠุณุงูˆูŠ c ูˆุงุญุฏ ุฒุงุฆุฏ c ุงุชู†ูŠู† ู†ุงู‚ุต
365
00:35:35,330 --> 00:35:42,680
ุชู„ุงุชุฉ ุฒุงุฆุฏ ูˆุงุญุฏู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุงู† c1 ุฒุงุฆุฏ c2 ูŠุณุงูˆูŠ
366
00:35:42,680 --> 00:35:47,960
ุจุถู„ ู‡ู†ุง ู‚ุฏุงุด ู†ุงู‚ุต ุงุชู†ูŠู† ุจุฏูŠ ุงูˆุฏูŠู‡ู… ุนู„ูŠ ุดุฌุฉ ุชุงู†ูŠุฉ
367
00:35:47,960 --> 00:35:54,500
ุจุตูŠุฑ ู‚ุฏุงุด ูˆุงุญุฏ ูู‚ุท ู„ุง ุบูŠุฑ ุงู„ุงู† ุจุฏูŠ ุงุฌูŠ ู„ู„ y prime
368
00:35:54,500 --> 00:35:58,240
ุนู†ุฏ ุงู„ zero ุจุฏูŠ ูŠุณุงูˆูŠ ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„ conditioning
369
00:35:58,240 --> 00:36:04,240
ุงู„ุซุงู†ูŠ implies ุงู† ูˆุงุญุฏ ูŠุณุงูˆูŠ ู‡ูŠ ุงู„ y prime ู‡ุดูŠู„ ูƒู„
370
00:36:04,240 --> 00:36:13,440
X ูˆุญุท ู…ูƒุงู†ู‡ุง zeroูŠุจู‚ู‰ C1-2C2 ุฒุงุฆุฏ ุชู„ุงุชุฉ ูˆู‡ู†ุง ู†ุงู‚ุต
371
00:36:13,440 --> 00:36:19,200
ุชู„ุงุชุฉ ุชู…ุงู… ู‡ุงุฏูŠ ูˆ ู‡ุงุฏูŠ ู…ุน ุงู„ุณู„ุงู…ุฉ ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏูŠ
372
00:36:19,200 --> 00:36:23,800
ูŠุนุทูŠู†ุง C1-2C2
373
00:36:23,800 --> 00:36:29,400
ุจุฏูŠ ุฃุณูˆูŠ ูƒู…ุงู† ุฌุฏุฑุงุดู‡ุฐู‡ ุงู„ุฃูˆู„ู‰ ู†ุฌู„ู†ุงู‡ุง ุงู„ุดุฌุฑุฉ
374
00:36:29,400 --> 00:36:34,020
ุงู„ุชุงู†ูŠุฉ ุจูŠุนุทูŠูƒ ู‡ุฐู‡ ูˆุงุญุฏ ูˆู‡ุฐู‡ ูƒู…ุงู† ูƒุฏู‡ ุงุด ู‡ุฐู‡ ูƒู…ุงู†
375
00:36:34,020 --> 00:36:38,140
ูˆุงุญุฏ ุทุจ ูŠุงุจู†ุชูƒ ุจุชุฏุฑุฌุน ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃูˆู„ู‰ ูˆุงุถุฑุจู‡ุง ููŠ
376
00:36:38,140 --> 00:36:46,700
ุณุงู„ุจ ูŠุจู‚ู‰ ุณุงู„ุจ C1 ุณุงู„ุจ C2 ุจุฏู‡ ูŠุณูˆู‰ ูƒุฏู‡ ุงุด ุณุงู„ุจ
377
00:36:46,700 --> 00:36:55,130
ูˆุงุญุฏ ู‡ุฐู‡ C1 ู†ู‚ุต ุงุชู†ูŠู† C2 ูŠุณูˆู‰ ูƒุฏู‡ ุงุด1 ู„ูˆ ุฌูŠุช ุฌู…ุงุนุฉ
378
00:36:55,130 --> 00:37:01,930
ู‡ุฏูˆู„ ุจู‚ุฏุงุด ุจู€ 0 ู‡ุฐุง ู…ุนู†ุงู‡ ุณุงู„ุจ ุชู„ุงุชุฉ C2 ุจุฏู‡ ูŠุณุงูˆูŠ
379
00:37:01,930 --> 00:37:09,570
0 ูŠุจู‚ู‰ ู…ุนู†ุงู‡ ู‡ุฐุง ุงู„ูƒู„ุงู… ุงู†ู‡ C2 ุจุฏู‡ ูŠุณุงูˆูŠ 0 ู„ู…ุง C2
380
00:37:09,570 --> 00:37:16,690
ูŠุณุงูˆูŠ 0 ูŠุจู‚ู‰ C1 ุจุฏู‡ ูŠุณุงูˆูŠ ูƒุฏู‡ุงุด C2 ูŠุณุงูˆูŠ ูŠุจู‚ู‰ C1
381
00:37:16,690 --> 00:37:25,800
ูŠุณุงูˆูŠ 1 ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุฃุตุจุญ ุฐุงSolution of the
382
00:37:25,800 --> 00:37:35,620
initial value problem is Y ุชุณุงูˆูŠ ู‡ุงูŠ ุจุฏู‡ ุงุดูŠู„ C1 ูˆ
383
00:37:35,620 --> 00:37:41,280
ุงูƒุชุจ ู…ูƒุงู† ูˆุงุญุฏ ูŠุจู‚ู‰ ูˆุถู„ุช EOS X C2 ุจ Zero ูŠุจู‚ู‰ ุทุงุฑูŠ
384
00:37:41,280 --> 00:37:46,440
ุงู„ term ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ูŠุจู‚ู‰ ู†ุงู‚ุต ุชู„ุงุชุฉ EOS ู†ุงู‚ุต X
385
00:37:46,440 --> 00:37:53,770
ุฒุงุฆุฏ EOS ู†ุงู‚ุต ุชู„ุงุชุฉ Xุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ู„ุง ูŠุฒุงู„
386
00:37:53,770 --> 00:37:59,270
ู‡ู†ุงูƒ ุงู„ู…ุฒูŠุฏ ู…ู† ุงู„ุฃู…ุซู„ุฉ ุฅู„ู‰ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู‚ุงุฏู…ุฉ ุงู† ุดุงุก
387
00:37:59,270 --> 00:38:00,590
ุงู„ู„ู‡ ุชุนุงู„ู‰