|
1 |
|
00:00:19,490 --> 00:00:24,690 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ูู ุญุฏูุซูุง ุงูุณุงุจู ูู ุงู |
|
|
|
2 |
|
00:00:24,690 --> 00:00:28,850 |
|
sections ุงูู
ุงุถู ู
ู ุฎู
ุณุฉ ูุงุญุฏ ูุบุงูุฉ ุฎู
ุณุฉ ุฎู
ุณุฉ ููุง |
|
|
|
3 |
|
00:00:28,850 --> 00:00:33,130 |
|
ุจูุชููู
ุนูู ุงู homogenous |
|
|
|
4 |
|
00:00:33,130 --> 00:00:38,000 |
|
differential equationูู ุฎู
ุณุฉ ุณุชุฉ ุงุนุทููุง ู
ูุฏู
ุฉ |
|
|
|
5 |
|
00:00:38,000 --> 00:00:41,860 |
|
ุจุณูุทุฉ ุงูู ุงูุง ูู ุจุฏู ุงุฌูุจ ุญู ุงู non homogeneous |
|
|
|
6 |
|
00:00:41,860 --> 00:00:46,540 |
|
equation star ูุฐุง ุจุฏู ุงูุณู
ุงูู
ุณุฃูุฉ ุงูู ุฌุฒุฆูู ุงู |
|
|
|
7 |
|
00:00:46,540 --> 00:00:49,540 |
|
homogeneous ู ุงู non homogeneous ุงู homogeneous |
|
|
|
8 |
|
00:00:49,540 --> 00:00:53,320 |
|
ุจุญููุง ุฒู ู
ุง ููุช ุญู ูู ุงู sections ุงูู
ุงุถูุฉ ู ุจุฏู |
|
|
|
9 |
|
00:00:53,320 --> 00:00:57,340 |
|
ุงุณู
ูู ุงู complementary solution ุงูุญู ุงูู
ุชู
ุฉ ูุฏููู |
|
|
|
10 |
|
00:00:57,340 --> 00:01:01,840 |
|
ุฑู
ุฒ YC ุจุนุฏ ููููู ูููู ูู ุนูุฏู particular solution |
|
|
|
11 |
|
00:01:01,840 --> 00:01:07,400 |
|
ุญู ุฎุงุต ููู
ุนุงุฏูุฉ ูุฐู a star ุจุงุฌู
ุน ุงูุญุงููู ุชุจุน ุงู |
|
|
|
12 |
|
00:01:07,400 --> 00:01:10,400 |
|
homogenous ูุงู non homogenous ุจูุนุทููู ุญู ู
ุญุชุฑู
|
|
|
|
13 |
|
00:01:10,400 --> 00:01:14,640 |
|
ูู
ูู ููู
ุนุงุฏูุฉ ุงููู ูู ุฑูู
a star ูุจูู ูุฐู ุงููู |
|
|
|
14 |
|
00:01:14,640 --> 00:01:20,860 |
|
ูููุงูุง ูู ุงูู
ุฑุฉ ุงูู
ุงุถูุฉุงูุงู ุจุฏู ุงูุชูู ุงูู ูุฐุง ุงู |
|
|
|
15 |
|
00:01:20,860 --> 00:01:24,540 |
|
section ููู ุทุฑููุฉ ุงู undetermined coefficients |
|
|
|
16 |
|
00:01:24,540 --> 00:01:28,400 |
|
ุงูู
ุนุงุฏูุงุช ุงููู ู
ู ูุฐุง ุงููุจูู ูุงุจุงูุงุช ุงููุง ุซูุงุซ ุทุฑู |
|
|
|
17 |
|
00:01:28,400 --> 00:01:32,240 |
|
ููุญู ุงูุทุฑููุฉ ุงูุฃููู ุงู undetermined coefficients |
|
|
|
18 |
|
00:01:32,240 --> 00:01:36,940 |
|
ุงูุทุฑููุฉ ุงูุซุงููุฉ ุงู variation of parameters ุงูุทุฑููุฉ |
|
|
|
19 |
|
00:01:36,940 --> 00:01:40,400 |
|
ุงูุซุงูุซุฉ ุงู reduction of orders ูุงูุชูุช ุทุฑู ุณูุงุฎุฏูู
|
|
|
|
20 |
|
00:01:40,400 --> 00:01:44,040 |
|
ูู ูุฐุง ุงู section ู ุงู sectionุงูุฐู ูููู ูู ุฎู
ุณุฉ |
|
|
|
21 |
|
00:01:44,040 --> 00:01:48,780 |
|
ุชู
ุงููุฉ ุงู ุดุงุก ุงููู ุชุจุงุฑู ูุชุนุงูู ุงูููู
ููุท ููุงุฎุฏ ุงู |
|
|
|
22 |
|
00:01:48,780 --> 00:01:51,760 |
|
undetermined coefficients ูู ุงูู
ุนููู
ุงุช ุงููุธุฑูุฉ |
|
|
|
23 |
|
00:01:51,760 --> 00:01:54,200 |
|
ุงููู ุจูููุง ู
ู ูุฐุง ุงู section ูู ูุฏุงู
ู ุนูู ุงูููุญ |
|
|
|
24 |
|
00:01:54,200 --> 00:01:59,440 |
|
ููู
ูุจูู ุงูุง ู
ุฌู
ูุนุฉ ู
ู ุงูุฃู
ุซูุฉ ุทูุจ ููุฌู ููุทุฑููุฉ |
|
|
|
25 |
|
00:01:59,440 --> 00:02:02,780 |
|
ูุฐู ุจููููู ูุฐู ุงูู
ุนุงุฏูุฉ ุงูุฃุตููุฉ ุงููู ูู non |
|
|
|
26 |
|
00:02:02,780 --> 00:02:07,600 |
|
homogeneous ุงูู
ุนุงู
ูุงุช ุฏูู ูุง ุจูุงุช ูููู
ุซูุงุจุช ุชู
ุงู
ุ |
|
|
|
27 |
|
00:02:07,710 --> 00:02:12,210 |
|
ูุฐู ุงูู
ุนุงุฏูุฉ ุณุฃููู
ุจุชูุณูู
ูุง ููู
ูุฌูููุงุณ ูููู |
|
|
|
28 |
|
00:02:12,210 --> 00:02:15,830 |
|
ูู
ูุฌูููุงุณ ุณุฃููู
ุจุชูุณูู
ุงููู
ูุฌูููุงุณ ุจุงูุฃูู ุงููู ูู |
|
|
|
29 |
|
00:02:15,830 --> 00:02:20,510 |
|
ุงูู
ุนุงุฏูุฉ ุงููู ุนูุฏูุง ูุฏู ุจุฏูู f of x ูู ูุงูุช ุชุณุงูู |
|
|
|
30 |
|
00:02:20,510 --> 00:02:24,750 |
|
ุฒูุฑู ูุจูู ุงูุญู ุชุจุนูุง ููููู ุนูู ุงูุดูู ุงููู ุฃููุง ููุง |
|
|
|
31 |
|
00:02:24,750 --> 00:02:28,770 |
|
ุจูุทูุนููู ุงู sections ุงูู
ุงุถูุฉ ุณูุงุก ูุงู ุงู complex |
|
|
|
32 |
|
00:02:28,770 --> 00:02:34,130 |
|
roots or repeated roots ุงู roots are all different |
|
|
|
33 |
|
00:02:34,130 --> 00:02:37,090 |
|
ูุจูู ุจุงูุทุฑู ุงูุชูุงุชุฉ ุงูุณุงุจูุฉ ุงููู ููุง ุจูุนู
ููุง |
|
|
|
34 |
|
00:02:37,090 --> 00:02:41,630 |
|
ูููุนูุง ูุฐุง ุงูุญู ุชู
ุงู
ุ ุงูุขู ุจุฏุฃ ุงูุชุฑุถ ุงู ูุฐุง ุงูุญู |
|
|
|
35 |
|
00:02:41,630 --> 00:02:45,630 |
|
ูู ูู
ููุง ุงูู
ุนุงุฏูุฉ ูุฐูููุฑุถ Y ุชุณุงูู ูุตุฑ X ููุฌูุจ ุงู |
|
|
|
36 |
|
00:02:45,630 --> 00:02:50,050 |
|
characteristic ููุงุดู ููุฐูุจ ููุญู ููุง ููุฌูุจูุง ุฎูุตูุง |
|
|
|
37 |
|
00:02:50,050 --> 00:02:54,530 |
|
ุญู ุงู homogeneous ุจุฏุงุฌู ููุญู ุงูุฎุงุต ุชุจุน ุงู non |
|
|
|
38 |
|
00:02:54,530 --> 00:02:57,670 |
|
homogeneous ุงููู ุงููุง ุฏู ูุจุงุฌู ุจููู we use the |
|
|
|
39 |
|
00:02:57,670 --> 00:03:01,030 |
|
method of undetermined coefficients ุจุฏูุง ูุณุชุฎุฏู
|
|
|
|
40 |
|
00:03:01,030 --> 00:03:05,870 |
|
ุทุฑููุฉ ุงูู
ุนุงู
ูุงุช ุงูู
ุฌูููุฉ ูุงูุญูู ูููููู ูุณู ู
ููุง |
|
|
|
41 |
|
00:03:05,870 --> 00:03:12,140 |
|
ู
ุนุงุฏูุงุช ู
ุฌูููุฉุนู ุทุฑูู ุงูุจุญุซ ุนู ุญู ูุฅูุฌุงุฏ |
|
|
|
42 |
|
00:03:12,140 --> 00:03:16,420 |
|
ุญู ุฎุงุต ูููููู
ูุฌูููุณ ุงูู differential equation ู
ู |
|
|
|
43 |
|
00:03:16,420 --> 00:03:20,540 |
|
ุงูู start ุงููู ููู ุงููู ูู ุงูู non homogenous ุงุญูุง |
|
|
|
44 |
|
00:03:20,540 --> 00:03:24,100 |
|
ูุฐุง ุฌูุจูุง ูู ุงู homogenous ุจุฏูุง ุงู non homogenous |
|
|
|
45 |
|
00:03:24,100 --> 00:03:29,560 |
|
ูุนุทูู ุฑู
ุฒ YPููู ุจูุฌูุจูุ ุจูุณุชุฎุฏู
ุทุฑููุฉ ุงูู |
|
|
|
46 |
|
00:03:29,560 --> 00:03:33,060 |
|
Undetermined coefficients ุฅุฐุง ุชุญูู ูู ุงูู
ุนุงุฏูุฉ |
|
|
|
47 |
|
00:03:33,060 --> 00:03:38,040 |
|
ุฃู
ุฑุงู ู
ุง ูู
ุงูุฃู
ุฑุงู ูุฐูุ ุงูุฃู
ุฑ ุงูุฃูู ุฐูุฑูุงู ุฅู |
|
|
|
48 |
|
00:03:38,040 --> 00:03:43,480 |
|
ุงูู
ุนุงู
ูุงุช ูุฐูู ูููู
ุซูุงุจุชุงูุฃู
ุฑ ุงูุซุงูู ูุฌุจ ุฃู ูููู |
|
|
|
49 |
|
00:03:43,480 --> 00:03:49,420 |
|
ุงู f of x ุนูู ุดูู ู
ุนูู ู
ุงูู ูุฐุง ุงูุดูู ุงูู
ุนูู ุงููู |
|
|
|
50 |
|
00:03:49,420 --> 00:03:53,700 |
|
ูู ุชุญูู ูู ุงู f of x ุจูุฏุฑ ุงุณุชุฎุฏู
ุงู undetermined |
|
|
|
51 |
|
00:03:53,700 --> 00:04:00,550 |
|
coefficients ุฏูู ุบูุฑูุง ุจููู ุจุณูุทุฉ ุฌุฏุงูู ุฌูุช ุนูู |
|
|
|
52 |
|
00:04:00,550 --> 00:04:05,690 |
|
ุงููููููุณ ูุงุฌูุชูุง polynomial ุจุฏู ุงูุชุจ ุดูู ุงู |
|
|
|
53 |
|
00:04:05,690 --> 00:04:09,690 |
|
particular solution ุนูู polynomial ุฒููุง ู
ู ููุณ |
|
|
|
54 |
|
00:04:09,690 --> 00:04:15,050 |
|
ุงูุฏุฑุฌุฉ ุจุณ ุงูู
ุนุงู
ูุงุช ู
ุด ูู
ูุจูู ูุฏูู ูู
ุงู |
|
|
|
55 |
|
00:04:15,050 --> 00:04:19,450 |
|
undetermined coefficients ุชุจุนุช ุทุฑููุชูุง ูุฐู ู
ุถุฑูุจุฉ |
|
|
|
56 |
|
00:04:19,450 --> 00:04:23,830 |
|
ูููุงูู x to the power s ู
ูู ุงู x to the power s |
|
|
|
57 |
|
00:04:23,830 --> 00:04:29,250 |
|
ูุฐุง ู
ุง ุณูุฌูุจ ุนููู ุจุนุฏ ูููู ูุจูู ุฎููููู
ุตุญูู ู
ุนุงูุง |
|
|
|
58 |
|
00:04:29,250 --> 00:04:34,890 |
|
ูุฃู ูุฐุง very important ู
ูู ูู ุงู x ุฃุณ s ูุฐุง very |
|
|
|
59 |
|
00:04:34,890 --> 00:04:41,680 |
|
important ููู ุนู
ูุฏ ูู ูุฑูู ุงูุญู ูุงูุฅุฌุงุจุฉูู ูุงูุช ุงู |
|
|
|
60 |
|
00:04:41,680 --> 00:04:45,460 |
|
F of X ูุฐู ุนูู ุดูู polynomial ูู exponential |
|
|
|
61 |
|
00:04:45,460 --> 00:04:49,620 |
|
polynomial ู
ู ุงูุฏุฑุฌุฉ ุงูููููุฉ ูู exponential ุฅุฐุง |
|
|
|
62 |
|
00:04:49,620 --> 00:04:53,620 |
|
ุดูู ุงูุญู ุงูุฎุงุต ุจุฏู ูููู X to the power S |
|
|
|
63 |
|
00:04:53,620 --> 00:04:57,460 |
|
polynomial ู
ู ุงูุฏุฑุฌุฉ ุงูููููุฉ ุฒู ุงู polynomial ูุฐู |
|
|
|
64 |
|
00:04:57,460 --> 00:05:02,380 |
|
ุจุงูุถุจุท ูู ููุณ ุงู exponential ุงููู ุนูุฏู ุทูุจ ุงูุญุงูุฉ |
|
|
|
65 |
|
00:05:02,380 --> 00:05:07,300 |
|
ุงูุชุงูุชุฉ ู ุงูุฃุฎูุฑุฉ ูู ูุงูุช ุงู F of X ุงููู ุนูุฏู |
|
|
|
66 |
|
00:05:07,900 --> 00:05:15,700 |
|
ุจูููููู
ูุงู ูู exponential ูู cosine ุจู ุฅูุณ ุฃู sin |
|
|
|
67 |
|
00:05:15,700 --> 00:05:24,620 |
|
ุจู ุฅูุณ ุฃู ู
ุฌู
ูุนูู
ุง ุฃู ุงููุฑู ููู
ุง ุจูููู
ุง ูุจูู ุนูุฏู |
|
|
|
68 |
|
00:05:24,620 --> 00:05:30,930 |
|
ุจูููููู
ูุงู ูู exponential ูู ุงู cosineุจูุณ ุฃู ุงู |
|
|
|
69 |
|
00:05:30,930 --> 00:05:35,510 |
|
polynomial ูู ุงู exponential ูู ุงู sign ุจูุณ ุฃู ุงู |
|
|
|
70 |
|
00:05:35,510 --> 00:05:39,290 |
|
polynomial ูู ุงู exponential ูู ุงู cosine ุจูุณ ุฒู |
|
|
|
71 |
|
00:05:39,290 --> 00:05:45,010 |
|
ุงู sign ุจูุณ ุงูุญุงูุงุช ูุฏูู ูููู
ุฐูุฑุชูู
ููู
ููุณ ุงู |
|
|
|
72 |
|
00:05:45,010 --> 00:05:48,390 |
|
particular solution ุดู ุงู particular solution ุจุญุท |
|
|
|
73 |
|
00:05:48,390 --> 00:05:52,260 |
|
ุงู x to the power s ูู
ุง ูู ุงูุญุงูุชูู ุงูุณุงุจูุชููุจุนุฏ |
|
|
|
74 |
|
00:05:52,260 --> 00:05:55,740 |
|
ุฐูู ุจูุชุจ polynomial ู
ู ุงูุฏุฑุฌุฉ ุงูููููุฉ ูู cosine |
|
|
|
75 |
|
00:05:55,740 --> 00:06:00,620 |
|
ุจูุณ ุฒุงุฆุฏ polynomial ุฃุฎุฑู ู
ู ุงูุฏุฑุฌุฉ ุงูููููุฉ ูู sin |
|
|
|
76 |
|
00:06:00,620 --> 00:06:04,340 |
|
ุจูุณ ูููู ุจุถุฑุจู ูู ู
ููุ ูู ุงู exponential ุงููู |
|
|
|
77 |
|
00:06:04,340 --> 00:06:10,080 |
|
ุนูุฏูุง ุฎูุตูุงุ ุฎูุตูุง ูุจูู ู
ู ุญุฏ ู
ุง ุฌุงุญู ุจุฏู ุฃุทูุน ุนูู |
|
|
|
78 |
|
00:06:10,080 --> 00:06:13,840 |
|
ุงูุดูู ููู ููู ู
ุด ูุงู ุฃุดูู ูู ุจููุนู ูุงู polynomial |
|
|
|
79 |
|
00:06:13,840 --> 00:06:18,800 |
|
ูู ุจููุนู ูุงู undetermined coefficients ุฃู
ูุง ุชู
ุงู
|
|
|
|
80 |
|
00:06:18,800 --> 00:06:24,010 |
|
ุจุนุฏ ู
ุง ุนุฑูุช ุฃูู ู
ุนุงู
ูุงุช ุซูุงุจุชุจุงุฌู ุจุชุทูุนูุฐุง ุงูู F |
|
|
|
81 |
|
00:06:24,010 --> 00:06:28,030 |
|
of X polynomial ูุจูู ุดูู ุงู particular solution |
|
|
|
82 |
|
00:06:28,030 --> 00:06:32,070 |
|
polynomial ูู X to the power S ู
ู ููุณ ุงูุฏุฑุฌุฉ ุฅุฐุง ู |
|
|
|
83 |
|
00:06:32,070 --> 00:06:34,610 |
|
ุงููู polynomial ูู exponential ูุจูู ูู
ุงู |
|
|
|
84 |
|
00:06:34,610 --> 00:06:38,150 |
|
polynomial ูู exponential ูู X to the power S ุฅุฐุง |
|
|
|
85 |
|
00:06:38,150 --> 00:06:41,190 |
|
polynomial ูู exponential ูู ุตูู ุฃู ููุณูู ุฃู |
|
|
|
86 |
|
00:06:41,190 --> 00:06:44,730 |
|
ู
ุฌู
ูุญู
ุฉ ุฃู ุงููุฑู ููู
ุง ุจูููู
ุง ูุจูู X to the power S |
|
|
|
87 |
|
00:06:44,730 --> 00:06:47,950 |
|
polynomial ูู ุงูููุณูู ุฒุงุฆุฏ polynomial ู
ู ููุณ |
|
|
|
88 |
|
00:06:47,950 --> 00:06:50,990 |
|
ุงูุฏุฑุฌุฉ ูู ุงูุตูู ูููู ู
ุถู
ูู ูู ู
ููุ ูู ุงู |
|
|
|
89 |
|
00:06:50,990 --> 00:06:54,980 |
|
exponentialูุฌู ููุตุฉ ุงู X to the powers ุงูุดู ูุฐู |
|
|
|
90 |
|
00:06:54,980 --> 00:07:00,360 |
|
ุดุงูููู ูุฐุง ุงูุญู ูุง ุจูุงุช ุงู complementary solution |
|
|
|
91 |
|
00:07:00,360 --> 00:07:05,670 |
|
ูุฐุงูู ุญู ุงู homogenous ู
ู ุญุฏ ู
ุง ุงุชุทูุนู ุจุชุญุท ููู ูู |
|
|
|
92 |
|
00:07:05,670 --> 00:07:11,330 |
|
ุจุฑูุงุฒ ู ููุฌู ูุฑุฌุนูู ุงูุด ูุฌู ูุฑุฌุนูู ุงูุง ูุชุจุช ุดูู ุงู |
|
|
|
93 |
|
00:07:11,330 --> 00:07:15,570 |
|
particular solution ู ุบุทูุช ููุง ูุฃููุง ู
ุด ู
ูุฌูุฏุฉ ู |
|
|
|
94 |
|
00:07:15,570 --> 00:07:22,210 |
|
ุฌูุช ุทูุนุช ูู ุงูุญู ูู ุงู ุฌุฒุก ููุง ูุดุจู ุงู ุฌุฒุก ููุง ููุง |
|
|
|
95 |
|
00:07:22,210 --> 00:07:28,150 |
|
ูุฃ ุงุฐุง ููุด ุชุดุงุจู ูุจูู S ุจ Zero ูุจูู ุจุตูุฑ X of Zero |
|
|
|
96 |
|
00:07:28,150 --> 00:07:32,550 |
|
ุจูุฏุงุดูุจูู ุงููู ูุชุจุชู ูู ู ุจุฏูู X to the power S |
|
|
|
97 |
|
00:07:32,550 --> 00:07:40,970 |
|
ุฅุฐุง ูู term ูุงุญุฏ ูุดุงุจู ุฃู term ู
ู ูุฏูู ุจุญุท S ุจูุงุญุฏ |
|
|
|
98 |
|
00:07:40,970 --> 00:07:47,230 |
|
ุจุตูุฑ ูุฐู ู
ุถุฑูุจุฉ ูููุง ูู X ุจุงุฌู ุจุทูุน ุจุนุฏ ููู ุงุฎุชูู |
|
|
|
99 |
|
00:07:47,230 --> 00:07:52,820 |
|
ูู term ุนู ุงู term ููุง ูุจูู ุดุบูู ุชู
ุงู
100% ุฎูุตุชุฅุฐุง |
|
|
|
100 |
|
00:07:52,820 --> 00:07:58,060 |
|
ูุงุฌูุช ูุง ูุฒุงู ุฃู term ู
ู ุงู particular solution |
|
|
|
101 |
|
00:07:58,060 --> 00:08:03,800 |
|
ูุดุจู ุฃู term ู
ู ุงู complementary solution ุจุญุท S ุจ |
|
|
|
102 |
|
00:08:03,800 --> 00:08:08,540 |
|
2 ูุนูู ุฅุฐุง ูุงุญุฏ ู
ุงุฌุจุชุด ุงููุชูุฌุฉ ุจุญุท ุจ 2 ุชู
ุงู
ุ ู |
|
|
|
103 |
|
00:08:08,540 --> 00:08:13,460 |
|
ุจุงุฌู ุจุถุฑุจ ูููุง ุจุตูุฑ ุนูุฏู X ุชุฑุจูุน ู
ุถุฑุจุฉ ูู ุงูุฌุซุฉ ู |
|
|
|
104 |
|
00:08:13,460 --> 00:08:17,730 |
|
X ุชุฑุจูุน ูู ุงูุฌุซุฉ ู X ุชุฑุจูุน ูู ุงูุฌุซุฉ ู ุจุงุฌู ุจุทูุนูู |
|
|
|
105 |
|
00:08:17,730 --> 00:08:22,170 |
|
ุฃู term ู
ู ููุง ูุดุจู ุฃู term ุฅุฐุง ู
ุงููุด ุดุจู ุฎูุงุต |
|
|
|
106 |
|
00:08:22,170 --> 00:08:27,450 |
|
ูุจูู ุงู S ุจูุฏุงุดุ ุจุงุชูููุ ูู ุดุจู ุจุญุท ุงู S ุจุชูุงุชุฉ ู |
|
|
|
107 |
|
00:08:27,450 --> 00:08:32,130 |
|
ููุฐุง ูุงุถุญุฉ ุงูุตูุฑุฉ ุงููู ูุงูุ ูุจูุงุด ุจููู here ุงู S |
|
|
|
108 |
|
00:08:32,130 --> 00:08:35,510 |
|
ู
ู
ูู ุชุงุฎุฏ zero ู ู
ู
ูู ูุงุญุฏ ู ู
ู
ูู ุงุชููู ู ู
ู
ูู |
|
|
|
109 |
|
00:08:35,510 --> 00:08:38,550 |
|
ุชูุงุชุฉ ู ู
ู
ูู ุฅูู ู
ุง ุดุงุก ุงููู ุญุตู ุทุจูุนุฉ ุงูู
ุนุงุฏูุฉ |
|
|
|
110 |
|
00:08:38,940 --> 00:08:45,180 |
|
ุจุญูุซ no term of the solution ip ูููู ุฌุฒุก ูู ุงูุญู |
|
|
|
111 |
|
00:08:45,180 --> 00:08:51,040 |
|
yp ุงููู ุทูุนูุง ูุฐุง is a term in the solution yc ูู |
|
|
|
112 |
|
00:08:51,040 --> 00:08:55,240 |
|
ุนุจุงุฑุฉ ุนู term ู
ูุฌูุฏ ููุง ููุด ูุจุญูุซ ู
ุงููููุด ุนูุฏู |
|
|
|
113 |
|
00:08:55,240 --> 00:09:01,040 |
|
term ุจุงูู
ุนูู ูุจุงูุชุงูู ูู
ุง ุจุฃุฌูุฎ ุจุฎูุตู ุจุฌู
ุน ุงู yp |
|
|
|
114 |
|
00:09:01,040 --> 00:09:05,580 |
|
ู
ุน ุงู yc ุจูุนุทููู ุงู general solution ุชุจุน ุงูู
ุนุงุฏูุฉ |
|
|
|
115 |
|
00:09:05,580 --> 00:09:12,050 |
|
starุฃุธู ูุงุถุญุฉ ุงูุตูุฑุฉุ ูุง ุจุฏูุง ูุทุจููุง ุนูู ุฃุฑุถ |
|
|
|
116 |
|
00:09:12,050 --> 00:09:16,970 |
|
ุงููุงูุน ูุจูู ุฌุงุจ ุงููุงุจุฏุฉ ูุจุฏุฃ ุชุทูุน ูุดุบู ุชูู
ูู |
|
|
|
117 |
|
00:09:16,970 --> 00:09:22,110 |
|
ุงูู
ุนุงุฏูุฉ ู
ุนุงู
ูุชูุง ุซูุงุจุช ููุง ูุฃุ ุงุชููู ูู ุงู F of X |
|
|
|
118 |
|
00:09:22,110 --> 00:09:25,870 |
|
ุนูู ุฃู ุดูู ู
ู ุงูุฃุดูุงู ุงููู ุนูุฏู ูุฐูู ููุง ูุฃุ ุฅุฐุง |
|
|
|
119 |
|
00:09:25,870 --> 00:09:29,210 |
|
ูุงููู ุชุญูู ุงูุดุฑุทุงู automatic ุจุฑูุญ ุงู undetermined |
|
|
|
120 |
|
00:09:29,210 --> 00:09:32,790 |
|
coefficients ู
ุง ุชุญูู ูุจูู ุฑูุญ ุฏูุฑ ุน ุงู variation |
|
|
|
121 |
|
00:09:32,790 --> 00:09:35,690 |
|
of parameters ุฃู ุงู reduction of order ุฃู ู
ุง ุฅูู |
|
|
|
122 |
|
00:09:35,690 --> 00:09:39,860 |
|
ุฐููุจูุงุฎุฏ ุฃู
ุซูุฉ ุจููู ูุงุชู ุงู general solution |
|
|
|
123 |
|
00:09:39,860 --> 00:09:44,040 |
|
ููู
ุนุงุฏูุฉ ุงููู ูุฏุงู
ู ุจูููู ูููุณ ูุจูู ุฃูุง ุจุฏู ุฃุจุฏุฃ |
|
|
|
124 |
|
00:09:44,040 --> 00:09:47,860 |
|
ุจู
ูู ุจุงู homogeneous differential equation ูุจูู |
|
|
|
125 |
|
00:09:47,860 --> 00:09:55,040 |
|
ุงูุญู ูุชุฑู ุจุฏู ุฃูููู let Y ุชุณุงูู E ุฃุต RX be a |
|
|
|
126 |
|
00:09:55,040 --> 00:10:05,800 |
|
solution of the homogeneous differential equation |
|
|
|
127 |
|
00:10:06,110 --> 00:10:12,970 |
|
Equation ููู
ุนุงุฏูุฉ y double prime ุฒุงุฆุฏ ุชูุงุชุฉ y |
|
|
|
128 |
|
00:10:12,970 --> 00:10:20,990 |
|
prime ุฒุงุฆุฏ ุงุชููู y ูุณุงูู zero then |
|
|
|
129 |
|
00:10:20,990 --> 00:10:25,710 |
|
the characteristic |
|
|
|
130 |
|
00:10:27,280 --> 00:10:35,640 |
|
Equation is R ุชุฑุจูุน ุฒุงุฆุฏ ุชูุงุชุฉ R ุฒุงุฆุฏ ุงุชููู ูุณุงูู |
|
|
|
131 |
|
00:10:35,640 --> 00:10:41,900 |
|
ุฒูุฑู ุจุฏู ุงุญู ุงูู
ุนุงุฏูุฉ ูุฐู ูุจูู ูุฐู R ุฒุงุฆุฏ ูุงุญุฏ ูู |
|
|
|
132 |
|
00:10:41,900 --> 00:10:49,560 |
|
Rุฒุงุฆุฏ ุงุชููู ูุณุงูู ุฒูุฑู ูู
ููุง R1 ุชุณุงูู ุณุงูุจ ูุงุญุฏ |
|
|
|
133 |
|
00:10:49,560 --> 00:10:55,040 |
|
ูR2 ุชุณุงูู ุณุงูุจ ุงุชููู ูุจูู ุจูุงุก ุนููู ุฃุตุจุญ ุงู |
|
|
|
134 |
|
00:10:55,040 --> 00:11:01,760 |
|
complementary solution YC ูุณุงูู C ูุงุญุฏ ูู E ุฃุซูุงู |
|
|
|
135 |
|
00:11:01,760 --> 00:11:09,040 |
|
X ุฒุงุฆุฏ C ุงุชููู E ุฃุซูุงู ุงุชููู X ูุจุจุฑุฒู ูุจุฑูุญู ุจุฎููู |
|
|
|
136 |
|
00:11:09,560 --> 00:11:16,760 |
|
ุฎูุตูุง ุงู homogenous ุจุฏูุง ูุฑูุญ ูุฏูุฑ ุนูู ุงู |
|
|
|
137 |
|
00:11:16,760 --> 00:11:21,000 |
|
particular solution ุชุจุน ุงู non homogenous |
|
|
|
138 |
|
00:11:21,000 --> 00:11:25,940 |
|
differential equation ู
ุดุงู ููู ุจุฏุฑูุญ ุงูุญุต ุงูุดุฑุทูู |
|
|
|
139 |
|
00:11:25,940 --> 00:11:29,940 |
|
ุงููู ุนูุฏูุง ุจุฌูุจ ุงุทูุน ุนูู ุงูู
ุนุงุฏูุฉ ุงููู ุนูุฏู ูุฐู |
|
|
|
140 |
|
00:11:31,200 --> 00:11:36,060 |
|
ูุงูุนููู ููุง ุงูู
ุนุงู
ูุงุช ูููู
ุซูุงุจุช ูุจูู ุงุชุญูู ุงูุดุฑุท |
|
|
|
141 |
|
00:11:36,060 --> 00:11:40,940 |
|
ุงูุฃูู ููุง ุงู F of X ุณุชุฉ ูุชูุงุชูู X ูู U6 ูุจูู |
|
|
|
142 |
|
00:11:40,940 --> 00:11:45,420 |
|
polynomial ู
ู ุงูุฏุฑุฌุฉ ุงูุฃููู ู
ุถุฑูุจุฉ ูู ุงู |
|
|
|
143 |
|
00:11:45,420 --> 00:11:49,200 |
|
exponential ุงููู ูู ู
ูู
ุงูุญุงูุฉ ุงูุชุงููุฉ ุงููู ุนูุฏูุง |
|
|
|
144 |
|
00:11:49,200 --> 00:11:58,800 |
|
ุงุฐุง ุจุงุฌู ุจูููู they particular solution |
|
|
|
145 |
|
00:12:00,390 --> 00:12:11,590 |
|
of the differential equation is in the form ุนูู |
|
|
|
146 |
|
00:12:11,590 --> 00:12:19,620 |
|
ุงูุดููู ุงูุชุงูู yp ูุณูู x to the power svุงูุงู ุจุฏู |
|
|
|
147 |
|
00:12:19,620 --> 00:12:22,680 |
|
ุงุฌู ูู polynomial ุงู polynomial ุนูุฏู ู
ู ู
ููุ ู
ู |
|
|
|
148 |
|
00:12:22,680 --> 00:12:30,100 |
|
ุงูุฏุฑุฌุฉ ุงูุงููู ูุจูู ุจุงุฌู ุจูููู a node x ุฒุงุฆุฏ a1 ูู |
|
|
|
149 |
|
00:12:30,100 --> 00:12:36,240 |
|
a ุฃูุณ ุณุงูู ุจ 2x ู
ุธุจูุทุ ุณุงูู ุจ 2x ุจุงูุดูู ุงููู ุนูุฏูุง |
|
|
|
150 |
|
00:12:36,240 --> 00:12:43,360 |
|
ู ุจุงุฌู ุจููู ุงุณุชูู ุดููุฉ ุงูุงู ุจุฏู ุงุดูู ูุฏุงุด ููู
ุฉ S |
|
|
|
151 |
|
00:12:43,360 --> 00:12:48,560 |
|
ุชู
ุงู
ุ ูุฏูู ูู
ุง ุบุทู ูุฐุง ู
ู ููุง ูุงู
term ุจูููููุงุ |
|
|
|
152 |
|
00:12:50,830 --> 00:12:59,390 |
|
ูู a1 ูู eยฒx ููุง ุชุฑู
ุดุจู ูู yc ููุง ูุฃุ ููู aโปx ูู |
|
|
|
153 |
|
00:12:59,390 --> 00:13:03,590 |
|
eยฒx ููุง ุชุฑู
ุดุจู ูู yc ููุง ูุฃุ |
|
|
|
154 |
|
00:13:06,660 --> 00:13:13,920 |
|
ุฅู ูุงูุณุงูุจ X ูุฐู ู
ููุด ุฒููุง ูุฐู C2E ูุงูุณุงูุจ 2X ููุฐู |
|
|
|
155 |
|
00:13:13,920 --> 00:13:19,760 |
|
constant ูู E ูุงูุณุงูุจ 2X ูุฐู ู
ุน ูุฐู ู
ุงููุด ุชุดุงุจู |
|
|
|
156 |
|
00:13:19,760 --> 00:13:25,020 |
|
ุชู
ุงู
ุ ุฅุฐุง ุงูุชุดุงุจู constant ูู ู
ููุ ูู E ูุงูุณุงูุจ 2X |
|
|
|
157 |
|
00:13:25,020 --> 00:13:30,940 |
|
ุฅุฐุง ู
ู ุดุฃู ุฃุดูู ูุฐุง ุงูุชุดุงุจู ุจุญุท S ุจูุฏุงุดูู ุญุทูุช S |
|
|
|
158 |
|
00:13:30,940 --> 00:13:36,160 |
|
ุจูุงุญุฏ ุจุตูุฑ |
|
|
|
159 |
|
00:13:36,160 --> 00:13:39,880 |
|
ุนูุฏู X ุชุฑุจูุน ู
ุงุนูุฏูุด X ุชุฑุจูุน ูู ุงู exponential |
|
|
|
160 |
|
00:13:39,880 --> 00:13:46,580 |
|
ุจุตูุฑ ุนูุฏู X ูู A1 ูู ุงู exponential ููู ุฒููุง ูุจูู |
|
|
|
161 |
|
00:13:46,580 --> 00:13:52,040 |
|
ู
ุงุนูุฏูุด ุฅูุง S ุจูุฏุงุด ููุท ูุง ุบูุฑ ูุจูู ุจุงุฌู ุจูููู |
|
|
|
162 |
|
00:13:52,040 --> 00:13:58,610 |
|
hereุงูู S ุชุณุงูู ูุงุญุฏ ุงููู ุจุชุบูู ูู ูุฐู ุงูุจูุงุช |
|
|
|
163 |
|
00:13:58,610 --> 00:14:03,310 |
|
ุจูููู ุถูุนุฉ ุงูู
ุณุฃูุฉ ูุฃู ูุฐุง ุนู
ูุฏ ููุฑู ุนูุฏู ูู |
|
|
|
164 |
|
00:14:03,310 --> 00:14:10,470 |
|
ุงูู
ุณุฃูุฉ ุฅุฐุง ุจูุงุก ุนููู ุจุฏู ูุตูุฑ ุงู Y P ูุชุงูู X ูู A |
|
|
|
165 |
|
00:14:10,470 --> 00:14:17,440 |
|
ููุฏ Xุฒุงุฆุฏ a1x ูู a ุฃุซูุงู ุฃุซููู x ูุนูู ูุฃูู ุจุฏู |
|
|
|
166 |
|
00:14:17,440 --> 00:14:24,620 |
|
ูุตูุฑ a ููุฏ x ุชุฑุจูุน ุฒุงุฆุฏ a1x ูู a ุฃุซูุงู ุฃุซููู x |
|
|
|
167 |
|
00:14:35,120 --> 00:14:44,100 |
|
ุงูุง ู
ุด ุณุงุฑู ูุงุญุฏ ุงูุณ ุงูุง ู
ุด ุณุงุฑู ูุงุญุฏ ุงูุณ ุงูุง ู
ุด |
|
|
|
168 |
|
00:14:44,100 --> 00:14:50,480 |
|
ุณุงุฑู ูุงุญุฏ ุงูุณ ุงูุง ู
ุด ุณุงุฑู ูุงุญุฏ ุงูุณูุฐู ูุง ุจูุงุช ูู E |
|
|
|
169 |
|
00:14:50,480 --> 00:14:56,780 |
|
of 6 ูููุณ E ุณูุจู 2 X ูุนูู ุฃูุง ุจุชุทูุน ููู ุนูุฏูุง ูุฐู |
|
|
|
170 |
|
00:14:56,780 --> 00:15:01,960 |
|
ุทุจุนุง polynomial ููู 6 ุฅุฐุง ุจูุงุก ุนูู ูู ุงูููุงู
ุงููู |
|
|
|
171 |
|
00:15:01,960 --> 00:15:06,960 |
|
ููุชู ูุฐุง ู
ุงูู ู
ุงููุด ุตุญ ูุจูู ู
ุงูู ุงูุตุญูุญ ุงูู S |
|
|
|
172 |
|
00:15:06,960 --> 00:15:12,200 |
|
ุจูุฏุงุด ุจุฒูุฑู ูุฅู ู
ุงููุด E of 6 ุนูุฏู ุจุงูู
ุฑุฉ ุทุจุนุง ูุจูู |
|
|
|
173 |
|
00:15:12,200 --> 00:15:18,390 |
|
ุจุงุฌู ุจูููู hereุงูู S ุชุณุงูู 0 ูุจูู ุจูุงูุง ุนูููุง ุฃุตุจุญ |
|
|
|
174 |
|
00:15:18,390 --> 00:15:27,850 |
|
YP ุจุฏู ุณุงูู A ููุช X ุฒุงุฆุฏ A1 ูู ุงูู E ู ุงู 6 ูู |
|
|
|
175 |
|
00:15:27,850 --> 00:15:32,690 |
|
ุงุญูุง ุฌูุจูุง ุดูู ุงู particle ุงูุตูููุดุู
ุฌููููู ุจุฏู |
|
|
|
176 |
|
00:15:32,690 --> 00:15:37,410 |
|
ุงุนุฑููู
ูุฏูู ูู
ุงู undetermined coefficients ุงู ููุฏ |
|
|
|
177 |
|
00:15:37,410 --> 00:15:43,590 |
|
ู ุงู ูุงุญุฏ ุจุฏู ุงุนุฑููู
ููู ุจุณูุทุฉ ุฌุฏุง ุจุฏูุง ูุฑุฌุน ูุนูุถ |
|
|
|
178 |
|
00:15:43,590 --> 00:15:48,090 |
|
ูู ุงูู
ุนุงุฏูุฉ ุงูุฃุตููุฉ ุงููู ุนูุฏูุง ุชู
ุงู
ุ ู
ุนูุงุชู ุจุฏู |
|
|
|
179 |
|
00:15:48,090 --> 00:15:55,730 |
|
ูุฒู
ูู ุงููู ูู ุงู YP' ู YPW'ูุฐู ู
ุด ูููุถููุง ู
ุดุชูุฉ |
|
|
|
180 |
|
00:15:55,730 --> 00:16:02,490 |
|
ุญุงุตู ุถุฑุจ ุฏุงูุชูู ูุจูู ู
ุดุชูุฉ ุงูุฃููู ูู ุงูุซุงููุฉ ุฒุงุฆุฏ |
|
|
|
181 |
|
00:16:02,490 --> 00:16:07,070 |
|
a node x ุฒุงุฆุฏ a1 ู
ุดุชูุฉ ุงู exponential ุจุงู |
|
|
|
182 |
|
00:16:07,070 --> 00:16:13,920 |
|
exponential itselfุจุฏูุง ุงูุงู ypw prime ูุฐู ู
ุดุชูุฉ |
|
|
|
183 |
|
00:16:13,920 --> 00:16:19,100 |
|
ุชููู ุงุตูุง ุซุงุจุช ู ุงู exponential ุจููุณูุง ูุฐู ุญุตู ุถุฑุจ |
|
|
|
184 |
|
00:16:19,100 --> 00:16:26,120 |
|
ุฏุงูุชูู ูุจูู ู
ุดุชูุฉ ุงูุฃููู ูู ุงูุซุงููุฉ ุฒุงุฆุฏ ุงู a node |
|
|
|
185 |
|
00:16:26,120 --> 00:16:30,520 |
|
x ุฒุงุฆุฏ ุงู a1 ู
ุดุชูุฉ ุงู exponential ุจุงู exponential |
|
|
|
186 |
|
00:16:30,520 --> 00:16:39,030 |
|
itself ูุจูู ุตุงุฑุช ูุฐู ุงุชููู a node us xุฒุงุฆุฏ a |
|
|
|
187 |
|
00:16:39,030 --> 00:16:48,010 |
|
naught x ุฒุงุฆุฏ ุงู a one ูู ูุฐุง ู
ุถุฑูุจ ูู ุงู EOSX |
|
|
|
188 |
|
00:16:48,010 --> 00:16:52,010 |
|
ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุง ุงูุงู ุจุฏู ุงู
ุณู ุงูู
ุนููู
ุงุช ุงููู |
|
|
|
189 |
|
00:16:52,010 --> 00:16:57,210 |
|
ุญุตูุช ุนูููุง ูุงุฑูุญ ุงุนูุถ ูู ุงูู
ุนุงุฏูุฉ ุงูุฃุตููุฉ ูุฐู ู
ููุง |
|
|
|
190 |
|
00:16:57,210 --> 00:17:02,290 |
|
ุงููู ุจุฏู ุงุณู
ููุง star ูุจุฌูุจ ุงููู ููุง substitute |
|
|
|
191 |
|
00:17:06,030 --> 00:17:14,510 |
|
N equation star we get ุงูุฃูู YW prime ูุจูู ุจุฏู ูุฒู |
|
|
|
192 |
|
00:17:14,510 --> 00:17:24,850 |
|
ูุฐูู ุฒู ู
ุง ูู
ุง ุงุชููู A node U6 ุฒุงุฆุฏ A1 X ุฒุงุฆุฏ A |
|
|
|
193 |
|
00:17:24,850 --> 00:17:33,200 |
|
node X ุฒุงุฆุฏ ุงู A1 ููู ูู ุงู U6 ูุฐุง ู
ูู
ุงููู ูู ุงูู |
|
|
|
194 |
|
00:17:33,200 --> 00:17:37,620 |
|
YW' ุจุฏู ุชูุงุชุฉ ูู ุงูู Y' ูููู ุงูู Prime ูุงูุง ุจุฏู |
|
|
|
195 |
|
00:17:37,620 --> 00:17:44,640 |
|
ุฃุถุฑุจูุง ูู ุชูุงุชุฉ ูุจูู ุฒุงุฆุฏ ุชูุงุชุฉ A node EO6 ุฒุงุฆุฏ |
|
|
|
196 |
|
00:17:44,640 --> 00:17:51,730 |
|
ุชูุงุชุฉ A node Xุฒุงุฆุฏ ุชูุงุชุฉ a one ูู ุงู a ู ุงู six |
|
|
|
197 |
|
00:17:51,730 --> 00:18:00,130 |
|
ุจุนุฏูุง ุฒุงุฆุฏ ุงุชููู y ูู ุงู y ูุจูู ุฒุงุฆุฏ ุงุชููู a node |
|
|
|
198 |
|
00:18:00,130 --> 00:18:06,450 |
|
x ุฒุงุฆุฏ ุงุชููู a one ูู ุงู a ู ุงู six ููู ุจุฏู ูุณูู |
|
|
|
199 |
|
00:18:06,450 --> 00:18:15,190 |
|
ุณุชุฉ ู ุชูุงุชูู x a ู ุงู sixุฃูุด ุฑุฃูููุงุ ุจุฏู ุฃูุณู
ููู |
|
|
|
200 |
|
00:18:15,190 --> 00:18:18,970 |
|
ุนูู U6 ุงูุทุฑููู ู
ุฑุฉ ูุงุญุฏุฉ ุญุชู ูุชุฎูุต ู
ู ูุฐู ุงูุดุบูู |
|
|
|
201 |
|
00:18:18,970 --> 00:18:26,570 |
|
ุจุตูุฑ ุนูุฏู ุงุชููู A node ุฒุงุฆุฏ A node X ุฒุงุฆุฏ ุงู A1 |
|
|
|
202 |
|
00:18:26,570 --> 00:18:35,010 |
|
ุฒุงุฆุฏ ุชูุงุชุฉ A node ุฒุงุฆุฏ ุชูุงุชุฉ A node X ุฒุงุฆุฏ ุชูุงุชุฉ |
|
|
|
203 |
|
00:18:35,010 --> 00:18:43,610 |
|
A1 ุฒุงุฆุฏ ุงุชููู A node Xุฒุงุฆุฏ ุงุชููู ุงู ุงุชููู ุงู ุงุชููู |
|
|
|
204 |
|
00:18:43,610 --> 00:18:44,950 |
|
ุงู ุงุชููู ุงู ุงุชููู ุงู ุงุชููู ุงู ุงุชููู ุงู ุงุชููู ุงู |
|
|
|
205 |
|
00:18:44,950 --> 00:18:47,610 |
|
ุงุชููู ุงู ุงุชููู ุงู ุงุชููู ุงู ุงุชููู ุงู ุงุชููู ุงู ุงุชููู |
|
|
|
206 |
|
00:18:47,610 --> 00:18:51,090 |
|
ุงู ุงุชููู ุงู ุงุชููู ุงู ุงุชููู ุงู ุงุชููู ุงู ุงุชููู ุงู |
|
|
|
207 |
|
00:18:51,090 --> 00:18:53,370 |
|
ุงุชููู ุงู ุงุชููู ุงู ุงุชููู ุงู ุงุชููู ุงู ุงุชููู ุงู ุงุชููู |
|
|
|
208 |
|
00:18:53,370 --> 00:18:54,090 |
|
ุงู ุงุชููู ุงู ุงุชููู ุงู ุงุชููู ุงู ุงุชููู ุงู ุงุชููู ุงู |
|
|
|
209 |
|
00:18:54,090 --> 00:18:54,870 |
|
ุงุชููู ุงู ุงุชููู ุงู ุงุชููู ุงู ุงุชููู ุงู ุงุชููู ุงู ุงุชููู |
|
|
|
210 |
|
00:18:54,870 --> 00:19:02,180 |
|
ุงู ุงุชููู ุงูุฐู ุงูู
ุนุงุฏูุฉ ูููุง X ููุฐู ุงูู
ุนุงุฏูุฉ ูููุง X |
|
|
|
211 |
|
00:19:02,180 --> 00:19:06,560 |
|
ุงุด ุบูุฑ ู ุณุงูุจ ู
ุงุนูุฏูุด ุจุงูู
ุฑุฉ ูู ุงูู
ุนุงุฏูุฉ ู
ุด ู
ุดููุฉ |
|
|
|
212 |
|
00:19:06,560 --> 00:19:12,160 |
|
ูุจูู ุนูุฏ ููุง ุจูุงุช ูุฏู ุงุด A node X ู ุชูุงุชุฉ A node X |
|
|
|
213 |
|
00:19:12,160 --> 00:19:19,060 |
|
ูุจูู ุงุฑุจุนุฉ A node X ู ุงุชููู A node X ูุจูู ุณุชุฉ A |
|
|
|
214 |
|
00:19:19,060 --> 00:19:26,670 |
|
node Xุงูุงู ุนูุฏูุง ู
ููุ ุนูุฏูุง ุงุชููู a ููุช ู ุงุชููู a |
|
|
|
215 |
|
00:19:26,670 --> 00:19:33,230 |
|
one ู ุชูุงุชุฉ a note ู ุชูุงุชุฉ a one ู ุงุชููู a one ูุฌู |
|
|
|
216 |
|
00:19:33,230 --> 00:19:38,890 |
|
ูุฌู
ุน ุนูุฏูุง ุชูุงุชุฉ a note ู ุงุชููู a note ูุจูู ุฎู
ุณุฉ a |
|
|
|
217 |
|
00:19:38,890 --> 00:19:45,000 |
|
noteูุฌู
ุน A1 ู A1 ู A1 ู A1 ู A1 ู A1 ู A1 ู A1 ู |
|
|
|
218 |
|
00:19:45,000 --> 00:19:57,620 |
|
A1 ู A1 ู A1 ู A1 ู A1 ู A1 ู A1 ู A1 ู A1 ู A1 |
|
|
|
219 |
|
00:19:58,110 --> 00:20:02,270 |
|
ุงูุงู ุจุนุฏ ู
ุง ูุตููุง ููุฐุง ุจุฑูุญ ุจูุงุฑู ุงูู
ุนุงู
ูุงุช ูู |
|
|
|
220 |
|
00:20:02,270 --> 00:20:06,710 |
|
ุงูุทุฑููู ุฅุฐุง ูู ุฑูุญูุง ูุงุฑููุง ุงูู
ุนุงู
ูุงุช ูู ุงูุทุฑููู |
|
|
|
221 |
|
00:20:06,710 --> 00:20:14,790 |
|
ุจุตูุฑ 6A ููุฏ ุจุฏู ูุณุงูู 36 ูุจูู A ููุฏ ูุจูู 13 ุจูุงุช |
|
|
|
222 |
|
00:20:15,660 --> 00:20:23,420 |
|
ุจุณุชุฉ ุชู
ุงู
and ุงูู
ุนุงุฏูุฉ ุงูุชุงููุฉ ุฎู
ุณุฉ a node ุฒุงุฆุฏ |
|
|
|
223 |
|
00:20:23,420 --> 00:20:28,780 |
|
ุณุชุฉ a one ุจุฏู ูุณุงูู ูุฏุงุด zero ูุงูุญูู a node ุนูุฏู |
|
|
|
224 |
|
00:20:28,780 --> 00:20:37,400 |
|
ุจุณุชุฉ ูุจูุงุด ุจุตูุฑ ุนูุฏ ููุง ุจุตูุฑ ุฎู
ุณุฉ ูู ุณุชุฉ ุฒุงุฆุฏ ุงููู |
|
|
|
225 |
|
00:20:37,400 --> 00:20:46,210 |
|
ูู ุณุชุฉ a one ุจุฏู ูุณุงูู zero ุฎู
ุณุฉ ูู ุณุชุฉุณุงูุจ ุชูุงุชูู |
|
|
|
226 |
|
00:20:46,210 --> 00:20:55,650 |
|
ุนูู ุณุชุฉ ุจุตูุฑ ุงู A1 ุณุงูุจ ุฎู
ุณุฉ ูุจูู ุจูุงุก ุนููู ุงุตุจุญ |
|
|
|
227 |
|
00:20:55,650 --> 00:21:01,990 |
|
ุงู particular solution YP ูุณุงูู ูุฐุง ุดูู ุงู |
|
|
|
228 |
|
00:21:01,990 --> 00:21:06,510 |
|
particular solution ูุดูู ุงู A node ู ุงุญุท ู
ูุงููุง |
|
|
|
229 |
|
00:21:06,510 --> 00:21:15,050 |
|
ุณุชุฉ ูุจูู ูุงู 6 Xูุงูุต ุฎู
ุณุฉ ููู ูู ู
ูุ ูู ุงููEO6 |
|
|
|
230 |
|
00:21:15,050 --> 00:21:21,070 |
|
ุจุฏูุง ุดูู ุงู general solution ูุจูู ุจุงุฌู ุจูููู ุดูู |
|
|
|
231 |
|
00:21:21,070 --> 00:21:25,950 |
|
ุงู general solution ุนูู ุงูุดูู ุงูุชุงูู ุฏู |
|
|
|
232 |
|
00:21:40,470 --> 00:21:43,270 |
|
general solution |
|
|
|
233 |
|
00:21:46,420 --> 00:21:56,140 |
|
Y ุชุณุงูู YC ุฒุงุฆุฏ YP ูุจูู Y ูุณุงูู ูุฌู YC ููู YC ููู |
|
|
|
234 |
|
00:21:56,140 --> 00:22:07,700 |
|
ูุจูู C1 E-X ุฒุงุฆุฏ C2 E-2X ุฒุงุฆุฏ ุงูุญู ุงููู ุทูุนูุงู YP |
|
|
|
235 |
|
00:22:07,700 --> 00:22:16,910 |
|
ุฒุงุฆุฏ 6X-5 ููู ูู E-X ูุจูู ูุฐุงุงูุฌูุฑุงู ุตูููุดู ุงูุงู
ุงู
|
|
|
|
236 |
|
00:22:16,910 --> 00:22:23,510 |
|
ููู
ุนุงุฏูุฉ ุงูุชูุงุถููุฉ ุงููู ุนูุฏูุง ูุฌู ูุงุฎุฏ ู
ุซุงู ุซุงูู |
|
|
|
237 |
|
00:22:23,510 --> 00:22:27,490 |
|
example |
|
|
|
238 |
|
00:22:27,490 --> 00:22:32,190 |
|
two solve |
|
|
|
239 |
|
00:22:32,190 --> 00:22:39,930 |
|
the differential equation |
|
|
|
240 |
|
00:22:39,930 --> 00:22:46,550 |
|
ุญู ุงูู
ุนุงุฏูุฉ ุงูุชูุงุถููุฉุฃุตู ุงูู initial value problem |
|
|
|
241 |
|
00:22:46,550 --> 00:23:01,850 |
|
ูุจูู ุงูู initial value problem ูุจูู |
|
|
|
242 |
|
00:23:01,850 --> 00:23:02,790 |
|
ุงูู initial value problem ูุจูู ุงูู initial value |
|
|
|
243 |
|
00:23:02,790 --> 00:23:04,550 |
|
problem ูุจูู ุงูู initial value problem ูุจูู ุงูู |
|
|
|
244 |
|
00:23:04,550 --> 00:23:04,590 |
|
initial value problem ูุจูู ุงูู initial value |
|
|
|
245 |
|
00:23:04,590 --> 00:23:04,730 |
|
initial value problem ูุจูู ุงูู initial value |
|
|
|
246 |
|
00:23:04,730 --> 00:23:08,010 |
|
initial value problem ูุจูู ุงูู initial value |
|
|
|
247 |
|
00:23:08,010 --> 00:23:09,990 |
|
problem ูุจูู ุงูู initial value problem ูุจูู ุงูู |
|
|
|
248 |
|
00:23:09,990 --> 00:23:10,550 |
|
initial value problem ูุจูู ุงูู initial value |
|
|
|
249 |
|
00:23:10,550 --> 00:23:15,400 |
|
problem ูู ุงู y ุนูุฏ ุงู zero ุจุฏู ูุณุงูู ุณุงูุจ ูุงุญุฏ ู |
|
|
|
250 |
|
00:23:15,400 --> 00:23:21,400 |
|
ุงู y prime ุนูุฏ ุงู zero ุจุฏู ูุณุงูู ูุงุญุฏ ู ูุงุฏ ูุณู
ููุง |
|
|
|
251 |
|
00:23:21,400 --> 00:23:24,140 |
|
ููู
ูู ุงูู
ุนุงุฏูุฉ star |
|
|
|
252 |
|
00:23:46,020 --> 00:23:55,040 |
|
ูุฐุง ุฎูุตูุง ู
ูู ูุฑุฌุน |
|
|
|
253 |
|
00:23:55,040 --> 00:23:56,220 |
|
ูุณุคุงู ู
ุฑุฉ ุชุงููุฉ |
|
|
|
254 |
|
00:24:01,960 --> 00:24:08,220 |
|
ุจูููู ุจุณูุทุฉ ูุจูู ุงุญูุง ุจุฏูุง ููุฌู ููุญู ุนูู ุงูุดูู |
|
|
|
255 |
|
00:24:08,220 --> 00:24:14,900 |
|
ุงูุชุงูู ุจุฏูุง ูุงุฎุฏ ุงู homogeneous ูููุฑุถ ุงููู ุญู ูุจูู |
|
|
|
256 |
|
00:24:14,900 --> 00:24:23,600 |
|
let Y ุชุณุงูู E ูุตุฉ RX ุจูู solution of the |
|
|
|
257 |
|
00:24:23,920 --> 00:24:29,780 |
|
Differential equation ุงููู ุน ุงูุดูู ุงูุชุงูู ุฒู prime |
|
|
|
258 |
|
00:24:29,780 --> 00:24:33,700 |
|
ููุต ุงุชููู ูุงุญุฏ ุณุงูู ุฒูุฑู ุงููู ูู ุงู homogeneous |
|
|
|
259 |
|
00:24:33,700 --> 00:24:38,200 |
|
ุจุนุฏ ููู ุจุงุฌู ุจูููู the characteristic |
|
|
|
260 |
|
00:24:41,660 --> 00:24:49,880 |
|
Equation is R ุชุฑุจูุน ุฒุงุฆุฏ ุงูุงุฑ ูุงูุต ุงุชููู ูุณุงูู |
|
|
|
261 |
|
00:24:49,880 --> 00:24:55,460 |
|
ุฒูุฑู ูุฐู ูู ุฌูุช ุญููุช ุจุญูููุง ุงูู ููุณูู ููู ุจุฏู |
|
|
|
262 |
|
00:24:55,460 --> 00:25:01,180 |
|
ูุณุงูู ุฒูุฑู ูุจูู ููุง R ู ููุง R ููุง ูุงุญุฏ ููุง ุงุชููู |
|
|
|
263 |
|
00:25:01,180 --> 00:25:07,570 |
|
ููุง ุฒุงุฆุฏ ูุงูุตูุจูู ุจุงููุณุจุฉ ุนููู ุตุงุฑุช ุงูุงุฑ ุชุณุงูู |
|
|
|
264 |
|
00:25:07,570 --> 00:25:13,890 |
|
ูุงุญุฏ ูุงูุงุฑ ุชุณุงูู ุณุงูุจ ุงุชููู ูุจูู ุจุงููุณุจุฉ ุนููู ุจุฌูุจ |
|
|
|
265 |
|
00:25:13,890 --> 00:25:21,190 |
|
ุญู ุงูู
ุนุงุฏูุฉ ุงูู
ุชุฌุงูุณุฉ ู ุจุณู
ูู YC ูุจูู C ูุงุญุฏ EOS X |
|
|
|
266 |
|
00:25:21,190 --> 00:25:27,310 |
|
ุฒุงุฆุฏ C ุงุชููู EOS ูุงูุต ุงุชููู X ุงูุดูู ุงููู ุนูุฏูุง ูุฐุง |
|
|
|
267 |
|
00:25:28,160 --> 00:25:32,960 |
|
ุงูุงู ุจุฑูุญ ุงุฏูุฑ ุนูู ุดูู ุงู particular solution ุจุงุฌู |
|
|
|
268 |
|
00:25:32,960 --> 00:25:37,920 |
|
ุจุทูุน ูู ุงูู
ุนุงุฏูุฉ ุงููู ุนูุฏู ุงูุดุฑุท ุงููู ูู ุงูู
ุชุญูู |
|
|
|
269 |
|
00:25:37,920 --> 00:25:44,680 |
|
ููู ุซูุงุจุช ุงูุดุฑุท ุงูุชุงูู two exponential ุชูุชูู |
|
|
|
270 |
|
00:25:44,680 --> 00:25:50,160 |
|
ู
ุฎุชููุงุช ุนู ุจุนุถ ุชู
ุงู
ุงุฃุฐุง ุณุฃุฐูุจ ูุญูุธ ุงูู
ุนุงุฏูุฉ ุงูุชู |
|
|
|
271 |
|
00:25:50,160 --> 00:25:54,460 |
|
ูุฏู ุฅูู ู
ุนุงุฏูุชูู ูุนูู ุจุฏู ู
ุง ููุช ุฃุฑูุฏ ุญู ู
ุซูุง ุฃุฑูุฏ |
|
|
|
272 |
|
00:25:54,460 --> 00:25:59,480 |
|
ุญู ู
ุงู ุชูุชูู ู
ุนุงูู
ุงูู
ุฑุฉ ุงูุชู ูุงุชุช ุฃุฎุฑ ููุทุฉ ูู |
|
|
|
273 |
|
00:25:59,480 --> 00:26:04,580 |
|
ู
ุญุงุถุฑุฉ ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ ูููุง ูู L of Y ูุณุงูู F of X ู |
|
|
|
274 |
|
00:26:04,580 --> 00:26:08,900 |
|
L of Y ูุณุงูู G of X ูุฐู ููparticular solution ููุฐู |
|
|
|
275 |
|
00:26:08,900 --> 00:26:11,240 |
|
ููparticular solution ูุจูู ุงููparticular solution |
|
|
|
276 |
|
00:26:11,240 --> 00:26:15,440 |
|
ููู
ุนุงุฏูุฉ ุงูุฃุตููุฉ ูู ู
ุฌู
ูุน ูุฅุชููู ุชู
ุงู
ูุจูู ุงูุขู |
|
|
|
277 |
|
00:26:15,440 --> 00:26:21,830 |
|
ุจุฏูุง ูุฐูุจ ูุณุชุฎุฏู
ููุจูู ุจุงุฌู ุจูููู the differential |
|
|
|
278 |
|
00:26:21,830 --> 00:26:30,910 |
|
equation a star is written as ุจุฑูุญ ุจูุชุจ ุนูู ุงูุดูู |
|
|
|
279 |
|
00:26:30,910 --> 00:26:38,510 |
|
ุงูุชุงูู y w prime ุฒุงุฆุฏ y prime ูุงูุต ุงุชููู y ูุณูู |
|
|
|
280 |
|
00:26:38,510 --> 00:26:45,110 |
|
ุณุชุฉ e ู ูุงูุต x ุงูู
ุนุงุฏูุฉ ุงูุชุงููุฉ y w prime ุฒุงุฆุฏ y |
|
|
|
281 |
|
00:26:45,110 --> 00:26:51,670 |
|
primeููุต ุงุชููู Y ูุณูู ุงุฑุจุนุฉ E ุฃุณ ูุงูุต ุชูุงุชุฉ X |
|
|
|
282 |
|
00:26:51,670 --> 00:26:55,110 |
|
ูุงุถุญุฉ |
|
|
|
283 |
|
00:26:56,200 --> 00:27:01,000 |
|
ูุธุฑุฉ ูุฃู F of X ู
ุฌู
ูุนุฉ ุฏูุชูู ููู ูุงุญุฏุฉ ู
ููุตูุฉ ุนู |
|
|
|
284 |
|
00:27:01,000 --> 00:27:05,300 |
|
ุงูุชุงููุฉ ูุฌุณู
ุช ุงูู
ุนุงุฏูุฉ ุฅูู ู
ุนุงุฏูุชูู ูุนูู ูู ุฑูุญุช |
|
|
|
285 |
|
00:27:05,300 --> 00:27:10,300 |
|
ุฑุฌุนุชูู
ูุฃุตููู
ุจุตูุฑ ูุฐุง ูู ุงูู
ุนุงุฏูุฉ ุงูุฃุตููุฉ ุงููู |
|
|
|
286 |
|
00:27:10,300 --> 00:27:15,240 |
|
ุนูุฏู ุจุณ ู
ุถุฑูุจุฉ ูู ูุต ุจูุฃุซุฑ ุนูู ุดูู ุงูุญู ูุง ุจูุฃุซุฑุด |
|
|
|
287 |
|
00:27:15,240 --> 00:27:19,080 |
|
ุงููุต ุจูุฌู ู
ุน ุงู constants ููุงู ุงููู ุจุงูุณุฑ ุนููู
ุง |
|
|
|
288 |
|
00:27:19,080 --> 00:27:27,930 |
|
ูุฌู ููุฐู ุจุฏูุง ุงู Y P1ูุจูู ุจุงุฌู ุจููู X to the power |
|
|
|
289 |
|
00:27:27,930 --> 00:27:33,910 |
|
S ูู Ion ุจููู |
|
|
|
290 |
|
00:27:33,910 --> 00:27:37,510 |
|
ุงูู
ุนุงุฏูุฉ ุงููู ุนูุฏูุง ูุฐู ูุธุฑุง ูุฅู ุงู exponential |
|
|
|
291 |
|
00:27:37,510 --> 00:27:41,630 |
|
ูุฐู ุชุฎุชูู ุนู ุงู exponential ูุฐู ุจุฌุฒุก ุงูู
ุนุงุฏูุฉ ุฅูู |
|
|
|
292 |
|
00:27:41,630 --> 00:27:46,150 |
|
ู
ุนุงุฏูุชูู ุชู
ุงู
ุจุฌูุจ ุงูุญู ุงูุฎุงุต ููู
ุนุงุฏูุฉ ุงูุฃููู ู |
|
|
|
293 |
|
00:27:46,150 --> 00:27:50,050 |
|
ุจุฌูุจ ุงูุญู ุงูุฎุงุต ูู
ุนุงุฏูุฉ ุชุงููุฉ ูุจูู ุงูุญู ุงูุฎุงุต ุงููู |
|
|
|
294 |
|
00:27:50,050 --> 00:27:55,230 |
|
ูู ู
ุฌู
ูุน ููู
ูู ู
ุฌู
ูุน ูุงุชูููุทุจุนุง ูุฏ ุชุณุชุบุฑุจูุง ุงูู |
|
|
|
295 |
|
00:27:55,230 --> 00:27:59,390 |
|
ุงูุง ูู ุฌู
ุนุช ุงูู
ุนุงุฏูุฉ ุชู ุงุชููู ูุฏูู ุจูุนุทููู
|
|
|
|
296 |
|
00:27:59,390 --> 00:28:03,070 |
|
ุงูู
ุนุงุฏูุฉ ุงูุฃุตููุฉ ูุฏู ุฒู
ุงู ูู ุจุณ ุงูุทุฑู ูุฐุง ู
ุถุฑูุจ ูู |
|
|
|
297 |
|
00:28:03,070 --> 00:28:06,730 |
|
ูุต ูุฅูู ุจูุตูุฑ ุงุชููู ุงูู
ุนุงุฏูุฉ ุน ุงูุดู
ุงู ูุณูุก ุงูู
ุฌู
ูุน |
|
|
|
298 |
|
00:28:06,730 --> 00:28:11,090 |
|
ูุงุชููู ูุตูุง ุงููู ูุคุซุฑ ุนูู ุดูู ุงูุญู ูุฃู ูุตูุง ุนูุฏ |
|
|
|
299 |
|
00:28:11,090 --> 00:28:14,530 |
|
ู
ูุงุณุจ ุงูุญู ุจูููู ุฏุงุฎู ู
ุน ู
ูู ู
ุน ุงู constants ููุงู |
|
|
|
300 |
|
00:28:14,530 --> 00:28:18,290 |
|
ุงููู ุจุงูุณุฑ ุนููู ุชู
ุงู
ูุจูู ุจุงุฌู ููู
ุนุงุฏูุฉ ุงูุฃููู |
|
|
|
301 |
|
00:28:18,290 --> 00:28:22,620 |
|
ุจููู X to the power S ู ุจุงุฌู ุจุทูุนูู ุนูุฏู ููุง |
|
|
|
302 |
|
00:28:22,620 --> 00:28:27,320 |
|
polynomial ูุง ุจูุงุชุ ุงู ูู ุจุณ polynomial ู
ู ุงูุฏุฑุฌุฉ |
|
|
|
303 |
|
00:28:27,320 --> 00:28:36,560 |
|
ุงูุตูุฑูุฉ ุจูู ุจูููู ุงูู ุงูู ุฃุณ ูุงูุต X ุจุณ ู
ุด ุฃูุชุฑ ุจุฏู |
|
|
|
304 |
|
00:28:36,560 --> 00:28:41,300 |
|
ุฃุฑูุญ ุฃุฏูุฑ ุนูู ุงู S ุจุงุฌู ุจุงุทูุน ูู ุงููู ุจูู ูุณูู |
|
|
|
305 |
|
00:28:41,300 --> 00:28:44,020 |
|
ูุดุจู ุฃู term ุนูุฏูุงุ |
|
|
|
306 |
|
00:28:51,250 --> 00:29:03,920 |
|
ูุจูู ูุจูู ูุจูู ูุจูู ูุจูู ูุจูู ูุจูู ูุจูููุฌู |
|
|
|
307 |
|
00:29:03,920 --> 00:29:13,660 |
|
ููู
ุนุงุฏูุฉ ุงูุชุงููุฉ ุงู YP2 YP2 ุจุฏู ูุณุงูู ูุฐุง ุงู X to |
|
|
|
308 |
|
00:29:13,660 --> 00:29:18,920 |
|
the power S ููู ูู
ุงู ููุณ ุงููุตุฉ ุจุณ ุจุบูุฑ ุงู |
|
|
|
309 |
|
00:29:18,920 --> 00:29:25,040 |
|
polynomial ุงููู ููุงู ุจุฑูุญ ุจูููู ูุฐู P ูู E ุฃุณ ูุงูุต |
|
|
|
310 |
|
00:29:25,040 --> 00:29:34,940 |
|
ุชูุงุชุฉ X ุชูุงุชุฉ X ูู ุฒููุงูุจูู ุงูู S ูุณุงูู 0 ุชู
ุงู
ุ ู
ู |
|
|
|
311 |
|
00:29:34,940 --> 00:29:40,400 |
|
ุฃูู ุฌุงุก ุงูุชูุงุชุฉ ูุฐูุ ุขูุ ุงูุญููุง ูููุ ูุง ูุง ูุงุ |
|
|
|
312 |
|
00:29:40,400 --> 00:29:46,220 |
|
ุงุณุชูู ุดููุฉ ูู E ุฃุณ ุชูุงุชุฉ X ูู ุงูู
ุณุฃูุฉุ ู
ุธุจูุทุ ุขูุ |
|
|
|
313 |
|
00:29:46,220 --> 00:29:52,200 |
|
ูุจูู ูู E ุฃุณ ุชูุงุชุฉ X ูู ุงูู
ุณุฃูุฉ ุงูู
ูุฌูุฏุฉุ ูุจูู ููุด |
|
|
|
314 |
|
00:29:52,200 --> 00:29:57,140 |
|
ุชุดุงุจู ู
ุง ุจูููุง ูุจูู ุฃู term ููุง ูุจูู ูู
ุงู ููุงุ |
|
|
|
315 |
|
00:29:57,140 --> 00:30:04,970 |
|
hereS is equal to zero ูุจูู ุฃุตุจุญ ุงู YP2 ุจูุณุงูู B |
|
|
|
316 |
|
00:30:04,970 --> 00:30:10,010 |
|
ูู E ุฃุซ ูุงูุต ุชูุงุชุฉ X ุฅุฐุง ุตุงุฑ ุดูู ุงู particular |
|
|
|
317 |
|
00:30:10,010 --> 00:30:18,590 |
|
solution YP ูุณุงูู YP1 ุฒุงุฆุฏ YP2 ูุจูู A ูู E ุฃุซ ูุงูุต |
|
|
|
318 |
|
00:30:18,590 --> 00:30:25,050 |
|
X ุฒุงุฆุฏ B ูู E ุฃุซ ูุงูุต ุชูุงุชุฉ X ูุจูู ุตุงุฑ ุดูู ุงู |
|
|
|
319 |
|
00:30:25,050 --> 00:30:26,530 |
|
general solution |
|
|
|
320 |
|
00:30:33,070 --> 00:30:44,770 |
|
Y ุชุณุงูู YC ุฒุงุฆุฏ YP ููู ุงู Y ูุจูู ูุฐู ุงู Y ูุณุงูู YC |
|
|
|
321 |
|
00:30:52,230 --> 00:30:59,650 |
|
ุจูุทูุน ุดูู a ูุฏ ููู
ุฉ a ูb ูุจูู ุจุฏู ุงุฑุฌุน ููู ุจุฏู |
|
|
|
322 |
|
00:30:59,650 --> 00:31:04,490 |
|
ุงุฑุฌุน ุงู ุงู ุงู ุงุณุชูู ุงุณุชูู ุดููุฉ ูุฐุง ุดููู ุจุณ ุจุฏู |
|
|
|
323 |
|
00:31:04,490 --> 00:31:11,390 |
|
ุงุทูุน ูุฏ ููู
ุฉ a ูb ูุจูู ุจุฏุงุฌู ููุง y p one prime |
|
|
|
324 |
|
00:31:11,390 --> 00:31:15,310 |
|
ูุงูุต a ูู u ูุงูุต x ุชู
ุงู
|
|
|
|
325 |
|
00:31:19,020 --> 00:31:25,340 |
|
ูYP1W' ูุณุงูู A ูู E ุฃุณ ูุงูุต X ูุฑุฌุน ูุนูุถ ูุงุฎุฏ |
|
|
|
326 |
|
00:31:25,340 --> 00:31:29,840 |
|
ุงูู
ุนููู
ุงุช ูุฐู ููุนูุถ ูู ุงูู
ุนุงุฏูุฉ ุงููู ููู ูุจูู ุงู |
|
|
|
327 |
|
00:31:29,840 --> 00:31:39,340 |
|
YW' ุตุงุฑุช A ูู E ุฃุณ ูุงูุต X ุฒุงุฆุฏ Y' ุงููู ูู ูุงูุต A |
|
|
|
328 |
|
00:31:39,340 --> 00:31:46,860 |
|
ูู E ุฃุณ ูุงูุต Xูููุง ูุงูุต ุงุชููู a ูู ุงู E ุงุต ูุงูุต X |
|
|
|
329 |
|
00:31:46,860 --> 00:31:52,840 |
|
ููู ุจุฏู ูุณุงูู ุงูุณุชุฉ E ุงุต ูุงูุต X ุงุธู ูุฏูู ุงุชููู ู
ุน |
|
|
|
330 |
|
00:31:52,840 --> 00:31:57,860 |
|
ุจุนุถ ุงููู ุณูู ุนูููู
ูุจูุงุก ุงู ุนููู ุจุตูุฑ ุณุงูู ุจุงุชููู |
|
|
|
331 |
|
00:31:57,860 --> 00:32:05,460 |
|
a ูุณุงูู ุณุชุฉ ูุจูู ุงู a ุชุณุงูู ูุฏุงุดุณุงูุจ ุชูุงุชุฉ ูุฌู |
|
|
|
332 |
|
00:32:05,460 --> 00:32:10,380 |
|
ุจุงูู
ุซู ููุง ูุณุงูู |
|
|
|
333 |
|
00:32:10,380 --> 00:32:18,080 |
|
ูุงูุต ุชูุงุชุฉ ุจู ุงุซ ูุงูุต ุชูุงุชุฉ ุงูุณ ู ุงู YPW prime |
|
|
|
334 |
|
00:32:18,080 --> 00:32:24,440 |
|
ูุณุงูู ุชุณุนุฉ ุจู ุงุซ ูุงูุต ุชูุงุชุฉ ุงูุณ ุจุฏูุง ูุงุฎุฏ ุงูู
ุนููู
ุฉ |
|
|
|
335 |
|
00:32:24,440 --> 00:32:28,960 |
|
ุงููู ุญุตููุง ุนูููุง ู ูุฑุฌุน ูุนูุถ ูู ุงูู
ุนุงุฏูุฉ ุงููู ููู |
|
|
|
336 |
|
00:33:00,010 --> 00:33:06,460 |
|
ูุจูู ุงูุด ุจูุตูุฑ ุนูุฏูุงุชุงูุด ู
ุนู ูููุูุฏูู ูุฏุงุดุ ุฎู
ุณุฉุ |
|
|
|
337 |
|
00:33:06,460 --> 00:33:11,700 |
|
ู
ุธุจูุทุ ุฎู
ุณุฉ ููุ ูุฐู ูุงุญุฏุฉุ ุชุณุนุฉุ ูุจูู ุจุตูุฑ ุนูุฏู |
|
|
|
338 |
|
00:33:11,700 --> 00:33:18,200 |
|
ูุฏุงุดุ ุฃุฑุจุนุฉ ุจู ุชุณุงููุ ูุฏุง ุจุฏู ูุนุทููู ุฃุฑุจุนุฉ ุจู |
|
|
|
339 |
|
00:33:18,200 --> 00:33:24,380 |
|
ุชุณุงูู ูุฏุงุดุ ุฃุฑุจุนุฉุ ูุจูู ุจู ุชุณุงูู ูุงุญุฏุ ูุจูู ุฃุตุจุญ |
|
|
|
340 |
|
00:33:24,380 --> 00:33:31,280 |
|
YP2 ูุณุงูู E ุฃุตูุงุน ูุตุฉ ุซูุงุซุฉ X ุจุงูุดูู ุงููู ุนูุฏูุง |
|
|
|
341 |
|
00:33:31,280 --> 00:33:41,490 |
|
ูุฐุงูุจูู ุงูุงู ุงุตุจุญ YP ูุณูู YP1 ุฒุงุฆุฏ YP2 ูุณูู ุงูุงู |
|
|
|
342 |
|
00:33:41,490 --> 00:33:44,630 |
|
YP1 |
|
|
|
343 |
|
00:33:44,630 --> 00:33:50,330 |
|
ูุณูู |
|
|
|
344 |
|
00:33:50,330 --> 00:33:58,350 |
|
YP1 ูุณูู YP1 ูุณูู YP1 ูุณูู YP1 ูุณูู YP1 ูุณูู YP1 |
|
|
|
345 |
|
00:33:58,350 --> 00:33:58,810 |
|
ูุณูู YP1 ูุณูู YP1 ูุณูู YP1 ูุณูู YP1 ูุณูู YP1 ูุณูู |
|
|
|
346 |
|
00:33:58,810 --> 00:34:00,170 |
|
YP1 ูุณูู YP1 ูุณูู YP1 ูุณูู YP1 ูุณูู YP1 ูุณูู YP1 |
|
|
|
347 |
|
00:34:00,170 --> 00:34:00,570 |
|
ูุณูู YP1 ูุณูู YP1 ูุณูู YP1 ูุณูู YP1 ูุณูู YP1 ูุณูู |
|
|
|
348 |
|
00:34:00,570 --> 00:34:01,730 |
|
YP1 ูุณูู YP1 ูุณูู YP1 ูุณูู YP1 ูุณูู YP1 ูุณู ูุฏุง ุงู |
|
|
|
349 |
|
00:34:01,730 --> 00:34:10,930 |
|
P1 ุจุงูุฒุงุฆุฏ ุฒุงุฆุฏ E ุงุต ูุงูุต ุชูุงุชุฉ X ุจุงูุถุจุท ุชู
ุงู
ุทูุจ |
|
|
|
350 |
|
00:34:10,930 --> 00:34:15,290 |
|
ุงูุงู ุจุฏู ุงู general solution ุจุงุฌู ุจููู ูู that |
|
|
|
351 |
|
00:34:15,290 --> 00:34:19,110 |
|
general solution |
|
|
|
352 |
|
00:34:25,570 --> 00:34:31,490 |
|
YCYP YCYP YCYP |
|
|
|
353 |
|
00:34:31,490 --> 00:34:32,730 |
|
YCYP YCYP YCYP YCYP YCYP YCYP YCYP YCYP YCYP YCYP |
|
|
|
354 |
|
00:34:32,730 --> 00:34:33,470 |
|
YCYP YCYP YCYP YCYP YCYP YCYP YCYP YCYP YCYP YCYP |
|
|
|
355 |
|
00:34:33,470 --> 00:34:37,870 |
|
YCYP YCYP YCYP YCYP YCYP YCYP YCYP YCYP YCYP YCYP |
|
|
|
356 |
|
00:34:37,870 --> 00:34:40,570 |
|
YCYP YCYP YCYP YCYP YCYP YCYP YCYP YCYP YCYP YCYP |
|
|
|
357 |
|
00:34:40,570 --> 00:34:41,730 |
|
YCYP YCYP YCYP |
|
|
|
358 |
|
00:34:49,970 --> 00:34:54,770 |
|
ุงูุงู ู
ุฏููู initial conditions ุงุชููู ูุจูู ุจูุฏุฑ ุงูุง |
|
|
|
359 |
|
00:34:54,770 --> 00:34:59,520 |
|
ุงุฌูุจ ูู y ุนูุฏู ุงู zero y prime ุจุนุฏ ู
ุง ูุดุชู ูุฐููุจูู |
|
|
|
360 |
|
00:34:59,520 --> 00:35:07,840 |
|
ูู ุฌูุช ูููุฉ Y' ูุจูู C1EOS X ูุงูุต ุงุชููู C2EOS ูุงูุต |
|
|
|
361 |
|
00:35:07,840 --> 00:35:15,760 |
|
ุงุชููู X ูููุง ุฒุงุฆุฏ ุชูุงุชุฉ EOS ูุงูุต X ูููุง ูุงูุต ุชูุงุชุฉ |
|
|
|
362 |
|
00:35:15,760 --> 00:35:23,230 |
|
EOS ูุงูุต ุชูุงุชุฉ Xุงูุงู ูุฌู ูููู ู ุนูุฏ ุงู zero ุชุณุงูู |
|
|
|
363 |
|
00:35:23,230 --> 00:35:27,790 |
|
ูุฏุฑ ุงูุณูุจ ูุงุญุฏ ูู ุนูุฏ ุงู zero ุชุณุงูู ุณูุจ ูุงุญุฏ |
|
|
|
364 |
|
00:35:27,790 --> 00:35:35,330 |
|
implies ุณูุจ ูุงุญุฏ ูุณุงูู c ูุงุญุฏ ุฒุงุฆุฏ c ุงุชููู ูุงูุต |
|
|
|
365 |
|
00:35:35,330 --> 00:35:42,680 |
|
ุชูุงุชุฉ ุฒุงุฆุฏ ูุงุญุฏู
ุนูู ูุฐุง ุงูููุงู
ุงู c1 ุฒุงุฆุฏ c2 ูุณุงูู |
|
|
|
366 |
|
00:35:42,680 --> 00:35:47,960 |
|
ุจุถู ููุง ูุฏุงุด ูุงูุต ุงุชููู ุจุฏู ุงูุฏููู
ุนูู ุดุฌุฉ ุชุงููุฉ |
|
|
|
367 |
|
00:35:47,960 --> 00:35:54,500 |
|
ุจุตูุฑ ูุฏุงุด ูุงุญุฏ ููุท ูุง ุบูุฑ ุงูุงู ุจุฏู ุงุฌู ูู y prime |
|
|
|
368 |
|
00:35:54,500 --> 00:35:58,240 |
|
ุนูุฏ ุงู zero ุจุฏู ูุณุงูู ูุงุญุฏ ุงููู ูู ุงู conditioning |
|
|
|
369 |
|
00:35:58,240 --> 00:36:04,240 |
|
ุงูุซุงูู implies ุงู ูุงุญุฏ ูุณุงูู ูู ุงู y prime ูุดูู ูู |
|
|
|
370 |
|
00:36:04,240 --> 00:36:13,440 |
|
X ูุญุท ู
ูุงููุง zeroูุจูู C1-2C2 ุฒุงุฆุฏ ุชูุงุชุฉ ูููุง ูุงูุต |
|
|
|
371 |
|
00:36:13,440 --> 00:36:19,200 |
|
ุชูุงุชุฉ ุชู
ุงู
ูุงุฏู ู ูุงุฏู ู
ุน ุงูุณูุงู
ุฉ ูุจูู ูุฐุง ุจุฏู |
|
|
|
372 |
|
00:36:19,200 --> 00:36:23,800 |
|
ูุนุทููุง C1-2C2 |
|
|
|
373 |
|
00:36:23,800 --> 00:36:29,400 |
|
ุจุฏู ุฃุณูู ูู
ุงู ุฌุฏุฑุงุดูุฐู ุงูุฃููู ูุฌููุงูุง ุงูุดุฌุฑุฉ |
|
|
|
374 |
|
00:36:29,400 --> 00:36:34,020 |
|
ุงูุชุงููุฉ ุจูุนุทูู ูุฐู ูุงุญุฏ ููุฐู ูู
ุงู ูุฏู ุงุด ูุฐู ูู
ุงู |
|
|
|
375 |
|
00:36:34,020 --> 00:36:38,140 |
|
ูุงุญุฏ ุทุจ ูุงุจูุชู ุจุชุฏุฑุฌุน ุงูู
ุนุงุฏูุฉ ุงูุฃููู ูุงุถุฑุจูุง ูู |
|
|
|
376 |
|
00:36:38,140 --> 00:36:46,700 |
|
ุณุงูุจ ูุจูู ุณุงูุจ C1 ุณุงูุจ C2 ุจุฏู ูุณูู ูุฏู ุงุด ุณุงูุจ |
|
|
|
377 |
|
00:36:46,700 --> 00:36:55,130 |
|
ูุงุญุฏ ูุฐู C1 ููุต ุงุชููู C2 ูุณูู ูุฏู ุงุด1 ูู ุฌูุช ุฌู
ุงุนุฉ |
|
|
|
378 |
|
00:36:55,130 --> 00:37:01,930 |
|
ูุฏูู ุจูุฏุงุด ุจู 0 ูุฐุง ู
ุนูุงู ุณุงูุจ ุชูุงุชุฉ C2 ุจุฏู ูุณุงูู |
|
|
|
379 |
|
00:37:01,930 --> 00:37:09,570 |
|
0 ูุจูู ู
ุนูุงู ูุฐุง ุงูููุงู
ุงูู C2 ุจุฏู ูุณุงูู 0 ูู
ุง C2 |
|
|
|
380 |
|
00:37:09,570 --> 00:37:16,690 |
|
ูุณุงูู 0 ูุจูู C1 ุจุฏู ูุณุงูู ูุฏูุงุด C2 ูุณุงูู ูุจูู C1 |
|
|
|
381 |
|
00:37:16,690 --> 00:37:25,800 |
|
ูุณุงูู 1 ูุจูู ุจูุงุก ุนููู ุฃุตุจุญ ุฐุงSolution of the |
|
|
|
382 |
|
00:37:25,800 --> 00:37:35,620 |
|
initial value problem is Y ุชุณุงูู ูุงู ุจุฏู ุงุดูู C1 ู |
|
|
|
383 |
|
00:37:35,620 --> 00:37:41,280 |
|
ุงูุชุจ ู
ูุงู ูุงุญุฏ ูุจูู ูุถูุช EOS X C2 ุจ Zero ูุจูู ุทุงุฑู |
|
|
|
384 |
|
00:37:41,280 --> 00:37:46,440 |
|
ุงู term ุงููู ุนูุฏูุง ูุฐุง ูุจูู ูุงูุต ุชูุงุชุฉ EOS ูุงูุต X |
|
|
|
385 |
|
00:37:46,440 --> 00:37:53,770 |
|
ุฒุงุฆุฏ EOS ูุงูุต ุชูุงุชุฉ Xุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุง ูุง ูุฒุงู |
|
|
|
386 |
|
00:37:53,770 --> 00:37:59,270 |
|
ููุงู ุงูู
ุฒูุฏ ู
ู ุงูุฃู
ุซูุฉ ุฅูู ุงูู
ุญุงุถุฑุฉ ุงููุงุฏู
ุฉ ุงู ุดุงุก |
|
|
|
387 |
|
00:37:59,270 --> 00:38:00,590 |
|
ุงููู ุชุนุงูู |
|
|
|
|