|
1 |
|
00:00:05,870 --> 00:00:08,590 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ุงูุณูุงู
ุนูููู
ูุฑุญู
ุฉ ุงููู |
|
|
|
2 |
|
00:00:08,590 --> 00:00:11,990 |
|
ูุจุฑูุงุชู ุงูููู
ูููู
ู ูู ู
ุงุฏุฉ ุชุตู
ูู
ุงูุฃูุงุช ูุงุญุฏ |
|
|
|
3 |
|
00:00:11,990 --> 00:00:19,050 |
|
ุงูู
ุญุงุถุฑุฉ ุงููุงุชุชุฉ ุญููุง example 414 ุจุงุณุชุฎุฏุงู
|
|
|
|
4 |
|
00:00:19,050 --> 00:00:23,150 |
|
deflection equation M ุนูู EI ุจุงูุณุงููุฉ D square Y |
|
|
|
5 |
|
00:00:23,150 --> 00:00:26,970 |
|
by DX ููุงู ููุง ูู ุฎุทูุท ุงู integration ููุฑุฌุน ูุญู |
|
|
|
6 |
|
00:00:26,970 --> 00:00:34,810 |
|
ุนูู ุงูุณุฑูุน ุนุดุงู ููุถุญ ุทุฑููุฉ ุงูุญู ุงูุฃุฏ |
|
|
|
7 |
|
00:00:34,810 --> 00:00:35,150 |
|
ุงู B |
|
|
|
8 |
|
00:00:40,380 --> 00:00:48,640 |
|
I fixed ููุง ูุนูุฏู ููุง F ูุนูุฏู |
|
|
|
9 |
|
00:00:48,640 --> 00:00:52,300 |
|
ูุฐู |
|
|
|
10 |
|
00:00:52,300 --> 00:00:58,520 |
|
ุงูู
ุณุงูุฉ L |
|
|
|
11 |
|
00:00:58,520 --> 00:01:05,880 |
|
ุนูู 2 L ุนูู 2 ู ุงู span L |
|
|
|
12 |
|
00:01:10,380 --> 00:01:15,820 |
|
ููููู ุนูุฏู ููู R1 ูููู |
|
|
|
13 |
|
00:01:15,820 --> 00:01:23,180 |
|
R2 ูููู M1 |
|
|
|
14 |
|
00:01:23,180 --> 00:01:27,360 |
|
ููุนู
ู |
|
|
|
15 |
|
00:01:27,360 --> 00:01:31,500 |
|
ุงูู deflection equation ููุงุฎุฏ at position X |
|
|
|
16 |
|
00:01:40,190 --> 00:01:48,610 |
|
ููุงุฎุฏ ุงู free body diagram ููุฏู R2 ูุฏู |
|
|
|
17 |
|
00:01:48,610 --> 00:01:54,290 |
|
X ูุฏู |
|
|
|
18 |
|
00:01:54,290 --> 00:02:07,090 |
|
V ูุฏู |
|
|
|
19 |
|
00:02:07,090 --> 00:02:11,750 |
|
Mุงุญูุง ุญูุง ุงู assumption ุงูู ูุฌูู ุงู transversal |
|
|
|
20 |
|
00:02:11,750 --> 00:02:22,190 |
|
effect ุงุญูุง ููููู consider only deflection |
|
|
|
21 |
|
00:02:22,190 --> 00:02:26,390 |
|
due |
|
|
|
22 |
|
00:02:26,390 --> 00:02:29,190 |
|
to bending |
|
|
|
23 |
|
00:02:37,750 --> 00:02:47,450 |
|
ููุง ูุชููู ุงู M ูุง ุฏู ุจุณ R2 ูู X ูุงูุง ูุงุฎุฏ ุงูุง ุนูุฏู |
|
|
|
24 |
|
00:02:47,450 --> 00:02:51,790 |
|
ููู OAB |
|
|
|
25 |
|
00:02:51,790 --> 00:03:00,130 |
|
ุจุฏู ุงุฎุฏ section BA |
|
|
|
26 |
|
00:03:12,020 --> 00:03:18,760 |
|
ูุชููู ุงู M ุงููู ูู ุจุงูุณุงููุฉ R2 ูู X ุณุงููุฉ D Square |
|
|
|
27 |
|
00:03:18,760 --> 00:03:29,920 |
|
Y by DX Square ุงููู ูู M ุนูู EI M |
|
|
|
28 |
|
00:03:29,920 --> 00:03:37,520 |
|
ุนูู EI ูุนูู |
|
|
|
29 |
|
00:03:37,520 --> 00:03:38,880 |
|
ููููู ูุฏู R2 X |
|
|
|
30 |
|
00:03:41,480 --> 00:03:46,420 |
|
ุนูู ei ุจุงูุณุงููุฉ |
|
|
|
31 |
|
00:03:46,420 --> 00:03:56,840 |
|
d square y by dx square ูุนูู dy by dx ุฒู ุงู |
|
|
|
32 |
|
00:03:56,840 --> 00:04:04,480 |
|
integration ุจุชููู ุจุงูุณุงููุฉ R2 |
|
|
|
33 |
|
00:04:04,480 --> 00:04:09,340 |
|
ุนูู ei ูู |
|
|
|
34 |
|
00:04:11,760 --> 00:04:21,540 |
|
X ุชุฑุจูุน ุฒุงุฆุฏ C ูุงุญุฏ ู
ุธุจูุท ู Y integration ูู
ุงู ู
ุฑุฉ |
|
|
|
35 |
|
00:04:21,540 --> 00:04:39,340 |
|
ูุชููู R2 ุนูู 6EI X ุชูููุจ ุฒุงุฆุฏ C ูุงุญุฏ X ุฒุงุฆุฏ C |
|
|
|
36 |
|
00:04:39,340 --> 00:04:49,380 |
|
ุงุชููููุนูู ูู ู
ุนุงุฏูุฉ ูุงุญุฏ ูู ู
ุนุงุฏูุฉ ุงุชููู |
|
|
|
37 |
|
00:04:49,380 --> 00:04:57,780 |
|
ูู |
|
|
|
38 |
|
00:04:57,780 --> 00:05:03,460 |
|
ุฎุฏุช section AO section |
|
|
|
39 |
|
00:05:03,460 --> 00:05:07,800 |
|
AO |
|
|
|
40 |
|
00:05:09,980 --> 00:05:16,940 |
|
ูุงุฎุฏุช ู
ุณุงูุฉ x ุฎุฏุช free pedagram ูููู ุฏู ููู R2 |
|
|
|
41 |
|
00:05:16,940 --> 00:05:32,420 |
|
ูููู ุนูุฏู F ูู
ุณุงูุฉ ูุฏู L ุนูู 2 ููุง ุฏู ุฅูู ุนุดุงู X |
|
|
|
42 |
|
00:05:41,300 --> 00:05:46,640 |
|
ู ุงุนุชุจุฑุช ูุฐู V ููุฐู |
|
|
|
43 |
|
00:05:46,640 --> 00:05:59,460 |
|
M ูููู ุงู summation ูู FY ุณุงูุฉ Zero ูุนูู |
|
|
|
44 |
|
00:05:59,460 --> 00:06:06,280 |
|
ููููู ุนูุฏู minus V minus F |
|
|
|
45 |
|
00:06:11,740 --> 00:06:25,160 |
|
ุฒุงุฏ R2 ูุนูู V ูุชููู ุณูู minus F ุฒุงุฏ R2 ูุงุฎุฏ |
|
|
|
46 |
|
00:06:25,160 --> 00:06:34,080 |
|
summation of moment ุนูุฏ ุงูู
ุณุงูุฉ X ูุชููู ุชุณุงูู R2 |
|
|
|
47 |
|
00:06:34,080 --> 00:06:39,560 |
|
minus R2 ูู X |
|
|
|
48 |
|
00:06:43,920 --> 00:06:54,020 |
|
ุฒุงุฆุฏ R2 ูู X minus F ูู X minus L ุนูู 2 ุฒุงุฆุฏ M |
|
|
|
49 |
|
00:06:54,020 --> 00:07:07,620 |
|
ุจูุณุงูู ุตูุฑ ูุนูู M ุฏู ู M A O ูุชููู ุชุณุงูู F |
|
|
|
50 |
|
00:07:09,350 --> 00:07:21,470 |
|
ูู x minus L ุนูู 2 minus R2 ูู X ู
ุธุจูุธุฉ |
|
|
|
51 |
|
00:07:21,470 --> 00:07:27,970 |
|
ููู ุชุณููุจุช ุงู course ุงูุงู |
|
|
|
52 |
|
00:07:27,970 --> 00:07:43,450 |
|
ุงู M AO ุนูู EI ุณูู D square Yby dx square ูุนู
ู |
|
|
|
53 |
|
00:07:43,450 --> 00:07:48,990 |
|
integration ูุงู ุนูุฏู ุนูุถ ูุชููู ุนูุฏููู ูุงุญุฏ ุนูู ei |
|
|
|
54 |
|
00:07:48,990 --> 00:08:01,650 |
|
ูู f ูู x minus l ุนูู ุงุชููู minus r to x ุณูู d |
|
|
|
55 |
|
00:08:01,650 --> 00:08:05,850 |
|
square y by dx square |
|
|
|
56 |
|
00:08:10,000 --> 00:08:19,540 |
|
ูุนูู ููููู ุนูุฏู dy by dx ููููู ุณุงุนุฉ ูุงุญุฏ ุนูู ei ูู |
|
|
|
57 |
|
00:08:19,540 --> 00:08:29,760 |
|
F ูู X ุชุฑุจูุฉ ุนูู ุงุชููู minus L ุนูู ุงุชููู ูู X |
|
|
|
58 |
|
00:08:29,760 --> 00:08:33,820 |
|
minus |
|
|
|
59 |
|
00:08:33,820 --> 00:08:52,110 |
|
R ุงุชููููู X ุชุฑุจูุฉ ุนูู 2 ุฒุงุฆุฏ C3 ูุงูู Y ูุชููู |
|
|
|
60 |
|
00:08:52,110 --> 00:09:01,490 |
|
ุชุณุงูู 1 ุนูู EI ูู |
|
|
|
61 |
|
00:09:06,970 --> 00:09:19,410 |
|
F ูู X ุชูููุจ ุนูู ุณุชุฉ minus L ุนูู ุฃุฑุจุนุฉ X ุชุฑุจูุฉ |
|
|
|
62 |
|
00:09:19,410 --> 00:09:22,470 |
|
minus |
|
|
|
63 |
|
00:09:22,470 --> 00:09:36,250 |
|
R ุงุชููู ุนูู ุณุชุฉ X ุชูููุจ ุฒุงุฏ C ุชูุงุชุฉ ูู X ุฒุงุฏ C |
|
|
|
64 |
|
00:09:36,250 --> 00:09:43,390 |
|
ุฃุฑุจุนุฉูุฐู ู
ุนุงุฏูุฉ ุชูุงุชุฉ ููุฐู |
|
|
|
65 |
|
00:09:43,390 --> 00:09:54,370 |
|
ู
ุนุงุฏูุฉ ุฃุฑุจุนุฉ ุทุจุนุง ูุฐู ุงู equation applies ู
ู X ุจูู |
|
|
|
66 |
|
00:09:54,370 --> 00:10:01,030 |
|
L ุนูู 2 ู L ุตุญุ ููุฐู apply |
|
|
|
67 |
|
00:10:04,240 --> 00:10:13,880 |
|
ุจูู X ุตูุฑ ู L ุนูู ุงุชููู |
|
|
|
68 |
|
00:10:13,880 --> 00:10:20,660 |
|
ูุงู |
|
|
|
69 |
|
00:10:20,660 --> 00:10:25,900 |
|
ุนุดุงู ูุฌุฏ ุซูุงุจุฉ ุงู integration ุฏู ูุนู
ู ุงุณุชุฎุฏุงู
ุงู |
|
|
|
70 |
|
00:10:25,900 --> 00:10:28,340 |
|
boundary conditions ุฏู ุงุญูุง ุจุทูุนู |
|
|
|
71 |
|
00:10:32,070 --> 00:10:43,060 |
|
ุจุนุถ ุงูุงุฎุชุตุงุฑุงุช ุงููุง at x equals zeroุจุชููู ุนูุฏู ูุงุก |
|
|
|
72 |
|
00:10:43,060 --> 00:10:49,040 |
|
ุดู ุณุงููุ ุตูุฑ ูุนูู ุงูุตูุฑ ูุชููู ุทุจุนุง ุนูุถ ูู ูุฏู |
|
|
|
73 |
|
00:10:49,040 --> 00:10:56,980 |
|
ูุชููู ุนูุฏู ุตูุฑ ุฒุงุฆุฏ ุตูุฑ ูุชููู ุนูุฏ ุงูุตูุฑ ุฒุงุฆุฏ ุตูุฑ |
|
|
|
74 |
|
00:10:56,980 --> 00:11:09,220 |
|
ุฒุงุฆุฏ C2 ู
ุนูุงู ุงู ุงู C2 ุณุงูู ุตูุฑ ูุจุฑุถู atx equal L |
|
|
|
75 |
|
00:11:09,220 --> 00:11:18,140 |
|
ุจุฑุถู y ุณูู ุตูุฑ ูุนูู ููุนูุฏ ููู ูุฐู ุตุญุ |
|
|
|
76 |
|
00:11:18,140 --> 00:11:30,380 |
|
ููููู ุตูุฑ ุจุชุณุงูู ูุงุญุฏ ุนูู ei ูุงุญุฏ |
|
|
|
77 |
|
00:11:30,380 --> 00:11:33,000 |
|
ุนูู ei ูู |
|
|
|
78 |
|
00:11:38,690 --> 00:11:55,730 |
|
F ูุชููู ูุฏู ุงู ุชูููุจ ุนูู ุณุชุฉ minus ุงู ุชูููุจ ุนูู |
|
|
|
79 |
|
00:11:55,730 --> 00:12:00,510 |
|
ุฃุฑุจุนุฉ minus |
|
|
|
80 |
|
00:12:00,510 --> 00:12:04,870 |
|
R ุงุชููู ุงู |
|
|
|
81 |
|
00:12:04,870 --> 00:12:05,430 |
|
ุชูููุจ |
|
|
|
82 |
|
00:12:08,810 --> 00:12:20,650 |
|
ุนูู ุณุชุฉ ุฒุงุฆุฏ C ุชูุงุชุฉ L ุฒุงุฆุฏ C ุฃุฑุจุนุฉ ุฎุฏูุง ูุจุณุทูุง |
|
|
|
83 |
|
00:12:20,650 --> 00:12:26,990 |
|
ูุนูู ุณุฏุณ ูุงูุต ุฑุจุน ูุนูู ุณุฏุณ ุงูู ูู
ุงุชููู ุงุชููู ุนูู |
|
|
|
84 |
|
00:12:26,990 --> 00:12:33,450 |
|
ุงุชูุงุด ู ูุฏุง ูุชููู ุชูุงุชุฉ ุงุชูุงุด ูุนูู ูุชููู ูุงุญุฏ ุตูุฑ |
|
|
|
85 |
|
00:12:33,450 --> 00:12:36,050 |
|
ุจุงูุฒุงููุฉ ูุงุญุฏ ุนูู EI |
|
|
|
86 |
|
00:12:39,390 --> 00:12:49,770 |
|
ูุฐู ูุชูููุด ุฒู ููู ุจุธุจุท ูุงุญุฏุฉ ู EI ููู ุณุงูุจ F |
|
|
|
87 |
|
00:12:49,770 --> 00:13:03,490 |
|
ุงูุชูููุจ ุนูู ุงุชูุงุด minus R ุงุชููู ุงูุชูููุจ ุนูู ุณุชุฉ |
|
|
|
88 |
|
00:13:05,310 --> 00:13:13,390 |
|
ุฒุงุฆุฏ C3L ุฒุงุฆุฏ C4 ุฎูููุง |
|
|
|
89 |
|
00:13:13,390 --> 00:13:18,550 |
|
ูุณู
ููุง equation ุฎู
ุณุฉ |
|
|
|
90 |
|
00:13:18,550 --> 00:13:27,510 |
|
and ุฃูุง so far ุนุฑูุช C2 ุจุงูุณุงููุฉ ุตูุฑ ู
ุธุจูุท |
|
|
|
91 |
|
00:13:30,810 --> 00:13:40,370 |
|
ุธุงู ุนูุฏู ู
ุฌููู C1 ู C3 ู C4 ูู |
|
|
|
92 |
|
00:13:40,370 --> 00:13:49,210 |
|
ู
ุนุงุฏูุชุงู ู
ุณุชุฎุฏู
ู ูู
ุด ูุนูู ุฏู ุงุญูู ุงู Y ูู ูุฅูุด ุนูุฏ |
|
|
|
93 |
|
00:13:49,210 --> 00:13:53,030 |
|
X ุจุชุณุงูู |
|
|
|
94 |
|
00:13:53,030 --> 00:14:04,390 |
|
L ุนูู 2 minusุจุชุณุงูู y and x ุจุชุณุงูู ุงู ุนูู ุงุชููู |
|
|
|
95 |
|
00:14:04,390 --> 00:14:10,170 |
|
plus ูุนูู |
|
|
|
96 |
|
00:14:10,170 --> 00:14:17,250 |
|
ูุนูุถ ููุง ูููู ุนูุฏู R ุงุชููู ูุฃ ุงู ุชุญุช ุตุญูุญ R ุงุชููู |
|
|
|
97 |
|
00:14:17,250 --> 00:14:22,170 |
|
ุงุญูุง ุฑูุฏ ุณู ุงุชููู ุทูุนุช ุณูุฑ ููุง ููู ูููู ุนูุฏู R |
|
|
|
98 |
|
00:14:22,170 --> 00:14:22,690 |
|
ุงุชููู |
|
|
|
99 |
|
00:14:27,760 --> 00:14:32,900 |
|
ููุง ูุชููู ููุนูุถ ุงู ุนูู ุงุชููู ูุนูู ูุชุตูุฑ ุชู
ู ุนูู |
|
|
|
100 |
|
00:14:32,900 --> 00:14:38,420 |
|
ุชู
ุงููุฉ ุงุฑุจุนูู ุฑ ุงุชููู ุนูู ุชู
ุงููุฉ ุงุฑุจุนูู EI |
|
|
|
101 |
|
00:14:38,420 --> 00:14:44,700 |
|
ุงูุชูููุจ ุฒุงุฆุฏ |
|
|
|
102 |
|
00:14:44,700 --> 00:14:47,820 |
|
C |
|
|
|
103 |
|
00:14:47,820 --> 00:14:56,300 |
|
ูุงุญุฏ ุงู ุนูู ุงุชููู ูุชุณุงูู ููุนูุถ |
|
|
|
104 |
|
00:14:56,300 --> 00:15:04,970 |
|
ููุงูุงูุนูุงูุฉ ุงููุง ุชุณุงูู ูุงุญุฏ ุนูู EI |
|
|
|
105 |
|
00:15:04,970 --> 00:15:15,470 |
|
ูู F |
|
|
|
106 |
|
00:15:15,470 --> 00:15:19,310 |
|
ุงูุชููุจ |
|
|
|
107 |
|
00:15:19,310 --> 00:15:23,710 |
|
ูู ุงููุงุญุฏุฉ ุงุชู
ูู ูุงุฑุจูู ุตุญุ |
|
|
|
108 |
|
00:15:29,440 --> 00:15:35,800 |
|
minus ูุงุญุฏ ุนูู ุณุชุงุด ุฑุจุน |
|
|
|
109 |
|
00:15:35,800 --> 00:15:46,300 |
|
ูุงุญุฏ ุนูู ุณุชุงุด minus |
|
|
|
110 |
|
00:15:46,300 --> 00:15:55,680 |
|
R ุงุชููู ุงูุชูููุจ ุนูู ุชู
ุงููุฉ ูุฃุฑุจุนูู |
|
|
|
111 |
|
00:16:01,180 --> 00:16:10,460 |
|
ุฒุงุฏ C ุชูุงุชุฉ L ุนูู ุงุชููู ุฒุงุฏ |
|
|
|
112 |
|
00:16:10,460 --> 00:16:23,560 |
|
C ุฃุฑุจุนุฉ ูุนูู |
|
|
|
113 |
|
00:16:23,560 --> 00:16:28,600 |
|
ููุฌู
ุน term ูุฐุง ูุฐุง |
|
|
|
114 |
|
00:16:28,600 --> 00:16:33,650 |
|
ุงู term ู
ุน ูุฐุง ุงู termุจุตูุฑ ุงู ุฏู R2 L ุชูููุจ ุนูู .. |
|
|
|
115 |
|
00:16:33,650 --> 00:16:42,030 |
|
ูุนูู ุงุญูุง ูุงุฎุฏ ุงู term ูุฐุง ู
ุน |
|
|
|
116 |
|
00:16:42,030 --> 00:16:51,270 |
|
ูุฐุง ุงู term ุตุญ ุจุตูุฑ ุงู ุฏู R2 L |
|
|
|
117 |
|
00:16:51,270 --> 00:16:57,050 |
|
ุชูููุจ ุนูู 24EI |
|
|
|
118 |
|
00:17:09,520 --> 00:17:13,300 |
|
ุจุชุณุงูู ูุฅูู ุนูุฏู ูุงุญุฏ ุชู
ุงููุฉ ูุงุฑุจุนูู ูุงูุต ุชูุงุชุฉ |
|
|
|
119 |
|
00:17:13,300 --> 00:17:16,220 |
|
ุชู
ุงููุฉ ูุงุฑุจุนูู ู
ุงููุณ ุงุชููู ุนูู ุชู
ุงููุฉ ูุงุฑุจุนูู ูุนูู |
|
|
|
120 |
|
00:17:16,220 --> 00:17:26,560 |
|
ู
ุงููุณ ูุงุญุฏ ุนูู ุงุฑุจุน ูุนุดุฑูู ุฒุงุฆุฏ F ุงูุชูููุจ ุนูู ุงุฑุจุน |
|
|
|
121 |
|
00:17:26,560 --> 00:17:34,100 |
|
ูุนุดุฑูู EI ูุนูู ูุฐุง ุงู term ุฎูุตูุง ู
ูู |
|
|
|
122 |
|
00:17:38,810 --> 00:17:49,910 |
|
ุจุชุณุงูู minus C1 L ุนูู 2 ุฒุงุฆุฏ |
|
|
|
123 |
|
00:17:49,910 --> 00:18:03,350 |
|
C3 L ุนูู 2 ุฒุงุฆุฏ C4 ูู |
|
|
|
124 |
|
00:18:03,350 --> 00:18:04,090 |
|
ุฑูู
6 |
|
|
|
125 |
|
00:18:07,850 --> 00:18:19,910 |
|
ุทูุจ ุจุฏู ุงูุจุฑ ู
ุนุงุฏูุฉ ููุงุฎุฏ ุงู slope ูุชููู ุงู dy by |
|
|
|
126 |
|
00:18:19,910 --> 00:18:35,650 |
|
dx ุนูุฏ x ุจุงูุณุงููุฉ L ุนูู 2 minus ุจุงูุณุงููุฉ |
|
|
|
127 |
|
00:18:35,650 --> 00:18:37,030 |
|
dy |
|
|
|
128 |
|
00:18:39,080 --> 00:18:43,240 |
|
ุนูู DX ุนูุฏู |
|
|
|
129 |
|
00:18:43,240 --> 00:18:57,160 |
|
X ุจุงูุณุงููุฉ L ุนูู 2 plus ููููู ุนูุฏู R2 R2 |
|
|
|
130 |
|
00:18:57,160 --> 00:19:01,380 |
|
ูู |
|
|
|
131 |
|
00:19:01,380 --> 00:19:06,340 |
|
L ุชุฑุจูุฉ ุนูู |
|
|
|
132 |
|
00:19:06,340 --> 00:19:06,920 |
|
ุชู
ุงููุฉ |
|
|
|
133 |
|
00:19:10,790 --> 00:19:20,070 |
|
EI ุฒุงุฏ C ูุงุญุฏ ุจุชุณุงูู |
|
|
|
134 |
|
00:19:20,070 --> 00:19:34,890 |
|
ู
ุง ุนูุถุด ูุงุฏู ูุงุญุฏ ุนูู EI ููู |
|
|
|
135 |
|
00:19:34,890 --> 00:19:39,010 |
|
F ูู |
|
|
|
136 |
|
00:19:42,140 --> 00:19:53,680 |
|
ุงูุชุฑุจูุน ุนูู ุชู
ุงููุฉ ูุงูุต |
|
|
|
137 |
|
00:19:53,680 --> 00:20:02,660 |
|
ุงูุชุฑุจูุน ุนูู ุฃุฑุจุนุฉ ูุงูุต |
|
|
|
138 |
|
00:20:02,660 --> 00:20:07,940 |
|
R2 ุงูุชุฑุจูุน |
|
|
|
139 |
|
00:20:07,940 --> 00:20:10,560 |
|
ุนูู ุชู
ุงููุฉ |
|
|
|
140 |
|
00:20:15,220 --> 00:20:23,760 |
|
ุฒุงุฆุฏ C3 ูุนูู |
|
|
|
141 |
|
00:20:23,760 --> 00:20:35,520 |
|
ุฎุฏู
ุฉ ุงุฎุฏ ูุฐู ู
ุน ูุฐู ููููู |
|
|
|
142 |
|
00:20:35,520 --> 00:20:51,590 |
|
ุนูุฏ R2 R2 L ุชุฑุจูุนุนูู ุงุฑุจุนุฉ EI ูุงุฏ |
|
|
|
143 |
|
00:20:51,590 --> 00:21:02,910 |
|
ุงูุชู
ู ูุงูุต ุชู
ููู ูุงูุต ุชู
ู ุจุณูุฑ |
|
|
|
144 |
|
00:21:02,910 --> 00:21:07,870 |
|
ูุนูู ุนูุฏู ุงู boundary 100% ุตุญูุญ ุนูุฏู boundary |
|
|
|
145 |
|
00:21:07,870 --> 00:21:13,020 |
|
conditions ูุชูุฑุฉูู ุญุงูุชูุง ูุฐู ุจูุตูุฑ ูุนูู ุชุญุท ุงู |
|
|
|
146 |
|
00:21:13,020 --> 00:21:22,880 |
|
ุงุณููุจ ูุนูู ุนูุฏ o ุตูุฑ ุจุฑุถู ุจูุตูุฑ ููููู ุนูุฏู ุฒุงุฆุฏ fl |
|
|
|
147 |
|
00:21:22,880 --> 00:21:29,420 |
|
ุชุฑุจูุฉ ุนูู ุชู
ุงููุฉ ei ุจุชุณุงูู |
|
|
|
148 |
|
00:21:29,420 --> 00:21:34,920 |
|
ุงููู ูู ุงู term ูุฐุง ุจุชุณุงูู |
|
|
|
149 |
|
00:21:34,920 --> 00:21:35,940 |
|
ูุงูุต c ูุงุญุฏ |
|
|
|
150 |
|
00:21:42,490 --> 00:21:47,890 |
|
ุฒุงุฆุฏ C3 ูุฐุง |
|
|
|
151 |
|
00:21:47,890 --> 00:21:52,390 |
|
ู
ุนุงุฏูุฉ ุณุจุนุฉ |
|
|
|
152 |
|
00:21:52,390 --> 00:21:59,310 |
|
ุตุญ ุงูุช ูุนูุฏู ุชูุช ู
ุนุงุฏูุงุช C1 ู C3 ู C4 ุชูุช ู
ุนุงุฏูุงุช |
|
|
|
153 |
|
00:21:59,310 --> 00:22:06,970 |
|
ู ุชูุช ูุฌุงููู ุฎููุง ููุชุจูู
ุชุญุช ุจุนุถ ุงูู |
|
|
|
154 |
|
00:22:06,970 --> 00:22:07,590 |
|
ู
ุนุงุฏูุฉ |
|
|
|
155 |
|
00:22:16,530 --> 00:22:25,190 |
|
ุฃู ุฎููุง ููุชุจูุง ุนูู ุดูู ู
ุตูููุฉ ุฃูู |
|
|
|
156 |
|
00:22:25,190 --> 00:22:29,950 |
|
ูุงุญุฏุฉ ูุฐุง ูุชูุฌู ุนูู ุงูุฌูุฉ ุงูุชุงููุฉ ุทุจุนุง ูุฐุง ูุณูุฑ |
|
|
|
157 |
|
00:22:29,950 --> 00:22:35,310 |
|
ุนูุฏู ููุง C3L |
|
|
|
158 |
|
00:22:35,310 --> 00:22:42,430 |
|
ุฒุงุฆุฏ C4 ุจุงูุณุงููุฉ |
|
|
|
159 |
|
00:22:42,430 --> 00:22:45,390 |
|
ูุงุญุฏ |
|
|
|
160 |
|
00:22:46,700 --> 00:22:55,300 |
|
ุฃู ุงููู ุจุฏู ุฃุญูู ุงู ุชูููุจ ุนูู EI ู
ุด |
|
|
|
161 |
|
00:22:55,300 --> 00:23:02,440 |
|
ู
ุดููุฉ ุฎูููุง ุจุณ ูุนู
ููุง ูุธุจุทูุง ูู F |
|
|
|
162 |
|
00:23:02,440 --> 00:23:08,080 |
|
ุนูู 12 ุฒุงุฆุฏ |
|
|
|
163 |
|
00:23:08,080 --> 00:23:17,930 |
|
R2 ุนูู 6ุฃูุง ุนูุฏู C1 ู C3 ู C4 ูุนูู ุงูู C1 ููููู |
|
|
|
164 |
|
00:23:17,930 --> 00:23:23,970 |
|
ุฅูุดุ ุตูุฑ ูุนูุฏู |
|
|
|
165 |
|
00:23:23,970 --> 00:23:30,230 |
|
ููู L ูููู |
|
|
|
166 |
|
00:23:30,230 --> 00:23:39,310 |
|
ุฅูุดุ ูุงุญุฏ ู
ุธุจูุทุ ุงูู
ุนุงุฏูุฉ ุงูุชุงููุฉ C1 |
|
|
|
167 |
|
00:23:39,310 --> 00:23:50,710 |
|
minus Lุนูู ุงุชููู ู C ุชูุงุชุฉ L ุนูู ุงุชููู ู C ุฃุฑุจุนุฉ |
|
|
|
168 |
|
00:23:50,710 --> 00:24:01,570 |
|
ูุงุญุฏ ุงูู
ุนุงุฏูุฉ ุงูุฃุฎูุฑุฉ C ูุงุญุฏ ุณุงูุจ ูุงุญุฏ ู ูุงุญุฏ ู |
|
|
|
169 |
|
00:24:01,570 --> 00:24:10,930 |
|
ุตูุฑ ุจุชุณุงูู ูู C ูุงุญุฏ C ุชูุงุชุฉ C ุฃุฑุจุนุฉ |
|
|
|
170 |
|
00:24:15,950 --> 00:24:24,710 |
|
ุจุชุณุงูู ุงู constants vector ุงููู ูู ููููู ุนูุฏู |
|
|
|
171 |
|
00:24:24,710 --> 00:24:28,830 |
|
ุงูุชูููุจ |
|
|
|
172 |
|
00:24:28,830 --> 00:24:34,190 |
|
ุนูู |
|
|
|
173 |
|
00:24:34,190 --> 00:24:38,410 |
|
EI ูู |
|
|
|
174 |
|
00:24:56,660 --> 00:25:11,460 |
|
ุจุชุณุงูู ุงูุชูููุจ ุนูู EI ูู F ุนูู 12 ุฒูุงุฏ R2 ุนูู 6 |
|
|
|
175 |
|
00:25:11,460 --> 00:25:17,840 |
|
ูุงู ูู ุงู constant ุงู constant ุงูุชุงูู |
|
|
|
176 |
|
00:25:17,840 --> 00:25:20,860 |
|
ุจุฑุถู ุจุชุณุงูู ุนูุฏู |
|
|
|
177 |
|
00:25:26,720 --> 00:25:36,620 |
|
ุงูุชูููุจ ุนูู ุงุฑุจุน ู ุนุดุฑูู EI ูู |
|
|
|
178 |
|
00:25:36,620 --> 00:25:49,240 |
|
F ุฒุงุฏ R ุงุชููู ูุงู constant ุงูุชุงูุช ุงููู |
|
|
|
179 |
|
00:25:49,240 --> 00:25:49,480 |
|
ูู |
|
|
|
180 |
|
00:25:59,950 --> 00:26:12,990 |
|
ุงูุชุฑุจูุน ุงูุชุฑุจูุน ุนูู ุชู
ุงููุฉ EI ูู F |
|
|
|
181 |
|
00:26:12,990 --> 00:26:20,630 |
|
ุฒุงุฆุฏ ุงุชููู R ุงุชููู |
|
|
|
182 |
|
00:26:34,790 --> 00:26:40,250 |
|
solve for c3 |
|
|
|
183 |
|
00:26:40,250 --> 00:26:48,650 |
|
ู c4 ุจุนุฏ |
|
|
|
184 |
|
00:26:48,650 --> 00:26:55,250 |
|
ู
ุง ูุนู
ู solve ุตุงุฑ ุนูุฏู ูู ุงู constants ุงูู
ุนุฑููุฉ |
|
|
|
185 |
|
00:26:55,250 --> 00:27:00,800 |
|
ุจุณุชุฎุฏู
ุงู boundary condition ูู
ุงู ู
ุฑุฉ ุนุดุงู ุงุญุณุจุงูู |
|
|
|
186 |
|
00:27:00,800 --> 00:27:06,460 |
|
R ุงุชููู ูุนูู ุตุงุฑุช ุนูุฏ ุงูุง ููุง ูู ุงูู
ุนุงุฏูุฉ ุงูุฃููู |
|
|
|
187 |
|
00:27:06,460 --> 00:27:11,360 |
|
ููุง C2 |
|
|
|
188 |
|
00:27:11,360 --> 00:27:18,520 |
|
ูุงูุช ุตูุฑ ู C1 ูููููู ุงูุด ููู
ุฉ ูุฎููู ูุณุชูู ููู
ุฉ |
|
|
|
189 |
|
00:27:25,180 --> 00:27:35,000 |
|
y ุจุชุณุงูู ุตูุฑ ุนูุฏ x ุจุชุณุงูู ุตูุฑ ุจุชุณุงูู |
|
|
|
190 |
|
00:27:35,000 --> 00:27:41,360 |
|
ู
ุด |
|
|
|
191 |
|
00:27:41,360 --> 00:27:46,520 |
|
ูุชุณุนููุง ูุงู ุตูุฑ ุตูุฑ ู
ุด ูุชููุฏูุง ู
ุนูุงู ุชุจูู ุงุณุชุฎุฏุงู
|
|
|
|
192 |
|
00:27:46,520 --> 00:27:52,620 |
|
ู
ุนุงุฏูุงุช ุนูู ุงูุทุฑู ุงูุชุงููุงููู ูู Y ุจูุณุชูู ุตูุฑุฉ X |
|
|
|
193 |
|
00:27:52,620 --> 00:27:59,920 |
|
ุจูุณุชูู L ุงููู |
|
|
|
194 |
|
00:27:59,920 --> 00:28:10,900 |
|
ูู ุงูู
ุนุงุฏูุฉ ูุฐู ุจูุตูุฑ ุนูุฏู one ุงุชูุงุทููุฉ one extra |
|
|
|
195 |
|
00:28:10,900 --> 00:28:14,020 |
|
equation |
|
|
|
196 |
|
00:28:14,020 --> 00:28:18,520 |
|
ู ุงุญูุง ุงูุฑุฏ ูู ุนูุฏูุง ุงููู ูู R ูุงุญุฏ |
|
|
|
197 |
|
00:28:21,270 --> 00:28:28,590 |
|
ุฒุงุฏ R2 ุงูุด ุจุงูุณุงููุ ุจุงูุณุงูู F ูุงูุง ู
ุนุงุฏูุฉ ุงู |
|
|
|
198 |
|
00:28:28,590 --> 00:28:41,010 |
|
moment ูููู ุนูุฏู M1 ุฒุงุฏ |
|
|
|
199 |
|
00:28:41,010 --> 00:28:47,990 |
|
R2L minus |
|
|
|
200 |
|
00:28:47,990 --> 00:28:48,810 |
|
F |
|
|
|
201 |
|
00:28:51,150 --> 00:28:56,470 |
|
ุงูุนูู ุงุชููู ุจุตูู ุตูุฑ ูุนูู ูุงู ุจุฏู ุงุณู
ููุง ูุฐู ู
ุนุฏูุฉ |
|
|
|
202 |
|
00:28:56,470 --> 00:29:06,050 |
|
A ูุฐู B ูุฐู C Solve |
|
|
|
203 |
|
00:29:06,050 --> 00:29:18,580 |
|
for R ูุงุญุฏ ู R ุงุชููู ู M ูุงุญุฏุทุจุนุง ุทูููุฉ ุงู process |
|
|
|
204 |
|
00:29:18,580 --> 00:29:25,880 |
|
ุจุณ ูุฐุง ุงุญุฏ ุงูุทุฑู ุงูู
ุชุงุญุฉ ุทุฑููุฉ ุชุงููุฉ ุทุจุนุง ุงูุญููุง |
|
|
|
205 |
|
00:29:25,880 --> 00:29:30,080 |
|
ุฏู ู
ูุฌูุฏุฉ ุนูุฏู ูู ุงู .. ูู ุงู appendix ูู ู
ุด |
|
|
|
206 |
|
00:29:30,080 --> 00:29:44,620 |
|
ู
ูุฌูุฏุฉ ุนูุฏู .. ุฎูุญููุง ุจุทุฑููุฉ ุชุงููุฉ ุจุฏู |
|
|
|
207 |
|
00:29:44,620 --> 00:29:46,300 |
|
ุงุญูุง ุจุงุณุชุฎุฏุงู
ุงู superposition |
|
|
|
208 |
|
00:30:14,300 --> 00:30:31,480 |
|
ูุฐู ุงู beam ูุฐู |
|
|
|
209 |
|
00:30:31,480 --> 00:30:36,520 |
|
ูุงุชุจุน ุนุจุงุฑุฉ ุนู ู
ุณุฃูุชูู ุงู |
|
|
|
210 |
|
00:30:36,520 --> 00:30:54,190 |
|
ุฎูู ุงุนู
ู ุงู hand ููุง ูุงู R ูุงุญุฏ ู R ุงุชููููุฐู F ูุฐู |
|
|
|
211 |
|
00:30:54,190 --> 00:31:04,170 |
|
ุนุจุงุฑุฉ ุนู ู
ุซูุฉ ูุฐู |
|
|
|
212 |
|
00:31:04,170 --> 00:31:09,690 |
|
F ุฒุงุฆุฏ |
|
|
|
213 |
|
00:31:20,900 --> 00:31:30,060 |
|
ุงูุนูู ุงุชููู ุทุจุนุง ูุฐู ุงูู
ุณุงูุฉ ุงูู ุงู ุนูู |
|
|
|
214 |
|
00:31:30,060 --> 00:31:38,080 |
|
ุงุชููู ูุฐู ุงูู
ุณุงูุฉ ุงูู ุงู ูุฑูุญ ู buildx |
|
|
|
215 |
|
00:32:17,950 --> 00:32:25,610 |
|
ุทูุจ ุงูุง ู
ุชุนูุฏ ุนูู ุงูู ูู
ุฆู ุณุชุงุด ูุญูู ุงูู ุญุณูุง ูุดูู |
|
|
|
216 |
|
00:32:25,610 --> 00:32:29,150 |
|
content |
|
|
|
217 |
|
00:32:29,150 --> 00:32:31,110 |
|
ู
ุงุดู |
|
|
|
218 |
|
00:32:50,640 --> 00:33:02,300 |
|
Appendix A9 ู
ุด ุจุนุฏ ูุชูุฑ ูุนูู ู
ุงุดู |
|
|
|
219 |
|
00:33:02,300 --> 00:33:02,680 |
|
ููุง ููุง |
|
|
|
220 |
|
00:33:06,980 --> 00:33:13,620 |
|
ูุฐู ูุนูู ุงูุญุงูุฉ ุงูุชุงููุฉ ู ุงูุญุงูุฉ ุงูุฃููู ูุถุบุท ูุฐู |
|
|
|
221 |
|
00:33:13,620 --> 00:33:24,420 |
|
ูุชููู |
|
|
|
222 |
|
00:33:24,420 --> 00:33:32,580 |
|
ูุนู
ูุฐู ุงูุญุงูุฉ |
|
|
|
223 |
|
00:33:32,580 --> 00:33:35,180 |
|
ุงูุชุงููุฉ ูุชููู ุงู Y |
|
|
|
224 |
|
00:33:41,640 --> 00:33:46,080 |
|
ูู ู
ุณู
ู ูุฐุง a ุนุดุงู ุงุถุบุท ุนุดุงู ุงุถุบุท ุนุดุงู ุงุถุบุท ุนุดุงู |
|
|
|
225 |
|
00:33:46,080 --> 00:33:46,160 |
|
ุงุถุบุท ุนุดุงู ุงุถุบุท ุนุดุงู ุงุถุบุท ุนุดุงู ุงุถุบุท ุนุดุงู ุงุถุบุท ุนุดุงู |
|
|
|
226 |
|
00:33:46,160 --> 00:33:49,520 |
|
ุงุถุบุท ุนุดุงู ุงุถุบุท ุนุดุงู ุงุถุบุท ุนุดุงู ุงุถุบุท ุนุดุงู ุงุถุบุท ุนุดุงู |
|
|
|
227 |
|
00:33:49,520 --> 00:33:50,260 |
|
ุงุถุบุท ุนุดุงู ุงุถุบุท ุนุดุงู ุงุถุบุท ุนุดุงู ุงุถุบุท ุนุดุงู ุงุถุบุท ุนุดุงู |
|
|
|
228 |
|
00:33:50,260 --> 00:33:51,720 |
|
ุงุถุบุท ุนุดุงู ุงุถุบุท ุนุดุงู ุงุถุบุท ุนุดุงู ุงุถุบุท ุนุดุงู ุงุถุบุท ุนุดุงู |
|
|
|
229 |
|
00:33:51,720 --> 00:33:56,320 |
|
ุงุถุบุท ุนุดุงู ุงุถุบุท ุนุดุงู ุงุถุบุท ุนุดุงู ุงุถุบุท ุนุดุงู ุงุถุบุท ุนุดุงู |
|
|
|
230 |
|
00:33:56,320 --> 00:34:04,780 |
|
ุงุถุบุท ุนุดุงู ุงุถุบุท ุนุดุงู |
|
|
|
231 |
|
00:34:04,780 --> 00:34:11,200 |
|
ุงุถุบุท |
|
|
|
232 |
|
00:34:11,420 --> 00:34:15,020 |
|
ุงูู Y ุงูู |
|
|
|
233 |
|
00:34:15,020 --> 00:34:19,600 |
|
YAB ุชุณู
ู |
|
|
|
234 |
|
00:34:19,600 --> 00:34:25,500 |
|
ูุฐุง ุงูู prime ูุฐุง ุงู prime ูุฐุง ุงู prime YAB prime |
|
|
|
235 |
|
00:34:25,500 --> 00:34:30,920 |
|
ุจุชุณุงูู F |
|
|
|
236 |
|
00:34:30,920 --> 00:34:36,580 |
|
FX |
|
|
|
237 |
|
00:34:43,450 --> 00:34:50,450 |
|
ุชุฑุจูุน ุนูู ุณุชุฉ AI ูู |
|
|
|
238 |
|
00:34:50,450 --> 00:35:01,130 |
|
X ูุงูู A ุจูุณุชููู ุนูู ุงุชููู ุตุญ ูุงูุต ุชูุงุชุฉ ุนูู ุงุชููู |
|
|
|
239 |
|
00:35:01,130 --> 00:35:04,910 |
|
R Y |
|
|
|
240 |
|
00:35:04,910 --> 00:35:05,810 |
|
ุจู ุณู ุจุฑุงูู
|
|
|
|
241 |
|
00:35:12,360 --> 00:35:16,860 |
|
ูุชููู ุชุณุงูู F |
|
|
|
242 |
|
00:35:16,860 --> 00:35:29,460 |
|
L ุชุฑุจูุน ุนูู ุงุฑุจุน ู ุนุดุฑูู AI ูู |
|
|
|
243 |
|
00:35:29,460 --> 00:35:39,120 |
|
L ุนูู ุงุชููู minus ุชูุงุชุฉ |
|
|
|
244 |
|
00:35:48,410 --> 00:36:01,490 |
|
ุงูุญุงูุฉ ุงูุฃููู ูู ุฎูุตูุง ุงูุญุงูุฉ ุงูุฃููู ูููู |
|
|
|
245 |
|
00:36:01,490 --> 00:36:07,770 |
|
ุนูุฏู ุงููู ูู ูุชููู y |
|
|
|
246 |
|
00:36:12,620 --> 00:36:23,580 |
|
ุนุทู ูู ุงู range ู
ู a ู c y double prime ูุชููู |
|
|
|
247 |
|
00:36:23,580 --> 00:36:33,220 |
|
ุชุณุงูู f x ุชุฑุจูุน ุนูู |
|
|
|
248 |
|
00:36:33,220 --> 00:36:39,260 |
|
6 ai ูู |
|
|
|
249 |
|
00:36:44,700 --> 00:36:56,000 |
|
x-3l ุงู total deflection ูููู ุงู y ูููู |
|
|
|
250 |
|
00:36:56,000 --> 00:37:04,000 |
|
y prime ุฒุงุฏ y double prime ุตุญ ูุนูู |
|
|
|
251 |
|
00:37:10,650 --> 00:37:15,850 |
|
ููููู ุนูุฏู Fx ุชุฑุจูุน |
|
|
|
252 |
|
00:37:15,850 --> 00:37:28,330 |
|
ุนูู 6EI ูู X minus 3L ุงู |
|
|
|
253 |
|
00:37:28,330 --> 00:37:35,210 |
|
ูุฐู ุชูุณูุด ููุง ูู ุบูุทูุง .. ูุนูู ุงุด ูุฐู R2 minus |
|
|
|
254 |
|
00:37:35,210 --> 00:37:38,630 |
|
minus |
|
|
|
255 |
|
00:37:43,130 --> 00:37:58,410 |
|
R2 ููุชููู F X ุชุฑุจูุน ุนูู 6I ูู X-3 ุนูู 2L minus |
|
|
|
256 |
|
00:37:58,410 --> 00:38:06,630 |
|
R2 X ุชุฑุจูุน ุนูู 6EI |
|
|
|
257 |
|
00:38:08,480 --> 00:38:24,720 |
|
ูู X minus 3L ูู ุฏู X ู
ู ุตูุฑ ู L ุนูู ุงุชููู ู |
|
|
|
258 |
|
00:38:24,720 --> 00:38:28,620 |
|
ุจุชุณุงูู F |
|
|
|
259 |
|
00:38:28,620 --> 00:38:38,060 |
|
L ุชุฑุจูุน ุนูู ุงุฑุจุน ู ุนุดุฑูู EI |
|
|
|
260 |
|
00:38:40,400 --> 00:38:52,940 |
|
ุงูุนูู ุงุชููู ูุงูุต ุชูุงุชุฉ X ููุต |
|
|
|
261 |
|
00:38:52,940 --> 00:39:13,200 |
|
R ุงุชููู ูู X ุชุฑุจูุน ุนูู ุณุชุฉ EIูู X-3L ูุฐู X ุจูู L |
|
|
|
262 |
|
00:39:13,200 --> 00:39:22,380 |
|
ุนูู 2 ู L ูุฃู |
|
|
|
263 |
|
00:39:22,380 --> 00:39:30,000 |
|
ููุชุฑู ุงูู ุนูุฏ Y ุจุงูุณุงููุฉ L ุงู deflection ุตูุฑ ุงูุง |
|
|
|
264 |
|
00:39:30,000 --> 00:39:32,740 |
|
ุนูุฏู ู
ุนุฏูุฉ ุงูุชุฒุงูู ุนูุฏู ุงููู ูู R1 |
|
|
|
265 |
|
00:39:35,260 --> 00:39:49,940 |
|
ุฒุงุฏ R ุงุชููู ุจูุณุชูู ุงูุด F ุตุญ ู ุนูุฏู M ูุงุญุฏ minus |
|
|
|
266 |
|
00:39:49,940 --> 00:39:59,130 |
|
F L ุนูู ุงุชููู ุฒุงุฏ R ุงุชูููุงู ุจุงูุณุงููุฉ ุตูุฑ ุจุงูู
ุนุงุฏูุฉ |
|
|
|
267 |
|
00:39:59,130 --> 00:40:08,230 |
|
ุงูุชุงูุชุฉ ุงู Y ุนูุฏ X ุจุงูุณุงููุฉ L ุจุงูุณุงููุฉ ุตูุฑ ุจุชุณุงููุฉ |
|
|
|
268 |
|
00:40:08,230 --> 00:40:18,310 |
|
ููุนูุถ ูููุง ุฏู ุงููู ุนูุฏ F L ุชุฑุจูุน ุนูู |
|
|
|
269 |
|
00:40:18,310 --> 00:40:25,490 |
|
ุฃุฑุจุน ู ุนุดุฑูู EI ูู L ุนูู ุงุชููู |
|
|
|
270 |
|
00:40:28,110 --> 00:40:34,450 |
|
minus 3L minus |
|
|
|
271 |
|
00:40:34,450 --> 00:40:40,490 |
|
R2 L |
|
|
|
272 |
|
00:40:40,490 --> 00:40:47,930 |
|
ุชุฑุจูุน ุนูู 6EI |
|
|
|
273 |
|
00:40:47,930 --> 00:40:53,970 |
|
ูู L ูุงูุต 3L |
|
|
|
274 |
|
00:41:00,070 --> 00:41:05,450 |
|
ูุนูู ุนูุฏ ุงู AI ูุชุฑูุญ |
|
|
|
275 |
|
00:41:05,450 --> 00:41:13,850 |
|
ุญุถุฑู ุงูุทุฑููู .. ุญุถุฑู ุงูุทุฑููู ููู ุจู
ุนุงุฏูุฉ ุฏู ุญุถุฑูุง |
|
|
|
276 |
|
00:41:13,850 --> 00:41:17,550 |
|
ูู 24 AI |
|
|
|
277 |
|
00:41:17,550 --> 00:41:21,470 |
|
ุนูู |
|
|
|
278 |
|
00:41:21,470 --> 00:41:27,310 |
|
ุงูุชููุจ ู
ุธุจูุทุ |
|
|
|
279 |
|
00:41:30,840 --> 00:41:40,220 |
|
ู
ุงุดู ุจูุตูุฑ ุนูุฏู ุตูุฑ ุจุงูุณุงูู F F |
|
|
|
280 |
|
00:41:40,220 --> 00:41:58,940 |
|
ูู ูุต ูุงูุต ุชูุงุชุฉ ูุงูุต ุงุฑุจุนุฉ R ุงุชููู ูู ุงูุด ูู ูุงูุต |
|
|
|
281 |
|
00:41:58,940 --> 00:41:59,340 |
|
ุงุชููู |
|
|
|
282 |
|
00:42:02,390 --> 00:42:08,850 |
|
ุตุญุ ูุนูู ุงููุต ูุงูุต ุณุชุฉ ุนูู ุงุชููู ุฃู ูุญูู ููุง ุงููุต |
|
|
|
283 |
|
00:42:08,850 --> 00:42:15,830 |
|
ุฃูุจุฑ ุนู ุฃูู
ุงููุต ูุงูุต ุชูุงุช ุณุชุฉ ุนูู ุงุชููู ูุนูู ูุงุญุฏ |
|
|
|
284 |
|
00:42:15,830 --> 00:42:20,670 |
|
ูุงูุต ุณุชุฉ ูุนูู ุณูุฑ ูุชููู ุชุณุงูู |
|
|
|
285 |
|
00:42:26,760 --> 00:42:30,260 |
|
ุงูุณุงูุจ ุฎู
ุณุฉ ุนุชููู ูุนูู ุนูุฏู ุณุงูุจ ุงุชููู ู ูุต ูุนูู |
|
|
|
286 |
|
00:42:30,260 --> 00:42:42,220 |
|
ุณุงูุจ ุฎู
ุณุฉ ุนูู ุงุชููู F ุฒุงุฆุฏ ุชู
ุงููุฉ R ุงุชููู ูู ู
ููุง |
|
|
|
287 |
|
00:42:42,220 --> 00:42:48,240 |
|
R ุงุชููู ุณูุงุก |
|
|
|
288 |
|
00:42:48,240 --> 00:42:52,560 |
|
ุฎู
ุณุฉ ุนูู ุณุชุงุดุฑ F |
|
|
|
289 |
|
00:42:56,220 --> 00:43:04,100 |
|
ุฎูุงุต ุนุฑูุช R2 ุจุญุณุจ R1 ู ุจุญุณุจ H M1 ุงูู
ูุฑูุถ ุชููู ููุณ |
|
|
|
290 |
|
00:43:04,100 --> 00:43:09,940 |
|
ุงูุฌูุงุจ ุฃุชุฃูุฏูุง ุทูุจ |
|
|
|
291 |
|
00:43:09,940 --> 00:43:17,140 |
|
ุงู .. ูู ุฃูู ุงูุณุคุงูุ ุฏูููุง ุฎูุตูุง ู
ุญุงุถุฑุฉ ุงูููู
ุ |
|
|
|
292 |
|
00:43:17,140 --> 00:43:17,660 |
|
ุฏูููุง ุงูุนุงููุฉ |
|
|
|
|