|
1 |
|
00:00:19,390 --> 00:00:23,870 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ุงูุชูููุง ูู ุฃูู chapter ู
ู |
|
|
|
2 |
|
00:00:23,870 --> 00:00:27,410 |
|
ุงูุฌุงุจุฑุฉ ุงูุฎุงุทูุฉ ู ูู chapter 2 ูุงูุงู ุจูุฑูุญ ูู |
|
|
|
3 |
|
00:00:27,410 --> 00:00:31,030 |
|
chapter ุงูุซุงูู ู
ู ุงูุฌุงุจุฑุฉ ุงูุฎุงุทูุฉ ู ูู chapter 3 |
|
|
|
4 |
|
00:00:31,030 --> 00:00:35,870 |
|
ู
ู ุงููุชุงุจ ุงูู
ูุฑุฑ ูุฐุง ุงู chapter ูุชุญุฏุซ ุนู ููุทุชูู |
|
|
|
5 |
|
00:00:35,870 --> 00:00:39,910 |
|
ุฑุฆูุณูุชูู ุงูููุทุฉ ุงูุฃููู ูู ุงู vector spaces ู |
|
|
|
6 |
|
00:00:39,910 --> 00:00:43,890 |
|
ุงูููุทุฉ ุงูุซุงููุฉ ูู ุงู linear transformations ูุนูู |
|
|
|
7 |
|
00:00:43,890 --> 00:00:48,830 |
|
ุงูุชุญูููุงุช ุงูุฎุงุทูุฉู
ูุถูุนูุง ุงูููู
ู
ูุถูุน ุงู vector |
|
|
|
8 |
|
00:00:48,830 --> 00:00:54,070 |
|
spaces ูุนูู ู
ุฏุงุฑ ุงูุฃูุงู
ุงููุงุฏู
ุฉ ูุฐูู ููููุง ูู ูุฐุง |
|
|
|
9 |
|
00:00:54,070 --> 00:00:58,550 |
|
ุงู section ููุท ุณูุนุทู ุชุนุฑูู ูู vector space ููุนุทู |
|
|
|
10 |
|
00:00:58,550 --> 00:01:04,670 |
|
ุจุนุถ ุงูุฃู
ุซูุฉ ุนููู ููุท ูุง ุบูุฑ ูู
ู ุซู
ููุชูู ุฅูู ุจููุฉ |
|
|
|
11 |
|
00:01:04,670 --> 00:01:09,450 |
|
ุงูุฃุฌุฒุงุก ุงูุชู ุชุชุนูู ุจุงู vector spaces ูุจูู ุงุญูุง |
|
|
|
12 |
|
00:01:09,450 --> 00:01:16,950 |
|
ุนูุฏูุง vector spaces ูุนูู ุงููุถุงุกุงุช ุงูุงุชุฌุงููุฉุจุฏูุง |
|
|
|
13 |
|
00:01:16,950 --> 00:01:22,530 |
|
ูุนุทู ุชุนุฑูู ูููุถุงุก ุงูุงุชุฌุงูู ููุดูู ููู ูุทุจู ุงูุชุนุฑูู |
|
|
|
14 |
|
00:01:22,530 --> 00:01:28,090 |
|
ุนูู ุงูุฃู
ุซูุฉ ุงูู
ุฎุชููุฉุจููู ุงูุชุฑุถ ุงู capital V ุนุจุงุฑุฉ |
|
|
|
15 |
|
00:01:28,090 --> 00:01:32,370 |
|
ุนู non-empty set of objects ูุจูู ุงูุง ุนูุฏู capital |
|
|
|
16 |
|
00:01:32,370 --> 00:01:37,650 |
|
V ูู ุนุจุงุฑุฉ ุนู ู
ุฌู
ูุนุฉ ููุฐู ุงูู
ุฌู
ูุนุฉ ุชุญุชูู ุนูู ุนุฏุฏ |
|
|
|
17 |
|
00:01:37,650 --> 00:01:41,750 |
|
ู
ู ุงูุนูุงุตุฑ in which two operations addition and |
|
|
|
18 |
|
00:01:41,750 --> 00:01:45,610 |
|
multiplication by scalars are defined ูุนูููุง |
|
|
|
19 |
|
00:01:45,610 --> 00:01:50,030 |
|
ุนู
ููุชูู ู
ุนุฑูุชูู ุนู
ููุฉ ุจูุณู
ููุง ุนู
ููุฉ ุงูุฌู
ุน ูุงูุซุงููุฉ |
|
|
|
20 |
|
00:01:50,030 --> 00:01:54,650 |
|
ุนู
ููุฉ ุงูุถุฑุจ ูู ู
ูุฏุงุฑ ููุงุณู ุงู ู
ูุฏุงุฑ ุซุงุจุช ูู
ุง ูููู |
|
|
|
21 |
|
00:01:54,650 --> 00:01:58,930 |
|
vectorูุจูู ูู ุถุฑุจูุงูุง ูู ุฑูู
ูููู ูุฐุง ูู scalar |
|
|
|
22 |
|
00:01:58,930 --> 00:02:04,130 |
|
multiplication ูุนูู ุถุฑุจ ููุงุณู ูุจูู ุงุญูุง ูู ุนูุฏูุง |
|
|
|
23 |
|
00:02:04,130 --> 00:02:08,670 |
|
set V ุงู V ูุฐุง ุจุฏุฃ ุฃุถุน ุนูููุง ุนู
ููุชูู ุงูุนู
ููุฉ |
|
|
|
24 |
|
00:02:08,670 --> 00:02:14,070 |
|
ุงูุฃููู ุนู
ููุฉ ุงูุฌู
ุน ุจูู ุงูู
ุชุฌูุงุช ุงูู
ูุฌูุฏุฉ ูู V |
|
|
|
25 |
|
00:02:14,070 --> 00:02:18,870 |
|
ุงูุนู
ููุฉ ุงูุซุงููุฉ ุฃุฎุฏ ุฑูู
ู
ู set of real numbers R |
|
|
|
26 |
|
00:02:18,870 --> 00:02:25,370 |
|
ูุถุฑุจู ูู ุฃู ู
ู ุงูู
ุชุฌูุงุช ุชุจุนุงุช ุงู vector Vูุจูู ูุงู |
|
|
|
27 |
|
00:02:25,370 --> 00:02:28,970 |
|
ุงูุนู
ููุชูู ุงููู ุฃูุง ุจููู ุนูููู
ู
ุนุฑูุชูู ูุงููุง ู
ุนุฑูุฉ |
|
|
|
28 |
|
00:02:28,970 --> 00:02:29,550 |
|
ุฐุงุชู |
|
|
|
29 |
|
00:02:46,650 --> 00:02:52,470 |
|
ุนู
ููุฉ ุฌู
ุน ู
ุชุฌููู ู
ู V ูู ู
ุชุฌู ุฌุฏูุฏ ู
ูุฌูุฏ ูู V |
|
|
|
30 |
|
00:02:52,470 --> 00:02:58,210 |
|
ุนู
ููุฉ ุถุฑุจ scalar A ูู U ูู ุจูุนุทููู ู
ุชุฌู ุฌุฏูุฏ ูุฐุง |
|
|
|
31 |
|
00:02:58,210 --> 00:03:04,030 |
|
ุงูู
ุชุฌู ู
ูุฌูุฏ ูู V ูุฐูู R definedูุจูู ูู ูุฐู ุงูุญุงูุฉ |
|
|
|
32 |
|
00:03:04,030 --> 00:03:08,170 |
|
ุจูููู ุฅู ุงู V ูุนูููุง ุนู
ููุฉ ุงูุฌู
ุน ูุนูููุง ุนู
ููุฉ |
|
|
|
33 |
|
00:03:08,170 --> 00:03:13,390 |
|
ุงูุถุฑุจ base color is a vector space ุฃู linear space |
|
|
|
34 |
|
00:03:13,390 --> 00:03:16,830 |
|
ุจุนุถ ุงููุชุจ ุจุชููู ุนูู vector space ู ุจุนุถ ุงููุชุจ ุจุชููู |
|
|
|
35 |
|
00:03:16,830 --> 00:03:19,890 |
|
ุนูู linear space if the following properties are |
|
|
|
36 |
|
00:03:19,890 --> 00:03:26,080 |
|
satisfied ุนูู Vูุจูู ุฅุฐุง ุชุญูู ุงูุดุฑูุท ุงูุนุดุฑุฉ ุงูุชุงููุฉ |
|
|
|
37 |
|
00:03:26,080 --> 00:03:31,540 |
|
ุนูู ูุฐู ุงูุณุช ุจููู ุงูุณุช ูุฐู vector space ุฅุฐุง ูู
|
|
|
|
38 |
|
00:03:31,540 --> 00:03:36,640 |
|
ูุชุญูู ููู ุดุฑุท ูุงุญุฏ ูุจูู ุจูุจุทู ูุตูุฑ vector space |
|
|
|
39 |
|
00:03:36,640 --> 00:03:40,520 |
|
ูุจูู ูุจูู ูู ุฃู ูุฐุง ู
ุง ูู ูุงุด vector space ุจูููู |
|
|
|
40 |
|
00:03:40,520 --> 00:03:47,060 |
|
ุฃูุบู ุดุฑุท ู
ู ุงูุดุฑูุท ุงูุนุดุฑุฉูุฃุชู ููุดุฑุท ุงูุฃูู ุฃู |
|
|
|
41 |
|
00:03:47,060 --> 00:03:51,080 |
|
ุงูุฎุงุตูุฉ ุงููู ูู ูู ุฃุฎุฏุช ุนูุตุฑูู ู
ู V ูุจูู ุญุงุตู |
|
|
|
42 |
|
00:03:51,080 --> 00:03:56,420 |
|
ุงูุฌู
ุญู ู
ุด ุจุฏู ูููู ู
ูุฌูุฏ ูู V ูููุณ ุฎุงุฑุฌ V ุทุงูุน |
|
|
|
43 |
|
00:03:56,420 --> 00:04:00,240 |
|
ุฎุงุฑุฌ V ูุจุชุทู ูุตูุฑ vector space ูุจูู ุจุฏ ุงูู
ุฌู
ูุน |
|
|
|
44 |
|
00:04:00,240 --> 00:04:05,480 |
|
ูููู ุฏุงุฎู V ุงู condition ุงูุชุงูู ุงู U ุฒุงุฆุฏ ุงู V |
|
|
|
45 |
|
00:04:05,480 --> 00:04:10,020 |
|
ูุณุงูู ุงู V ุฒุงุฆุฏ ุงู U ูุนูู ุนู
ููุฉ ุนู
ููุฉ ุฌู
ุน ุงูู
ูุชุฌุงุช |
|
|
|
46 |
|
00:04:10,020 --> 00:04:14,690 |
|
ุนู
ููุฉุฅุจุฏุงููุฉ ูู ู
ุงููุชุด ุฅุจุฏุงููุฉ it is not a vector |
|
|
|
47 |
|
00:04:14,690 --> 00:04:19,210 |
|
space ุทูุจ ุงูุฎุงุตูุชูู ุงููู ุงุชูููู ุงุชุญูููุง ุจุฑูุญูุง |
|
|
|
48 |
|
00:04:19,210 --> 00:04:23,210 |
|
ุงูุฎุงุตูุฉ ุงูุชุงูุชุฉ ู ูู ุฎุงุตูุฉ ุงู associativity ูู |
|
|
|
49 |
|
00:04:23,210 --> 00:04:29,230 |
|
ุฌู
ุนุช ุงู U ุฅูู V ุฒุงุฆุฏ ุงู W ุชู
ุงู
ุง ูู
ุง ูู ุฌู
ุนุช ุงู U |
|
|
|
50 |
|
00:04:29,230 --> 00:04:34,530 |
|
ุฒุงุฆุฏ ุงู V ุฅูู ู
ู ุฅูู ุงู W ู ุฏู ุจูุณู
ูู ุฎุงุตูุฉ ุงูุฏู
ุฌ |
|
|
|
51 |
|
00:04:34,530 --> 00:04:38,830 |
|
associative law ุฃู associative propertyุงูุงู ุงูุช |
|
|
|
52 |
|
00:04:38,830 --> 00:04:42,630 |
|
ุญููุช ุงูุฎูุงุต ุงูุซูุงุซ ุจุฑูุญ ูุฎุงุตูุฉ ุฑุงุจุนุฉ ุงูุฎุงุตูุฉ |
|
|
|
53 |
|
00:04:42,630 --> 00:04:46,450 |
|
ุงูุฑุงุจุนุฉ ุชููู ูู ูู ุนูุฏู ุนูุตุฑ ุงููู ูู ุงู zero |
|
|
|
54 |
|
00:04:46,450 --> 00:04:51,450 |
|
ุงูู
ุทูู ูุฐุง ู
ูุฌูุฏ ูู Vุฅุฐุง ู ุงููู ูุงู Zero ุฒุงูุฏ V |
|
|
|
55 |
|
00:04:51,450 --> 00:04:57,230 |
|
ูุณูู V ุฒุงูุฏ Zero ูุณูู V ููู ุงู V ูุจูู ูุฐุง ุจุณู
ูู |
|
|
|
56 |
|
00:04:57,230 --> 00:05:01,970 |
|
Zero vector ูู
ููุ ูู vector space V ูุนูู ุจู
ุนูู ุฃุฎุฑ |
|
|
|
57 |
|
00:05:01,970 --> 00:05:07,070 |
|
ุฃู ุงู vector space V ูุงุฒู
ูุญุชูู ุนูู ุงูุนูุตุฑ ุงูุตูุฑู |
|
|
|
58 |
|
00:05:07,070 --> 00:05:13,410 |
|
ุจุงููุณุจุฉ ูุนู
ููุฉ ุงูุฌุงู
ุนูุจูู ุงูู zero ูุฐุง vector ูุจูู |
|
|
|
59 |
|
00:05:13,410 --> 00:05:20,130 |
|
ู
ุด scalar ูุนูู ู
ุด number ูุฅูู
ุง ูู vector ุชู
ุงู
ุจุญูุซ |
|
|
|
60 |
|
00:05:20,130 --> 00:05:24,030 |
|
ูุฐุง ุงู zero vector ูู ุฌู
ุนุชู ุฅูู ุฃู vector ุขุฎุฑ ู
ู |
|
|
|
61 |
|
00:05:24,030 --> 00:05:28,590 |
|
ุงููู
ูู ุฃู ู
ู ุงูุดู
ุงู ุจุฏู ูุนุทููู ููุณ ุงู vector ูุฐุง |
|
|
|
62 |
|
00:05:28,590 --> 00:05:32,850 |
|
ุงู element ุจููู ุนููู ุงู zero vector ุฎุงุตูุฉ ุงูุฎุงู
ุณุฉ |
|
|
|
63 |
|
00:05:32,850 --> 00:05:37,470 |
|
ูุฃู u ู
ูุฌูุฏ ูู capital V there exists ูุงุฒู
ุงููู |
|
|
|
64 |
|
00:05:37,470 --> 00:05:42,980 |
|
ุฃุฌู ุฃุณุงูู ุจูU ู
ูุฌูุฏ ูู V ูุนูููุนูู ุฅุฐุง ุงูุนูุตุฑ ุฃู ุงู |
|
|
|
65 |
|
00:05:42,980 --> 00:05:48,560 |
|
vector ู
ูุฌูุฏ ูู V ูุงุฒู
ุฃูุงูู ุณุงูุจ ูุฐุง ุงูุนูุตุฑ ู
ูุฌูุฏ |
|
|
|
66 |
|
00:05:48,560 --> 00:05:54,560 |
|
ูู V ุจุญูุซ ูู ุฌู
ุนุช ุงู U ูุณุงูุจ U ุชู
ุงู
ุง ูู
ุง ูู ุฌู
ุนุช |
|
|
|
67 |
|
00:05:54,560 --> 00:05:58,740 |
|
ุณุงูุจ U ู U ูุฃูู ูุงู ููุง commutative ููุฏุด ุจุฏู |
|
|
|
68 |
|
00:05:58,740 --> 00:06:02,830 |
|
ูุนุทููุงุงูู zero vector ู
ุด ุงูู zero scalar ูุฅู ุงุญูุง |
|
|
|
69 |
|
00:06:02,830 --> 00:06:09,790 |
|
ุจูุฌู
ุน vectors ุณุงูุจ U ูู vector ูุจูู U ุฒุงุฆุฏ ูุงูุต U |
|
|
|
70 |
|
00:06:09,790 --> 00:06:14,910 |
|
ูุณูู ุชู
ุงู
ุง ูุงูุต ุงูู U ุฒุงุฆุฏ ุงูู U ุจุฏู ูุณูู ู
ู ุงูู |
|
|
|
71 |
|
00:06:14,910 --> 00:06:19,180 |
|
zero vectorูุฐู ุงูุฎุงู
ุณุฉ ุงูุฎุงุตูุฉ ุงูุณุงุณุฉ ูู ุฃุฎุฏุช ุฃู |
|
|
|
72 |
|
00:06:19,180 --> 00:06:23,740 |
|
scalar ู
ู ุงู set of real number A ุฃุฎุฏุช ุนูุตุฑ A ู
ู |
|
|
|
73 |
|
00:06:23,740 --> 00:06:27,900 |
|
ุงู set of real number ู ุฃุฎุฏุช ุงู U vector ู
ูุฌูุฏ ูู |
|
|
|
74 |
|
00:06:27,900 --> 00:06:35,880 |
|
V ุฅุฐุง ุญุตู ุถุฑุจ ู 2A ูู U ุจุฏู ูููู ู
ูุฌูุฏ ูู V ุชู
ุงู
ุง |
|
|
|
75 |
|
00:06:35,880 --> 00:06:40,070 |
|
ุชุญููุช ุงูุฎุงุตูุฉ ุฏู ูุฑูุญ ุจุงูุฎุงุตูุฉ ุงููู ุจุนุฏูุงูู ูุงู |
|
|
|
76 |
|
00:06:40,070 --> 00:06:45,170 |
|
ุงูู A scalar ูุงุฎุฏุช two vectors ู
ู V ูุฑูุญ ุถุฑุจ ูุณููุฑ |
|
|
|
77 |
|
00:06:45,170 --> 00:06:51,550 |
|
ุงูู A ุถุฏ ุงูู U ุฒุงุฆุฏ ุงูู V ุฎุถุนุช ูุฐู ูุนู
ููุงุช ุงูุชูุฒูุน |
|
|
|
78 |
|
00:06:51,550 --> 00:06:56,850 |
|
ุงู distributive property ุฎุงุตูุฉ ุงูุชูุฒูุน ุตุงุฑุช ูุฐู A |
|
|
|
79 |
|
00:06:56,850 --> 00:07:03,190 |
|
ุถุฏ ุงูู U ุฒุงุฆุฏ A ุถุฏ ุงูู Vู
ุด ุนุงุฌุฒ ูู ู ุจุณ ุถุฑุจ scalar |
|
|
|
80 |
|
00:07:03,190 --> 00:07:08,090 |
|
ู
ุน ุฌุงู
ุนุฉ ู vector ูุฃ ุฌุงู
ุนุฉ ู scalars ู
ุน ุถุฑุจ ู
ุน ู
ูู |
|
|
|
81 |
|
00:07:08,090 --> 00:07:12,750 |
|
ู
ุน vector ุงูุฎุงุตูุฉ ุงููู ุจุนุฏูุง ูู ูุงู ุงู a ู ุงู b |
|
|
|
82 |
|
00:07:12,750 --> 00:07:16,930 |
|
ู
ูุฌูุฏุฉ ูู R ู ุงู u ู
ูุฌูุฏุฉ ูู V ูุจูู ุงู a ุฒุงุฆุฏ ุงู b |
|
|
|
83 |
|
00:07:16,930 --> 00:07:21,450 |
|
ู dot ุงู u ุจูุณูู a dot ุงู u ุฒุงุฆุฏ ุงู b dot ุงู u ูู |
|
|
|
84 |
|
00:07:21,450 --> 00:07:28,160 |
|
ูุฐุง ุจูููู ู
ูุฌูุฏ ูู Vุทุจุนุง ูุจูู ุจูุฌู ููุฎุงุตูุฉ ุงูุชุงุณุนุฉ |
|
|
|
85 |
|
00:07:28,160 --> 00:07:34,580 |
|
ูู ูุงู ุนูุฏู scholar A ูุนูุฏู scholar B ุถุฑุจุช ุงู B ูู |
|
|
|
86 |
|
00:07:34,580 --> 00:07:39,000 |
|
ุงู U ูุงููุชุฌ ุฑูุญุช ุถุฑุจุช ูู A ุชู
ุงู
ุง ูู
ุง ูู ุถุฑุจุช ุงู |
|
|
|
87 |
|
00:07:39,000 --> 00:07:43,360 |
|
two scholars ู
ู ุงูุจุฏุงูุฉ ูู ู
ู ูู ุงู vector V ุจุฏู |
|
|
|
88 |
|
00:07:43,360 --> 00:07:48,960 |
|
ูุทูุน ุนูุฏู vector ุงุณู
ู A B ุถุฏ ุงู Uููุฐุง ุจูููู vector |
|
|
|
89 |
|
00:07:48,960 --> 00:07:53,220 |
|
ู
ูุฌูุฏ ูู ุงูู vector ุงูุฃุตูู ุทุจููุง ููุฎุงุตูุฉ ุงููู |
|
|
|
90 |
|
00:07:53,220 --> 00:07:57,640 |
|
ุนูุฏูุง ูุฐู ุชู
ุงู
ุงุชุญูู ุงูุฎุงุตูุฉ ุงูุชุงุณุนุฉ ุจูุฑูุญ ุงูุฎุงุตูุฉ |
|
|
|
91 |
|
00:07:57,640 --> 00:08:02,860 |
|
ุงูุนุงุดุฑุฉ ูู ุฃุฎุฏุช ุงููุงุญุฏ as a scalar ูุนูู ูุฃูู |
|
|
|
92 |
|
00:08:02,860 --> 00:08:08,400 |
|
ุงูุฎุงุตูุฉ ุฏู ุญุงูุฉ ุฎุงุตุฉ ู
ู ู
ู ุงููู ููู ุฃุฎุฏุช ุงู U ูู |
|
|
|
93 |
|
00:08:08,400 --> 00:08:12,180 |
|
vector ู ุฃุฎุฏุช ุงููุงุญุฏ as a scalar ุถุฑุจุช ุงููุงุญุฏ ูู U |
|
|
|
94 |
|
00:08:12,180 --> 00:08:18,850 |
|
ุจูุทูุน ุงููุชุฌ ูุณุงูู U ุงููู ูู ู
ูุฌูุฏ ูู Vูุจูู ุฅุฐุง |
|
|
|
95 |
|
00:08:18,850 --> 00:08:23,930 |
|
ุชุญููุช ูุฐู ุงูุฎูุงุต ุงูุนุดุฑ ูู ูุฐู ุงูุญุงูุฉ ุจููู ูุจูู |
|
|
|
96 |
|
00:08:23,930 --> 00:08:28,430 |
|
ุงููู ูู ุนูุฏู ูุฐุง ู
ุงูู vector space ุจุฏูุง ูุจุฏุฃ ูุทุจู |
|
|
|
97 |
|
00:08:28,430 --> 00:08:31,710 |
|
ุงูููุงู
ุงููู ุงุญูุง ุจููููู ุนูู ุฃุฑุถ ุงููุงูุน ุจุฃู
ุซูุฉ |
|
|
|
98 |
|
00:08:31,710 --> 00:08:35,950 |
|
ู
ุฎุชููุฉ ููุดูู ู
ูู ู
ู
ูู ูุทูุน vector space ุงู ู
ู
ูู |
|
|
|
99 |
|
00:08:35,950 --> 00:08:42,150 |
|
ู
ุงูุทูุนุด vector space ูุฅุฐุง ู
ุงุทูุนุด ู
ูู ู
ู ุงูุฎูุงุต ูุง |
|
|
|
100 |
|
00:08:42,150 --> 00:08:46,790 |
|
ุชุญุชุญูู ูู ูุฐู ุงูุญุงูุฉ ุจููุช ูุตูุฑ ู
ุง ููุงุด vector |
|
|
|
101 |
|
00:08:46,790 --> 00:08:52,980 |
|
spaceุฌุงู ูุงุฎุฏ ุงูู
ุซุงู ุงูุฃูู ุงูุชุฑุถ ุงู V ูู ุงูุนูุงุตุฑ |
|
|
|
102 |
|
00:08:52,980 --> 00:08:59,700 |
|
ุงู zero X1 ู X2 ุจูุง X1 ู X2 ู
ูุฌูุฏ ูู R ูุนูู ุงูุดุ |
|
|
|
103 |
|
00:08:59,700 --> 00:09:04,700 |
|
ูุนูู ุจุฏู ุงุฎุฏ ูู ุงู vectors ุงููู ูู vector ู
ููู ู
ู |
|
|
|
104 |
|
00:09:04,700 --> 00:09:08,560 |
|
ุงู three components ุจุญูุซ ุงูู
ุฑูุจุฉ ุงูุฃููู ุฏุงุฆู
ุง ู |
|
|
|
105 |
|
00:09:08,560 --> 00:09:12,920 |
|
ุฃุจุฏุงzero ูู ู
ุง ูู zero ุฅุฐุง ู
ุด ุนูุฏูุง ุจุฑุง ู
ุงููุงุด |
|
|
|
106 |
|
00:09:12,920 --> 00:09:17,560 |
|
ุนูุงูุฉ ูููุง ูุจูู ุงุญูุง ุจุฏูุง ูุฌู
ุน ูุนูู ู
ุซูุง ูู ุฌูุช |
|
|
|
107 |
|
00:09:17,560 --> 00:09:22,140 |
|
ูููุช ูุง ุจูุงุช ูุฐุง ูู ูุงุญุฏุฉ ูููู ุนุจุงุฑุฉ ุนู ุนูุตุฑ ูู ุงู |
|
|
|
108 |
|
00:09:22,140 --> 00:09:26,560 |
|
vector space ุงูุดู ูุฐู ุชู
ุงู
ุฌูุช ูููุช ููุจูุงุช ุงูุณุทุฑ |
|
|
|
109 |
|
00:09:26,560 --> 00:09:30,930 |
|
ูุฐุง ููู ุงูุชุฌ ูููุงุญูุฉ ุงูุชุงููุฉูุจูู ูุฃูู ุงูุง ุฃุฎุฏุช |
|
|
|
110 |
|
00:09:30,930 --> 00:09:35,490 |
|
ุญุงูุฉ ุฎุงุตุฉ ู
ู ุงูุฃุตููุฉ ุงูู
ุฑูุจุฉ ุงูุฃููู ูููุง zero ูู |
|
|
|
111 |
|
00:09:35,490 --> 00:09:42,390 |
|
ูู three tuple ุชู
ุงู
ุ ุจุฏุฃุช ุฃุดูู ูู ูุฐุง ุชุญุช ุนู
ููุฉ |
|
|
|
112 |
|
00:09:42,390 --> 00:09:47,030 |
|
ุงูุฌู
ุน ุงูุนุงุฏูุฉ ู ุชุญุช ุนู
ููุฉ ุงูุถุฑุจ ุงูุนุงุฏูุฉ ูู ูู |
|
|
|
113 |
|
00:09:47,030 --> 00:09:52,990 |
|
vector space ุฃู
ูุง ุทูุน ููุง ูู ุงูุนูุงุตุฑ ุงููู ุงูู
ุฑูุจุฉ |
|
|
|
114 |
|
00:09:52,990 --> 00:09:56,610 |
|
ุงูุฃููู ุฏุงุฆู
ุง ู ุฃุจุฏุง ุจ zero ุทุจ ู ุงูู
ุฑูุจุฉ ุงูุชุงููุฉ ู |
|
|
|
115 |
|
00:09:56,610 --> 00:10:01,430 |
|
ุงูุชุงูุชุฉุฃุด ู
ุง ูุงู ูููู ูู
ุง ุญุทูุชุด ุนูููู
ูููุฏ ูู
ูู |
|
|
|
116 |
|
00:10:01,430 --> 00:10:06,250 |
|
ุณุงูุจ ูู
ูู ู
ูุฌุจ ูู
ูู Zero ูู ุฃูุง ู
ููุฏ ุจุงูู
ุฑูุจุฉ |
|
|
|
117 |
|
00:10:06,250 --> 00:10:10,510 |
|
ุงูุฃููู ูุงุฒู
ุชููู Zero ููููุชู X1 ู X2 ู
ูุฌูุฏุฉ ูู |
|
|
|
118 |
|
00:10:10,510 --> 00:10:14,510 |
|
ูุฑู
ูุฌุฉ ุจุณุงูุจ ูุณุฑ ู
ุด ุนุงุฑู ุฃูู Zero ู
ุงููุด ุนูุงูุฉ ุจูู |
|
|
|
119 |
|
00:10:14,510 --> 00:10:17,210 |
|
ุฃุด ู
ุง ูููู ุดููู ู
ุง ูููู ุงู ุดุงุก ุงููู ูููู ุฌุฐูุฑ |
|
|
|
120 |
|
00:10:17,210 --> 00:10:22,210 |
|
ุชุฑุจูุฉ ูุฌุฐูุฑ ุชูููุจูุฉ ูุฃููุง set ุฃู ุนูุงุตุฑ ู
ูุฌูุฏุฉ ูู |
|
|
|
121 |
|
00:10:22,210 --> 00:10:27,060 |
|
ุงู set of real number ุทูุจunder the usual addition |
|
|
|
122 |
|
00:10:27,060 --> 00:10:33,680 |
|
ุนู
ููุฉ ุงูุฌู
ุน ุงูุนุงุฏูุฉ ุชุจุน ุงู vectors and the usual |
|
|
|
123 |
|
00:10:33,680 --> 00:10:38,040 |
|
multiplication of scalar ูุนู
ููุฉ ุงูุถุฑุจ ุงูุนุงุฏู ูู |
|
|
|
124 |
|
00:10:38,040 --> 00:10:42,280 |
|
vectors ูู scalar ูุงุฎุฏูุง ุณุงุจูุง ุงูู ุนู
ููุฉ ูู ุถุฑุจุช |
|
|
|
125 |
|
00:10:42,280 --> 00:10:47,160 |
|
element ูู vector ุจุฏุฑุจู ูู ุฌู
ูุน ุงู components ู
ุด |
|
|
|
126 |
|
00:10:47,160 --> 00:10:51,720 |
|
ููู ูุจูู ุฏู ุงุณู
ู ุงูุถุฑุจ ุงูุนุงุฏู ูุงูุฌู
ุน ุจุฌู
ุน |
|
|
|
127 |
|
00:10:51,720 --> 00:10:57,070 |
|
component was ูู ุนูุตุฑ ู
ุนุงููุธูุฑู ุจูููู then ุงู V is |
|
|
|
128 |
|
00:10:57,070 --> 00:11:02,490 |
|
a vector space because ูุจูู ูุฐุง ุงููู ููู ุชุญุช ุนู
ููุฉ |
|
|
|
129 |
|
00:11:02,490 --> 00:11:06,010 |
|
ุงูุฌุงู
ุนุฉ ุงูุนุงุฏูุฉ ูุงูุถุฑุจ ุงูุนุงุฏูุฉ ุฏู ุจูููู vector |
|
|
|
130 |
|
00:11:06,010 --> 00:11:10,030 |
|
space ู
ุง ูู ุงูุณุจุจ ุจูููู ูู ุฃุฎุฏุช three vectors |
|
|
|
131 |
|
00:11:10,030 --> 00:11:15,770 |
|
ู
ูุฌูุฏุงุช ูู V ุทูุนู ุงูู
ุฑูุจุฉ ุทูุนู ููู ุงูู
ุฑูุจุฉ ุงูุฃููู |
|
|
|
132 |
|
00:11:15,770 --> 00:11:25,990 |
|
ูุงูู
ุฑูุจุฉ ุงูุฃููููุงูู
ูุฑููุจ ุงูุฃููู ููู ุจุฃุณูุงุฑ ู
ูุฌูุฏุฉ |
|
|
|
133 |
|
00:11:25,990 --> 00:11:31,690 |
|
ูู V ุจุฏุงูุฉ ุฃุดูู ุงูุฎูุงุตุฉ ุงูุนุงุดุฑุฉ ูู ุงู U ุฒุงุฆุฏ ุงู V |
|
|
|
134 |
|
00:11:31,690 --> 00:11:37,070 |
|
ู
ูุฌูุฏ ูู V ููุง ูุฃ ูุจูู ุจุฏุงูุฉ ููุฎุงุตูุฉ ุงูุฃููููู
ุฑ |
|
|
|
135 |
|
00:11:37,070 --> 00:11:42,370 |
|
ูุงุญุฏ ุจูุฏุงุฎุฏ ุงู U ุฒุงุฆุฏ ุงู V ูุจูู ูุฐุง ุจุฏู ูุนุทููู |
|
|
|
136 |
|
00:11:42,370 --> 00:11:48,130 |
|
Zero ู X ูุงุญุฏ ู X ุงุชููู ุฒุงุฆุฏ Zero ู Y ูุงุญุฏ ู Y |
|
|
|
137 |
|
00:11:48,130 --> 00:11:55,140 |
|
ุงุชููู ู Y ุณุงููุฃุญูุง ูููุง ูุฐู ุนู
ููุฉ ุงูุฌู
ุน ุนุงุฏูุฉ ูู
ูุ |
|
|
|
138 |
|
00:11:55,140 --> 00:11:59,040 |
|
ููู vectors ูุจูู ุนู
ููุฉ ุงูุฌู
ุน ุงูุนุงุฏูุฉ ุจุฌู
ุน |
|
|
|
139 |
|
00:11:59,040 --> 00:12:08,440 |
|
component y 0 ู
ุน 0 ุจูุฏุฑุด 0 X1 ุฒุงุฆุฏ Y1 X2 ุฒุงุฆุฏ Y2 |
|
|
|
140 |
|
00:12:08,440 --> 00:12:12,630 |
|
ู
ูุฌูุฏุฉ ูู V ููุง ูุง ุจูุงุชุู
ูุฌูุฏ ูู V ููุดุ ูุฃู ุงูู |
|
|
|
141 |
|
00:12:12,630 --> 00:12:17,290 |
|
element ุงูุฃูู ุฃู ุงูู
ุฑูุจุฉ ุงูุฃููู ูู ูู vector ูุณุงูู |
|
|
|
142 |
|
00:12:17,290 --> 00:12:23,030 |
|
0 ุฅุฐุง ุงูุชุญููุช ุงูุฎุงุตูุฉ ุงูุฃููู ุจุฏู ุฃุฌูุงู ุงูุฎุงุตูุฉ |
|
|
|
143 |
|
00:12:23,030 --> 00:12:28,750 |
|
ุงูุชุงููุฉ ูู
ุฑู 2 ุจุฏู ุฃุฎุฏ ุงู U ุฒุงุฆุฏ ุงู V ูุจูู .. ุจุฏู |
|
|
|
144 |
|
00:12:28,750 --> 00:12:33,970 |
|
ุฃุฌู
ุนู ูุบุงูุฉ ูุง ุจูุงุชู ูุจูู ููุง 0 ุฒุงุฆุฏ 0 ุจ0 X1 ุฒุงุฆุฏ |
|
|
|
145 |
|
00:12:33,970 --> 00:12:44,370 |
|
Y1 X2 ุฒุงุฆุฏ Y2 ู
ูุฌูุฏ ูู Vู
ูุฌูุฏุฉ ูู V ุฃูุง ุจุฏูู ุฎุงุตูุฉ |
|
|
|
146 |
|
00:12:44,370 --> 00:12:51,790 |
|
ุงูุฅุจุฏุงู ุฃููุณ ุชูุงุฏู ุชุณุงูู Zero one ุงูุขู X ูุงุญุฏ ุฒุงุฆุฏ |
|
|
|
147 |
|
00:12:51,790 --> 00:12:57,030 |
|
Y ูุงุญุฏ ู
ุด ูุฏูู X ูุงุญุฏ ู Y ูุงุญุฏ ุฃุนุฏุงุฏ ู
ูุฌูุฏุฉ ูู |
|
|
|
148 |
|
00:12:57,030 --> 00:13:01,810 |
|
ุงูุณุช ูู real numbers ุนู
ููุฉ ุฌู
ุน ุงูุฃุนุฏุงุฏ ุงูุนุงุฏูุฉูุฐู |
|
|
|
149 |
|
00:13:01,810 --> 00:13:05,210 |
|
ุนู
ููุฉ ุฅุจุฏุงููุฉ ููุง ูุงุ ุฃูุง ุจููู ุฎู
ุณุฉ ุฒุงุฆุฏ ุณุชุฉ ู |
|
|
|
150 |
|
00:13:05,210 --> 00:13:09,030 |
|
ุงููู ุณุชุฉ ุฒุงุฆุฏ ุฎู
ุณุฉ ู
ุง ูู ููุณ ุงูุดูุก ุฅุฐุง ุจุงุฌู ุจููู |
|
|
|
151 |
|
00:13:09,030 --> 00:13:16,210 |
|
ูุฐุง y ูุงุญุฏ ุฒุงุฆุฏ x ูุงุญุฏ ู y ุงุชููู ุฒุงุฆุฏ x ุงุชููู ุงููู |
|
|
|
152 |
|
00:13:16,210 --> 00:13:23,350 |
|
ุจูุฏุฑ ุฃููู ูุฐู zero ู y ูุงุญุฏ ู y ุงุชููู ุฒุงุฆุฏ zero x |
|
|
|
153 |
|
00:13:23,350 --> 00:13:28,490 |
|
ูุงุญุฏ ู x ุงุชูููุตุญูุญ ููุง ูุฃุ ูุนูู ูุตูุช ูุฐุง ุงู vector |
|
|
|
154 |
|
00:13:28,490 --> 00:13:32,710 |
|
ุฅูู ู
ุฌู
ูุน two vectors ุทุจ ุงูุฃูู ู
ูู ููุ ู
ุด V |
|
|
|
155 |
|
00:13:32,710 --> 00:13:38,930 |
|
ูุงูุชุงูู ูุจูู V ุฒุงุฆุฏ ุงู U ูุจูู ุจุฏุฃุช ุจ U ุฒุงุฆุฏ ุงู V |
|
|
|
156 |
|
00:13:38,930 --> 00:13:44,130 |
|
ูุตูุช ุฅูู V ุฒุงุฆุฏ ุงู U ูุจูู ุงุชุญููุช ุงูุฎุงุตูุฉ ุงูุฃููู |
|
|
|
157 |
|
00:13:44,130 --> 00:13:48,800 |
|
ูุงูุฎุงุตูุฉ ุงูุซุงููุฉ ุนูุฏูุง ุจุฏูุง ูุฑูุญ ูู
ููุููุฎุงุตูุฉ |
|
|
|
158 |
|
00:13:48,800 --> 00:13:54,360 |
|
ุงูุชุงูุชุฉ ูุจูู ุจุงุฎุฏ U ุฐุงุฆุฏ V ุฐุงุฆุฏ W |
|
|
|
159 |
|
00:13:59,340 --> 00:14:04,300 |
|
ู X1 ู X2 ุฒุงุฆุฏ ุงู V ุฒุงุฆุฏ ุงู W ุจุฏู ุฃุฌู
ุน ุนูู ุทูู |
|
|
|
160 |
|
00:14:04,300 --> 00:14:10,640 |
|
ุงูุฎุท ูุงู ุนูุฏ ุงู V ููุฐู ุงู W ุจุฏู ุฃุฌู
ุนูุง ู
ุจุงุดุฑุฉ ูุจูู |
|
|
|
161 |
|
00:14:10,640 --> 00:14:22,570 |
|
Zero Y1 ุฒุงุฆุฏ Z1 ู Y2 ุฒุงุฆุฏ Z2ุงูุงู ุจุฏุฃุฌู ุงุฌู
ุน ุตุงุฑ |
|
|
|
162 |
|
00:14:22,570 --> 00:14:25,650 |
|
ุนูุฏู vector ูุนูุฏู vector ุชุงูู ุจุฏุฃ ุงุฌู
ุน component |
|
|
|
163 |
|
00:14:25,650 --> 00:14:33,650 |
|
twice 00 ุจ0 ูุจูู ุจูุตูุฑ ุนูุฏู X ูุงุญุฏ ุฒุงุฆุฏ Y ูุงุญุฏ |
|
|
|
164 |
|
00:14:33,650 --> 00:14:46,190 |
|
ุฒุงุฆุฏ Z ูุงุญุฏ ู Xู ุงุชููู ุฒุงุฆุฏ Y ุงุชููู ุฒุงุฆุฏ Z ุงุชููู |
|
|
|
165 |
|
00:14:46,190 --> 00:14:54,460 |
|
ุจุงูุดูู ุงููู ุนูุฏูุงุทูุจ ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู ุจุฏุงุฌู |
|
|
|
166 |
|
00:14:54,460 --> 00:14:59,700 |
|
ููู ูุตูุชูู ูุฐุง ูุฏูู ูููู
real number ุนู
ููุฉ ุงูุฌู
ุน |
|
|
|
167 |
|
00:14:59,700 --> 00:15:04,160 |
|
ุนูู ุงู real number ุฅุฏู
ุงุฌูุฉ ููุง ูุง ูุจูู ุฎูุงุต ุฅุฐุง |
|
|
|
168 |
|
00:15:04,160 --> 00:15:09,860 |
|
ุจูุฏุฑ ุฃูุชุจ ูุฐู ุนูู ุงูุดูู ุงูุชุงูู ูู ุนุจุงุฑุฉ ุนู zero ู |
|
|
|
169 |
|
00:15:09,860 --> 00:15:17,480 |
|
X ูุงุญุฏ ุฒุงุฆุฏ Y ูุงุญุฏ ุฒุงุฆุฏ Z ูุงุญุฏ ุชู
ุงู
ูุฐุง ุงู term |
|
|
|
170 |
|
00:15:17,480 --> 00:15:25,640 |
|
ุงูุฃูู ู ุงู term ุงูุชุงูู ุจูุฏุฑ ุงููู x ูุงุญุฏ ุฒุงุฆุฏ y |
|
|
|
171 |
|
00:15:25,640 --> 00:15:30,840 |
|
ูุงุญุฏ ุฒุงุฆุฏ z ูุงุญุฏ ููุฐู ุจููู x ุงุชููู ุฒุงุฆุฏ y ุงุชููู |
|
|
|
172 |
|
00:15:30,840 --> 00:15:39,220 |
|
ุฒุงุฆุฏ z ุงุชูููุชู
ุงู
ุฅุฐุง ูุฐู ุจูุฏุฑ ุฃููู ุชุณุงูู ุจุฏุงุชู |
|
|
|
173 |
|
00:15:39,220 --> 00:15:44,300 |
|
ุฃุญุทูุง ุนูู ุดูู ู
ุฌู
ูุน two vectors ุฅุฐุง ุจูุฏุฑ ุฃููู ูุฐุง |
|
|
|
174 |
|
00:15:44,300 --> 00:15:54,100 |
|
zero ู X ูุงุญุฏ ุฒุงุฆุฏ Y ูุงุญุฏ ู X ุงุชููู ุฒุงุฆุฏ Y ุงุชููู |
|
|
|
175 |
|
00:15:54,100 --> 00:16:00,580 |
|
ุฒุงุฆุฏ ุถุงู ุนูุฏู zero ู ุถุงู ุนูุฏู Z ูุงุญุฏ ู ุถุงู ุนูุฏู Z |
|
|
|
176 |
|
00:16:00,580 --> 00:16:07,060 |
|
ุงุชููู ุชู
ุงู
ุจูุฏุฑ ุฃููู ูุฐุง ุงูููุงู
ูุณุงูู ูุฐุง ุนุจุงุฑุฉ ุนู |
|
|
|
177 |
|
00:16:07,060 --> 00:16:13,520 |
|
ู
ุฌู
ูุน ู
ูู ูุง ุจูุงุช ู
ุด ุนุจุงุฑุฉ ุนู ุงู U ุฒุงุฆุฏ ุงู V ุตุญ |
|
|
|
178 |
|
00:16:13,520 --> 00:16:20,560 |
|
ููุง ูุงุ ูุฏู ุฒุงุฆุฏ ุงููู ูู ุงู W ุงูุนูุตุฑ ุงูุชุงูุช ูุจูู |
|
|
|
179 |
|
00:16:20,560 --> 00:16:26,460 |
|
ุตุงุฑ U ุฒุงุฆุฏ V ุฒุงุฆุฏ W ุณูู U ุฒุงุฆุฏ V ุฒุงุฆุฏ W ุฅุฐุง ุงูุชุญูุช |
|
|
|
180 |
|
00:16:26,460 --> 00:16:29,100 |
|
ุงูุฎุงุตูุฉ ุฑูู
ุชูุงุชุฉ ุนูู |
|
|
|
181 |
|
00:16:32,920 --> 00:16:38,900 |
|
ุงูุงู ุงูุง ุจุฏู |
|
|
|
182 |
|
00:16:38,900 --> 00:16:43,700 |
|
ุงุฎุฏ ุงูุนูุตุฑ zero ุงููู ู
ูุฌูุฏ ูู V ุงูุงู ุงู zero |
|
|
|
183 |
|
00:16:43,700 --> 00:16:49,480 |
|
vector ุฎุงุตูุฉ ุงูุฑุงุจุนุฉ ูู ู
ูุ ูู ุงูุนูุตุฑ zero ู zero |
|
|
|
184 |
|
00:16:49,480 --> 00:16:55,590 |
|
ู zero ู
ูุฌูุฏ ูู capital V ููุง ูุงุุตุญุ ูุฃู ุงูู
ุฑูุจุฉ |
|
|
|
185 |
|
00:16:55,590 --> 00:16:59,890 |
|
ุงูุฃููู ุนูุฏู ูู ุงููู ุนูููุง ูุงูุฏู ุชุจูู ุจู0 ู 2 ุฅูุด |
|
|
|
186 |
|
00:16:59,890 --> 00:17:06,350 |
|
ู
ุง ูุงููุง ูููููุง ุงูุขู ุจุฏุฃุช ุฃุฎุฏูู and ุจุฏุฃ ุฃุฎุฏูู 0 |
|
|
|
187 |
|
00:17:06,350 --> 00:17:15,710 |
|
ุฒุงุฆุฏ ุงู U ูุณุงูู ุงูู0 ุงููู ูู 0 ู 0 ู 0 ุฒุงุฆุฏ ุงู U |
|
|
|
188 |
|
00:17:15,710 --> 00:17:22,100 |
|
ุงููู ูู 0 X 1 ู X 2 ุงูุดูู ุงููู ุนูุฏูุง ูุฐุงุจุชุฌู
ุน |
|
|
|
189 |
|
00:17:22,100 --> 00:17:30,240 |
|
component y ูุจูู 0 ุฒุงุฆุฏ 0 ุจ0 0 ุฒุงุฆุฏ x1 ุจx1 0 ุฒุงุฆุฏ |
|
|
|
190 |
|
00:17:30,240 --> 00:17:39,620 |
|
x2 ุจx2 ู
ุด ูุฐุง ูู ุงู U ููุณู ุตุญ ููุง ูุฃ ูุจูู ุจูู ุจููุณ |
|
|
|
191 |
|
00:17:39,620 --> 00:17:48,300 |
|
ุงูุทุฑููุฉ similarly ุจููุณ ุงูุทุฑููุฉ ุงู U ุฒุงุฆุฏ ุงู 0 ุจุฏู |
|
|
|
192 |
|
00:17:48,300 --> 00:17:49,580 |
|
ูุณุงูู ุงู U |
|
|
|
193 |
|
00:17:57,200 --> 00:18:02,520 |
|
ุงูุฎุงุตูุฉ ุงูุฎุงู
ุณุฉ ุจูููู ุฅุฐุง ุฃู element U ู
ูุฌูุฏ ูู Vุ |
|
|
|
194 |
|
00:18:02,520 --> 00:18:09,700 |
|
ูุงูุต ุงููU ู
ูุฌูุฏ ูู Vุ such that ุงูู
ุฌู
ูุนุฉ ุจูุณุงูู ู
ู |
|
|
|
195 |
|
00:18:09,700 --> 00:18:14,720 |
|
ุงููzero vectorุงูุงู ุงูุง ุจุฏู ุงุฎุฏ ู
ููุ ุจุฏู ุงุฎุฏ U |
|
|
|
196 |
|
00:18:14,720 --> 00:18:22,280 |
|
ู
ูุฌูุฏ ูู V ุงูุงู ุงู U ุจุฏู ูุณุงูู Zero ู X ูุงุญุฏ ู X |
|
|
|
197 |
|
00:18:22,280 --> 00:18:30,080 |
|
ุงุชููููุฐุง ุจุฏู ูุนุทูู ู
ููุ ูุงูุต U ุงุญูุง ูุฃูู ุจุฏู ุงุถุฑุจ |
|
|
|
198 |
|
00:18:30,080 --> 00:18:35,580 |
|
ุณุงูุจ ูุงุญุฏ ูู U ุงุฐุง ุถุฑุจ ุนุงุฏู ุฌุฏุง component loss ูุฅู |
|
|
|
199 |
|
00:18:35,580 --> 00:18:40,780 |
|
ุงุญูุง ููููุง ุถุฑุจ ุนุงุฏู ูุจูู ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู ุณุงูุจ |
|
|
|
200 |
|
00:18:40,780 --> 00:18:48,400 |
|
ูุงุญุฏ ูู Zero ุจ Zero ุณุงูุจ X ูุงุญุฏ ุณุงูุจ X ุงุชููู ู
ุฏุงุฌู |
|
|
|
201 |
|
00:18:48,400 --> 00:18:58,430 |
|
ุงูููู andุจุฏู ุงู U ุฒุงุฆุฏ ุณุงูุจ U ู ูุณุงูู ุงู U ูู 0 ู |
|
|
|
202 |
|
00:18:58,430 --> 00:19:10,130 |
|
X1 ู X2 ุฒุงุฆุฏ 0 ุณุงูุจ X1 ุณุงูุจ X2 ุชู
ุงู
ูุฌู
ุน 0 ู
ุน 0 ุจ0 |
|
|
|
203 |
|
00:19:10,130 --> 00:19:18,110 |
|
X1 ู ููุต X1 ุจ0 X2 ู ููุต X2 ุจ0 ู
ูู ูู ูุฐุง ูุฐุง ุงู |
|
|
|
204 |
|
00:19:18,110 --> 00:19:27,610 |
|
zero vectorSimilarly ุจููุณ ุงูุทุฑููุฉ ุณุงูุจ |
|
|
|
205 |
|
00:19:27,610 --> 00:19:33,810 |
|
U ุฒุงุฆุฏ U ุณุงูู ุงูู Zero vector ุฅุฐุง ุชุญููุช ุงูุฎุงุตูุฉ |
|
|
|
206 |
|
00:19:33,810 --> 00:19:39,590 |
|
ุฑูู
ุฎู
ุณุฉ ุจุฏูุง ูุญูู ุจุงู ุงูุฎูุงุต ุฎูููู ุฃู
ุณุญ ุงููู ููู |
|
|
|
207 |
|
00:19:39,590 --> 00:19:45,610 |
|
ูุฐุง ุทูุจ ูุฐุง ุงููู ู
ุงูููุด ูุฒูู
ู
ู ููุง ู ููู ูู
ุณุญู |
|
|
|
208 |
|
00:19:56,930 --> 00:20:01,810 |
|
ุฎูุตูุง ุงูุฎุงุตูุฉ ุงูุฎุงู
ุณุฉ ูุงูุชุฌูุง ุงูุฎุงุตูุฉ ุงูุณุงุฏุณุฉุฎุงุตูุฉ |
|
|
|
209 |
|
00:20:01,810 --> 00:20:06,230 |
|
ุงูุณุงูุณุฉ ุจูููู ูู ูุงู ุฎุฏุช scalar ู
ูุฌูุฏ ูู R ู U |
|
|
|
210 |
|
00:20:06,230 --> 00:20:11,430 |
|
ู
ูุฌูุฏ ูู V ูุญุตู ุถุฑุจู ู
ุงุจุฏู ูููู ู
ูุฌูุฏ ูู V ูุจูู |
|
|
|
211 |
|
00:20:11,430 --> 00:20:18,390 |
|
ุจุฏู ุงุฎุฏ ููุง F ุงู A ู
ูุฌูุฏ ูู R scalar ู ุงู U ุงููู |
|
|
|
212 |
|
00:20:18,390 --> 00:20:25,310 |
|
ูู ูุณุงูู Zero ู X ูุงุญุฏ ู X ุงุชููู ู
ูุฌูุฏุงุช ูู V then |
|
|
|
213 |
|
00:20:25,310 --> 00:20:33,740 |
|
ุจุฏู ุงุฎุฏ ุงู A ูู ุงู Uูุจูู ูุฐู A ุจุฏู ุฃุถุฑุจูุง ูู ุงูู 0 |
|
|
|
214 |
|
00:20:33,740 --> 00:20:39,420 |
|
X1 ู X2 Y ุงูุณุงููุฉ ุงูู A ูู ุงูู 0 ุจูุฏุงุด ูุง ุจูุงุช |
|
|
|
215 |
|
00:20:39,420 --> 00:20:46,200 |
|
Zero ู ููุง A X1 ู ููุง A X2 ุฅูุด ุฑุฃูู ูู ุงู vector |
|
|
|
216 |
|
00:20:46,200 --> 00:20:50,120 |
|
ุงููู ุทูุน ู
ูุฌูุฏ ูู V ููุง ูุฃ ูุฃู ุงูู
ุฑูุจุฉ ุงูุฃููู |
|
|
|
217 |
|
00:20:50,620 --> 00:20:55,820 |
|
ูุงูุจุงููุฉ ุงุด ู
ูุงู ูููู ูุจูู ูุฐุง ู
ูุฌูุฏ ูู ุงู vector |
|
|
|
218 |
|
00:20:55,820 --> 00:21:01,020 |
|
space V ูุจุงูุชุงูู ุงุชุญููุช ุงูุฎุงุตูุฉ ุงูุณุงุฏุณุฉ ุจุฏูุง ูุฑูุญ |
|
|
|
219 |
|
00:21:01,020 --> 00:21:05,700 |
|
ููุฎุงุตูุฉ ุงูุณุงุจุนุฉ ุงูุฎุงุตูุฉ ุงูุณุงุจุนุฉ ุจูููู ูู ูุงู A |
|
|
|
220 |
|
00:21:05,700 --> 00:21:13,980 |
|
ู
ูุฌูุฏ ูู R ู U ู V ู
ูุฌูุฏุฉ ูู U ูุจูู ููุง Fุงูู A |
|
|
|
221 |
|
00:21:13,980 --> 00:21:21,940 |
|
ู
ูุฌูุฏุฉ ูู R and ุงู U ุงููู ูู Zero Zero ู X ูุงุญุฏ ู |
|
|
|
222 |
|
00:21:21,940 --> 00:21:30,080 |
|
X ุงุชููู ู ุงู V Zero ู Y ูุงุญุฏ ู Y ุงุชููู ู
ูุฌูุฏุงุช ูู |
|
|
|
223 |
|
00:21:30,080 --> 00:21:40,020 |
|
V then ุจุฏู ุงุฎุฏ ุงู A Dot ุงู U ุฒุงุฆุฏู ุงู V ูุจูู ุงู A |
|
|
|
224 |
|
00:21:40,020 --> 00:21:46,430 |
|
Dotุงูู U ุฒุงุฆุฏ ุงู V ุจุฏู ุฃุฌู
ุน component twice ูุจูู |
|
|
|
225 |
|
00:21:46,430 --> 00:21:55,970 |
|
Zero X ูุงุญุฏ ุฒุงุฆุฏ Y ูุงุญุฏ X ุงุชููู ุฒุงุฆุฏ Y ุงุชููู ุจุฏู |
|
|
|
226 |
|
00:21:55,970 --> 00:22:05,350 |
|
ุฃุถุฑุจ ูุจูู ูุงุฏูุฒูุฑู ู a ูู x ูุงุญุฏ ุฒุงุฆุฏ y ูุงุญุฏ ู a |
|
|
|
227 |
|
00:22:05,350 --> 00:22:17,030 |
|
ูู x ุงุชููู ุฒุงุฆุฏ y ุงุชููู ููุด ุถุฑุจุชู ูุฃู ุถุฑุจ ุนุงุฏู ุทูุจ |
|
|
|
228 |
|
00:22:17,030 --> 00:22:27,330 |
|
ูุฐุง ุงูููุงู
ุจุฏู ูุณุงููุจุฏู ูุณุงูู zero ุงูุณ ูุงุญุฏ ุฒุงุฆุฏ |
|
|
|
229 |
|
00:22:27,330 --> 00:22:32,650 |
|
ุงู ูุงุญุฏ ุงูุณ |
|
|
|
230 |
|
00:22:32,650 --> 00:22:39,820 |
|
ุงุชููู ุฒุงุฆุฏ ุงู ุงุชููููุฐุง ุตุงุฑ vector ูุงุญุฏ ุดู ุฑุงูู |
|
|
|
231 |
|
00:22:39,820 --> 00:22:45,900 |
|
ู
ู
ูู ุงุฌุฒุกู ุงูู two vectors ุงูุด ุงู two vectors ูุนูู |
|
|
|
232 |
|
00:22:45,900 --> 00:22:53,700 |
|
ู
ู
ูู ุงููู ูุฐุง zero ู a x ูุงุญุฏ ู a x ุงุชููู ุฒุงุฆุฏ |
|
|
|
233 |
|
00:22:53,700 --> 00:23:02,480 |
|
zero ู a y ูุงุญุฏ ู a y ุงุชููู ูู ุฌู
ุนุชูู
ุจุทูุน ุนูุฏ ูุฐุง |
|
|
|
234 |
|
00:23:02,480 --> 00:23:08,260 |
|
ู
ุฑุฉ ุชุงููุฉุทุจ ุจุฏุฑุฌุฉ ุนูู ุฎูุงุต ุงูู scalar ุฃุธู ุจูุฏุฑ ุฃุฎุฏ |
|
|
|
235 |
|
00:23:08,260 --> 00:23:19,160 |
|
a ุนุงู
ู ู
ุดุชุฑู ู
ู ุงููู ุจุฑุง ุจูุธู 0 x1 x2 ุฒุงุฆุฏ a 0 y1 |
|
|
|
236 |
|
00:23:19,160 --> 00:23:29,950 |
|
y2ูุจูู ูุฐุง A ุงูุฃููุงูู ูู ุงููU ูุงูุชุงูู A ูู ุงููV |
|
|
|
237 |
|
00:23:29,950 --> 00:23:36,290 |
|
ุงูุดูู ุงููู ุนููุง ูุจูู ุจูุงุก ุนูู A ุถุฏ U ุฒุงุฆุฏ V ูุจูู A |
|
|
|
238 |
|
00:23:36,290 --> 00:23:44,270 |
|
ุถุฏ U ุฒุงุฆุฏ A ุถุฏ V ูุจุงูุชุงูู ุชุญููุช ุงูุฎุงุตูุฉ ุงูุณุงุจุนุฉ |
|
|
|
239 |
|
00:23:44,750 --> 00:23:51,810 |
|
ุจูุฑูุญ ููุฎุงุต ูู
ูู ุงูุซุงู
ูุฉ ูุจูู ุจุงุฌู ุจูููู ุชู
ุงููุฉ if |
|
|
|
240 |
|
00:23:51,810 --> 00:24:00,710 |
|
ุงู A ู ุงู B ู
ูุฌูุฏุฉ ูู R and ุงู U Zero X ูุงุญุฏ X |
|
|
|
241 |
|
00:24:00,710 --> 00:24:09,870 |
|
ุงุชููู ู
ูุฌูุฏุฉ ูู V then ุจุฏู ุงุฎุฏ ุงู A ุฒุงุฆุฏ ุงู B Dot |
|
|
|
242 |
|
00:24:09,870 --> 00:24:20,230 |
|
ู
ู Dot ุงู Uูุณุงูู A ุฒุงุฆุฏ B ุถุงุช ุงู U |
|
|
|
243 |
|
00:24:26,050 --> 00:24:29,870 |
|
ูุฐุง ู
ุฌู
ูุน two real numbers ูุจูู real number ูุงุญุฏ |
|
|
|
244 |
|
00:24:29,870 --> 00:24:35,310 |
|
ูุจูู ุจุฏู ุฃุถุฑุจ ุฌูุจู ุญุณุจ ุงูุถุฑุจ ุงูุนุงุฏู ูุจูู ูุฐุง ุจูุฏุงุด |
|
|
|
245 |
|
00:24:35,310 --> 00:24:44,530 |
|
ุจ zero ูุฌู ููู ุจุนุฏูุง ูุฐู ุง ุฒุงุฆุฏ ุงู B ูู ุงู X1 ูููุง |
|
|
|
246 |
|
00:24:44,530 --> 00:24:51,770 |
|
ุง ุฒุงุฆุฏ ุงู B ูู ู
ูุ ูู ุงู X2 ูููููููุง ุงูุฌุฒุกูุฐู ุจูุฏุฑ |
|
|
|
247 |
|
00:24:51,770 --> 00:24:57,750 |
|
ุงููู ุนูููุง ู
ุง ูุฃุชู ูุณุงูู ูุงู zero ุฒู ู
ููู ููุฐู |
|
|
|
248 |
|
00:24:57,750 --> 00:25:01,930 |
|
ุจูุฏุฑ ุงูููุง ูุงู ุงู X ูุงุญุฏ ูุงู X ุงุชููุฉ real number |
|
|
|
249 |
|
00:25:01,930 --> 00:25:08,270 |
|
ูุงู A ู ุงู B real number ูุจูู A X one ุฒุงุฆุฏ ุจู X |
|
|
|
250 |
|
00:25:08,270 --> 00:25:18,280 |
|
one ูุงุตูุฉ A X two ุฒุงุฆุฏ ุจู X twoู
ู
ูู ุงุฌุฒุฆูุง ุงูู two |
|
|
|
251 |
|
00:25:18,280 --> 00:25:28,180 |
|
vectors ูุจูู ูุฐู ุจูุฏุฑ ุงููู zero ู ax1 ู ax2 ุฒุงุฆุฏ |
|
|
|
252 |
|
00:25:28,180 --> 00:25:39,510 |
|
zero ู bx1 ู bx2ู
ู
ูู ุฃุฎุฏ ุงูู A ุจุฑุง ูุจูู ุงูู A ูู |
|
|
|
253 |
|
00:25:39,510 --> 00:25:50,050 |
|
Zero X ูุงุญุฏ ู X ุงุชููู ุฒุงุฆุฏ B ูู Zero ู X ูุงุญุฏ ู X |
|
|
|
254 |
|
00:25:50,050 --> 00:25:57,030 |
|
ุงุชููู ูุจูู ูุฐู ุจุฏุฃุช ุชุณุงูู A ุถุฏ ุงูู U ุฒุงุฆุฏ B ุถุฏ ุงูู |
|
|
|
255 |
|
00:25:57,030 --> 00:26:03,150 |
|
U ูุจุงูุชุงูู ุชุญููุช ุงูุฎุงุตูุฉ ุฑูู
ุชู
ุงููุฉ ูุจูู ุชู
ุงููุฉ |
|
|
|
256 |
|
00:26:07,780 --> 00:26:18,160 |
|
ุงูุฎุงุตูุฉ ุงูุชุงุณุนุฉ ูุจูู ุงููุฑุตุฉ |
|
|
|
257 |
|
00:26:18,160 --> 00:26:28,520 |
|
ุงูุชุงุณุนุฉุจุฏุฃุช ุฃุฎุฏ F ุงูู A ูุงูู B ู
ูุฌูุฏุฉ ูู R and ุงู |
|
|
|
258 |
|
00:26:28,520 --> 00:26:36,780 |
|
U Zero X ูุงุญุฏ X ุงุชููู ู
ูุฌูุฏุฉ ูู V then ุจุฏุฃุช ุฃุฎุฏ ุงู |
|
|
|
259 |
|
00:26:36,780 --> 00:26:46,120 |
|
A ูู ุงู B ุถุฏ ุงู U ูุณุงูู A ููุจุถุฏ ุงู U ูุจูู ุจุฏู ุงุถุฑุจ |
|
|
|
260 |
|
00:26:46,120 --> 00:26:52,220 |
|
ุจู ูู ูู ุนูุตุฑ ู
ู ุงูุนุงุตุฑ ุงููู ุนูุฏูุง ูุจูู ูุงู Zero ู |
|
|
|
261 |
|
00:26:52,220 --> 00:27:00,280 |
|
ุจู X one ู ุจู X two ุงูุดูู ุงููู ุนูุฏูุง ููุง ุงูุงู ุจุฏู |
|
|
|
262 |
|
00:27:00,280 --> 00:27:07,280 |
|
ุงุถุฑุจ ุงู A ูุจูู ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู A ูู Zero ุจ |
|
|
|
263 |
|
00:27:07,280 --> 00:27:17,690 |
|
Zero ูุจูู A ุจู X oneู A B X 2 ุจุงูุดูู ุงููู ุนูุฏูุง |
|
|
|
264 |
|
00:27:17,690 --> 00:27:24,790 |
|
ููุง ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู ุงูุงู ุงู A ู ุงู B ู ุงู X 1 |
|
|
|
265 |
|
00:27:24,790 --> 00:27:29,830 |
|
ูููู
real numbers ู ูุฐูู ุงู A ู ุงู B ู ุงู X 2 ููู |
|
|
|
266 |
|
00:27:29,830 --> 00:27:36,350 |
|
real numbers ูุจูู ุจูุฏุฑ ุงููู ูุฐุง zero ู ูุฐุง A B X 1 |
|
|
|
267 |
|
00:27:36,350 --> 00:27:43,980 |
|
ู ูู ููุณ ุงูููุช A B X 2ุจูุฏุฑ ุฃุฎุฏ ุงู a ุจู ุจุฑุง ูุจูู |
|
|
|
268 |
|
00:27:43,980 --> 00:27:51,160 |
|
ูุฐุง a ุจู ุจุฑุง ููู ูู ู
ูู ูู ุงู zero x one x two |
|
|
|
269 |
|
00:27:51,160 --> 00:27:59,360 |
|
ูุจูู ูุฐุง a ุจู ุถุฏ ุงู uูุจูู ุชุญููุช ุงูุฎุงุตูุฉ ุฑูู
9 |
|
|
|
270 |
|
00:27:59,360 --> 00:28:07,540 |
|
ุจูุงููุฌ ุงูุฎุงุตูุฉ ุฑูู
10 ุงูุฃุฎูุฑุฉ ุจุฏู 1.tlu ูุจูู 1 |
|
|
|
271 |
|
00:28:07,540 --> 00:28:12,520 |
|
.0x1x2y |
|
|
|
272 |
|
00:28:13,880 --> 00:28:17,600 |
|
ุงููุงุญุฏ ูู
ุง ูุถุฑุจู ูู ุฒูุฑู ุจูุจูู ุฏู ุฌู
ูุงุช ุจุฒูุฑู |
|
|
|
273 |
|
00:28:17,600 --> 00:28:23,660 |
|
ุงููุงุญุฏ ูู ุงู X1 ุจุงู X1 ุงููุงุญุฏ ูู ุงู X2 ุจุงู X2 ูุจูู |
|
|
|
274 |
|
00:28:23,660 --> 00:28:29,940 |
|
ูุฐุง ุฃุนุทุงูู ู
ูู ุงู U ูุจูู ูููุงูู ู
ู ุงูุจุฏุงูุฉ ุฃู ูุฐุง |
|
|
|
275 |
|
00:28:29,940 --> 00:28:35,040 |
|
vector space ููุด ูููุง because ูุฑูุญูุง ูุฌููุง ุงูุนุดุฑ |
|
|
|
276 |
|
00:28:35,040 --> 00:28:39,660 |
|
ุฎูุงุต ูููุง ู
ุญููุฉ ูุจูู ุฃุตุจุญ ูุฐุง ุงููู ุนูุฏูุง ุงููู ูู |
|
|
|
277 |
|
00:28:39,660 --> 00:28:45,840 |
|
vector space ุทุจุนุงู
ุด ูู ุณุชุฉ ุจูุนุทููุง ูู ุจุชููู vector |
|
|
|
278 |
|
00:28:45,840 --> 00:28:51,660 |
|
space ู ุจุถุฑูุญ ุฃุจุฏุฃ ุฃุทุจู ุงูุฎูุงุต ุงูุนุงุดุฑุฉุ ุชู
ุงู
ุ ูุนูู |
|
|
|
279 |
|
00:28:51,660 --> 00:28:56,840 |
|
ููุณ ุจุงูุถุฑูุฑุฉ ุฅู ุฑุงุญ ุฃุทูู ุฎุงุตูุฉ ู
ุงุชุญููุชุดุ ูุจูู ุฃุฑูุญ |
|
|
|
280 |
|
00:28:56,840 --> 00:29:00,240 |
|
ุฃุฏูุฑ ุนูู ุงูุจุงููุ ู
ุฏูุฑุด ุนูู ุงูุจุงููุ ุฎูุงุต ูุทุจ vector |
|
|
|
281 |
|
00:29:00,240 --> 00:29:03,940 |
|
space ู ุจุงุณูููููุช ุงูุฃููู ุงุชุญููุช ุจุฑูุญ ููุชุงููุฉ ูู
ุง |
|
|
|
282 |
|
00:29:03,940 --> 00:29:07,400 |
|
ุงุชุญููุชุด ุงูุชุงููุฉ not vector space ู ุจุณูุจ ุงูุจุงูู ู |
|
|
|
283 |
|
00:29:07,400 --> 00:29:12,520 |
|
ููุฐุง ูุนูู ููู ุฎุงุตูุฉ ุจุชุชุญููุด ุจููู ูุจูู ูุฐุง ู
ุงููุงุด |
|
|
|
284 |
|
00:29:12,520 --> 00:29:16,880 |
|
vector space ู ุจูุชููู ุงูุฏูุฉ ุชุงููุฉ ุงูุฃููู ุงุชุญููุช |
|
|
|
285 |
|
00:29:16,880 --> 00:29:20,680 |
|
ุงููุง ุจุฑูุญ ููุชุงูุช ุจุฑูุญ ููุฑุงุจุน ูู
ุง ุฅุฐุง ุงุชุญูููุง |
|
|
|
286 |
|
00:29:20,680 --> 00:29:24,400 |
|
ุงูุนุดุฑุฉ ูููู
ูุจูู ูู vector space ูุจูู ุฅุฐุง ุงุฎุชูุช ุฃู |
|
|
|
287 |
|
00:29:24,400 --> 00:29:28,320 |
|
ุฎุงุตูุฉ ู
ู ุงูุฎุงุตุฉ ุงูุนุดุฑ ุจููู ู
ุนูู ู
ุงููุงุด vector |
|
|
|
288 |
|
00:29:28,320 --> 00:29:35,680 |
|
spaceูุฐุง ุฃูู ู
ุซุงู ุนูู ูุฐุง ุงูู
ูุถูุนุ ูุง ูุฒุงู ุนูุฏูุง |
|
|
|
289 |
|
00:29:35,680 --> 00:29:45,140 |
|
ุงูุนุฏูุฏ ู
ู ุงูุฃู
ุซูุฉุ ุฏู ุงูู
ุซุงู ุฑูู
ุงุชููู ูุฐุง |
|
|
|
290 |
|
00:29:45,140 --> 00:29:50,320 |
|
ุฅุฐุง ุทูุน vector spaceุ ุฅุฐุง ู
ุง ุทูุนุด vector space |
|
|
|
291 |
|
00:29:50,320 --> 00:29:55,990 |
|
ูู
ูู ุชุณูู ุฎุทูุฉ ูุงุญุฏุฉุ ููุง ูุงุูุฅุฐุง ุงูุช ุฏูููุฉ ูุธุฑ |
|
|
|
292 |
|
00:29:55,990 --> 00:30:00,090 |
|
ูุดุงุทุฑุฉ ูู ุงูุญุณุงุจุงุช ูู
ุฌุฑุฏ ุงููุธุฑ ุจุชูููู ูุฐู ุงูุจุฑุดู
|
|
|
|
293 |
|
00:30:00,090 --> 00:30:04,230 |
|
ุชููุนุด ููุฎุงุตูุฉ ุงูููุงููุฉ ุนูู ุทูู ู
ู ุฏูู ู
ุฌุฑู
ู ู ุชุฑูุญ |
|
|
|
294 |
|
00:30:04,230 --> 00:30:09,030 |
|
ุชูุชุจู ูููุง ู ุจุชูุดู ุงูุจุงูู 100% ุชู
ุงู
ูุนุทู ุงูู
ุซุงู |
|
|
|
295 |
|
00:30:09,030 --> 00:30:17,970 |
|
ุฑูู
ุงุชููู example two ูุฐุง ุณุคุงู ุฎู
ุณุฉ ู
ู ุงููุชุงุจ |
|
|
|
296 |
|
00:30:17,970 --> 00:30:20,690 |
|
ุจูููู little v to sound |
|
|
|
297 |
|
00:30:24,960 --> 00:30:34,460 |
|
ูู ุงูุนูุงุตุฑ ุนูู ุงูุดูู ูุงุญุฏ ู X ู Y ุจุญูุซ X ู Y |
|
|
|
298 |
|
00:30:34,460 --> 00:30:39,800 |
|
ู
ูุฌูุฏุฉ ูู set of real numbers under usual addition |
|
|
|
299 |
|
00:30:40,930 --> 00:30:49,930 |
|
under usual addition ุชุญุช ุนู
ููุฉ ุงูุฌุงู
ุนุฉ ุงูุนุงุฏูุฉ and |
|
|
|
300 |
|
00:30:49,930 --> 00:30:57,030 |
|
ููู ููุณ ุงูููุช usual scalar multiplication usual |
|
|
|
301 |
|
00:30:57,030 --> 00:31:03,250 |
|
scalar multiplication |
|
|
|
302 |
|
00:31:03,250 --> 00:31:06,370 |
|
ุชุญุช |
|
|
|
303 |
|
00:31:06,370 --> 00:31:18,190 |
|
ุนู
ููุฉ ุงูุฌุงู
ุนุฉ ุงูุฏุฑุจ ูุงูุฌุงู
ุนุฉ ุงูุนุงุฏูุฉ thenis not |
|
|
|
304 |
|
00:31:18,190 --> 00:31:26,430 |
|
a vector space |
|
|
|
305 |
|
00:31:32,720 --> 00:31:37,520 |
|
ูู
ุฌุฑุฏ ุงููุธุฑ ูุฐุง ุงู 6 ุงููู ุนูุฏูุง ูุฐู ุชุญุช ุนู
ููุฉ |
|
|
|
306 |
|
00:31:37,520 --> 00:31:40,760 |
|
ุงูุฌู
ุน ุงูุนุงุฏูุฉ ู ุงูุถุฑุจ ุงูุนุงุฏูุฉ ููุณุช ูู ุงูุงูุชุฑุงุถูุฉ |
|
|
|
307 |
|
00:31:40,760 --> 00:31:44,520 |
|
ูููุ ุจุฏู ูุงุญุฏุฉ ุชุญูู ุจุณ ูุงุญุฏุฉ ุชุฑูุน ุฃูุฏููุง ู ุชุญูู |
|
|
|
308 |
|
00:31:44,520 --> 00:31:49,680 |
|
ุงูุง ุจููู ููุด zero element ู
ุงุนุดู ุงูุญุงูุฉ ูุฐุง ูุฌูุฉ |
|
|
|
309 |
|
00:31:49,680 --> 00:31:55,200 |
|
ูุธุฑ ูู ูุฌูุฉ ูุธุฑ ุชุงููุฉุ ูุจู ุงู zero ุทุจ ุดููู ุงููู |
|
|
|
310 |
|
00:31:55,200 --> 00:32:01,520 |
|
ูุจู ุงู zero ุงุฌู
ุน ุงุชููู ุงุฌู
ุน ูู ุฌู
ุนุช ุงุชููู ุงูุด |
|
|
|
311 |
|
00:32:01,520 --> 00:32:02,100 |
|
ุจุทูุนุ |
|
|
|
312 |
|
00:32:06,540 --> 00:32:11,420 |
|
ูุจูู ุนู
ูู ุงูุฌุงู
ุนุฉ ูุง ุชุชุญูู ุตุญูุญ ููุง ูุฃ ุจุฑูุญ ุจูููู |
|
|
|
313 |
|
00:32:11,420 --> 00:32:15,500 |
|
ูุฐุง is not a vector space because |
|
|
|
314 |
|
00:32:19,270 --> 00:32:26,570 |
|
ุงูู U ุจุฏูุง ุชุณุงูู ูุงุญุฏ ู X ูุงุญุฏ ู Y ูุงุญุฏ ู ุงู V |
|
|
|
315 |
|
00:32:26,570 --> 00:32:33,150 |
|
ุฏูุณุฑ ูุงุญุฏ ู X ุงุชููู ู Y ุงุชููู ู
ูุฌูุฏุฉ ูู capital V |
|
|
|
316 |
|
00:32:33,150 --> 00:32:42,170 |
|
then ุงู U ุฒุงุฆุฏ ุงู V ุจุฏู ูุณุงูู ุงุชููู ู X ูุงุญุฏ ุฒุงุฆุฏ |
|
|
|
317 |
|
00:32:42,170 --> 00:32:48,860 |
|
X ุงุชููู ู X ูุงุญุฏุฎููููุง ุจุณ ูุณูููุฉ ูุง ููุงุช ุฎููููุง X |
|
|
|
318 |
|
00:32:48,860 --> 00:32:57,060 |
|
ูุงุญุฏ ู X ุงุชููู ู ูุฐู Y ูุงุญุฏ ู Y ุงุชููู ุชู
ุงู
ูุจูู X |
|
|
|
319 |
|
00:32:57,060 --> 00:33:04,800 |
|
ูุงุญุฏ ุฒุงุฆุฏ Y ูุงุญุฏ ู X ุงุชููู ุฒุงุฆุฏ Y ุงุชููู does not |
|
|
|
320 |
|
00:33:04,800 --> 00:33:09,740 |
|
belong to V ู
ุด ู
ูุฌูุฏุฉ ูู V ูุฅู ุฃูุง ุจุฏู ุงู |
|
|
|
321 |
|
00:33:09,740 --> 00:33:14,550 |
|
component ุงููู ูุฏุงุด ุชููููุจูู ูู ุญุงูุฉ ุงูู zero ููุน |
|
|
|
322 |
|
00:33:14,550 --> 00:33:18,830 |
|
ูุตูุฑ vector space ููู ูู ุญุงูุฉ ุงููุงุญุฏ ู
ุงููุนุด ูููู |
|
|
|
323 |
|
00:33:18,830 --> 00:33:24,230 |
|
vector space ู
ุงููุงุด vector space ุทูุจ ู
ุซุงู ุชูุงุชุฉ |
|
|
|
324 |
|
00:33:24,230 --> 00:33:32,530 |
|
ู
ุซุงู ุชูุงุชุฉ ูู ุณุคุงู ุณุจุนุฉ ู
ู ุงููุชุงุจ ูุฐูู ุณุคุงู ุณุจุนุฉ |
|
|
|
325 |
|
00:33:32,530 --> 00:33:42,530 |
|
ุจูููู letุงูู V ุชุณุงูู ูู ุงูู
ุตูููุงุช A ุจุญูุซ ุงูู A is |
|
|
|
326 |
|
00:33:42,530 --> 00:33:48,370 |
|
two by two matrix ูู ุงูู
ุตูููุงุช ุงููู ูุถุงู
ูุง ุงุชููู |
|
|
|
327 |
|
00:33:48,370 --> 00:33:56,450 |
|
ูู ุงุชููู with determinant ููู A ูุง ูุณุงูู Zero |
|
|
|
328 |
|
00:33:56,450 --> 00:34:02,970 |
|
under usual |
|
|
|
329 |
|
00:34:09,830 --> 00:34:19,150 |
|
addition and scalar multiplication |
|
|
|
330 |
|
00:34:19,150 --> 00:34:26,610 |
|
of |
|
|
|
331 |
|
00:34:26,610 --> 00:34:38,460 |
|
matrices then ุงูุด ุฑุงููุุงูู V ู
ุด ุนุงุฑู ุงูุชุจ ูู |
|
|
|
332 |
|
00:34:38,460 --> 00:34:42,420 |
|
vector space ููุง not vector space ููุฌู ู
ูู ูู ุงู V |
|
|
|
333 |
|
00:34:42,420 --> 00:34:51,200 |
|
ูู ุงูุฃูู ุงู V ูู ุงูู
ุตูููุงุช A ุงููู ูุธุงู
ูุง 2 ูู 2 ู |
|
|
|
334 |
|
00:34:51,200 --> 00:34:55,760 |
|
ุงููู ู
ุญุฏุฏูุง ู
ุงูู ูุง ูุณุงูู 0 ุงููู ู
ุญุฏุฏ ูููุง ูุง |
|
|
|
335 |
|
00:34:55,760 --> 00:34:59,550 |
|
ูุณุงูู 0ูุจูู ูู ุงูู
ุตูุงุช ุงููู ูุธุงู
ูุง ุงุชููู ูู ุงุชููู |
|
|
|
336 |
|
00:34:59,550 --> 00:35:04,850 |
|
ู ุงููู ู
ุญุฏุฏุฉ ููุง ูุณุงูู ุชุฌู
ุนุชูู
ู ุญุทูุชูู
ูู 6V ุนุฑูุช |
|
|
|
337 |
|
00:35:04,850 --> 00:35:09,510 |
|
ุนูููุง ุนู
ููุฉ ุฌู
ุน ุงูู
ุตููุงุช ุงูุนุงุฏู ููู ุฌู
ุน component |
|
|
|
338 |
|
00:35:09,510 --> 00:35:14,630 |
|
-wise ูุนุฑูุช ุนูููุง ุถุฑุจ ุงูู
ุตููุฉ ูู scalar ููู ุถุฑุจ ุงู |
|
|
|
339 |
|
00:35:14,630 --> 00:35:17,730 |
|
real number ูู ูู ุนูุตุฑ ู
ู ุงูุนูุงุตุฑ ุงูู
ุตููุฉ ุงููู |
|
|
|
340 |
|
00:35:17,730 --> 00:35:21,670 |
|
ูุงูุช usual addition and usual multiplication ุชู
ุงู
|
|
|
|
341 |
|
00:35:21,990 --> 00:35:27,530 |
|
ุชุญุช ุงูุนู
ููุชูู ุงูุฃุซููู ูุฏูู ูู ุงู V Vector Space ุฃู
|
|
|
|
342 |
|
00:35:27,530 --> 00:35:35,990 |
|
ูุงุ ุทุจุนุงู ูุฃ ุฃุจุณุท ุดุบูุฉ ุจุฏู Zero Matrix ูู ุงู Zero |
|
|
|
343 |
|
00:35:35,990 --> 00:35:40,270 |
|
Matrix ุงูู
ุญุฏุฏ ุชุจุนูุง ูุง ูุณุงูู Zeroุ ูุฃ ุทุจุนุงู ูุจุฌุฏ |
|
|
|
344 |
|
00:35:40,270 --> 00:35:48,990 |
|
ุงู ุงู V is not a vector space because |
|
|
|
345 |
|
00:35:54,180 --> 00:36:10,760 |
|
it does not contain the zero matrix since |
|
|
|
346 |
|
00:36:15,640 --> 00:36:23,320 |
|
ุงูู Determinant ููู
ุตููู Zero ูุจูู Zero ูุจูู |
|
|
|
347 |
|
00:36:23,320 --> 00:36:28,760 |
|
ุงูุฎุงุตูุฉ ุชุจุน ุงูุฃูุตุงุฑ ุงูุตูุฑูุฉ ูู
ุชุชุญูู ูุฐูู ูุฐุง ููุณ |
|
|
|
348 |
|
00:36:28,760 --> 00:36:37,320 |
|
Vector Space ูุจุงูู
ุซุงู |
|
|
|
349 |
|
00:36:37,320 --> 00:36:47,640 |
|
ุฑูู
ุฃุฑุจุนุฉ ุจููู Letcapital V ูู ุงูุนูุงุตุฑ ุนูู ุงูุดูู X |
|
|
|
350 |
|
00:36:47,640 --> 00:36:57,480 |
|
ู Y ู Z ุจุญูุซ ุงู ุงู X ู Y ู Z ู
ูุฌูุฏุฉ ูู set of real |
|
|
|
351 |
|
00:36:57,480 --> 00:37:03,900 |
|
numbers define addition |
|
|
|
352 |
|
00:37:03,900 --> 00:37:07,380 |
|
define |
|
|
|
353 |
|
00:37:07,380 --> 00:37:09,780 |
|
addition and |
|
|
|
354 |
|
00:37:16,800 --> 00:37:26,020 |
|
multiplication on the by ุงูู |
|
|
|
355 |
|
00:37:26,020 --> 00:37:40,400 |
|
x ูุงุญุฏ y ูุงุญุฏู Z1 ุฒุงุฆุฏ X2 ู Y2 ู Z2 ุจุฏู ูุณุงูู ุงููู |
|
|
|
356 |
|
00:37:40,400 --> 00:37:54,760 |
|
ูู X1 ู Y1 ู Z1 ู ููุง X2 ู Y2 ู Z2 X1 ุฒุงุฆุฏ X2 Y1 |
|
|
|
357 |
|
00:37:54,760 --> 00:38:06,920 |
|
ุฒุงุฆุฏ Y2 ู ููุง Z1ุฒุงุฆุฏ ุฒูุช ุฏู ุงุชููู ูุฐุง ุงูุฌุงู
ุนู and |
|
|
|
358 |
|
00:38:06,920 --> 00:38:11,000 |
|
ุงู |
|
|
|
359 |
|
00:38:11,000 --> 00:38:25,540 |
|
a ูู ุงู x ู ุงู y ู ุงู z ูุณุงูู ax ู y ู z then ุงู V |
|
|
|
360 |
|
00:38:25,540 --> 00:38:28,580 |
|
is ุงููู ุฃุนูู
|
|
|
|
361 |
|
00:38:40,130 --> 00:38:46,110 |
|
ูููุ ุขู ุจุณ ุจูุถุฑุจูุง ูู ุงูู
ุฑูุจุฉ ุงูุฃูููุ ูุนูู ุนู
ููุฉ |
|
|
|
362 |
|
00:38:46,110 --> 00:38:50,690 |
|
ุงูุฌุงู
ุนุฉ ูู
ุง ูู component-wise ูุงูุฅูู ุจุณ ุจูุถุฑุจูุง ูู |
|
|
|
363 |
|
00:38:50,690 --> 00:38:59,410 |
|
ุงูู
ุฑูุจุฉ ุงูุฃููู ููุท ูุง ุบูุฑุ ุชู
ุงู
ุูุนูู ุฅูู ูุฐู ุงู |
|
|
|
364 |
|
00:38:59,410 --> 00:39:07,410 |
|
Sid ูู ููู ูุตููุฉ .. ูุงูู
|
|
|
|
365 |
|
00:39:07,410 --> 00:39:13,190 |
|
ูุนูู ูุฐู ุงู Sid ุฎุงุต ููู ูุฃูู .. ุฎุงุต ููู .. ูุงูู
|
|
|
|
366 |
|
00:39:17,540 --> 00:39:21,240 |
|
ูู ูุฐุง vector space ููุง ู
ุงููุงุด vector space ุจุชุฎูู |
|
|
|
367 |
|
00:39:21,240 --> 00:39:28,220 |
|
ุฃูู ู
ุงููุงุด vector space ุงูุณุจู because ูู ุฃุฎุฏุช ูุจูู |
|
|
|
368 |
|
00:39:28,220 --> 00:39:40,920 |
|
ูุฐุง is not a vector space because ูู |
|
|
|
369 |
|
00:39:40,920 --> 00:39:47,910 |
|
ุฃุฎุฏุช ูุง ู
ูุงุฏ a ุฒุงุฆุฏ ุงู b ูู ู
ูุ ูู ุงูููู
ูุจูู ูุฐุง |
|
|
|
370 |
|
00:39:47,910 --> 00:39:57,190 |
|
ุจูุตูุฑ a ุฒุงุฆุฏ ุงู b ูู ุงู u ุงููู ูููุง ูู x, y, z |
|
|
|
371 |
|
00:39:57,190 --> 00:40:04,850 |
|
ูุจูู ุญุณุจ ุงูุถุฑุจ ูุฐุง ุจูุถุฑุจ ูู ุงู a ุฒุงุฆุฏ ุงู b ููุท ู |
|
|
|
372 |
|
00:40:04,850 --> 00:40:12,400 |
|
ุงู x, y, z ูู
ุง ูู ุทุจ ูู ุฌูุช ุฃุฎุฏุชุงูู A Dot ูู U |
|
|
|
373 |
|
00:40:12,400 --> 00:40:23,820 |
|
ุฒุงุฆุฏ ุงูู B Dot ูู U ูุจูู ูุฐุง ูุตูุฑ A Dot XYZ ุฒุงุฆุฏ B |
|
|
|
374 |
|
00:40:23,820 --> 00:40:29,140 |
|
Dot XYZ |
|
|
|
375 |
|
00:40:29,140 --> 00:40:36,720 |
|
ููุณุงูู ุญุณุจ ุงูุฎูุงุตุฉ ุงููู ุนูุฏูุง ูุจูู ูุฐุง A XYZ |
|
|
|
376 |
|
00:40:37,620 --> 00:40:46,580 |
|
ุฒุงุฆุฏ ูุฐู ุจููุณ ู Y ู Z ูุจูู ูู ุฌููุง ุฌู
ุนูุงูุง ูุฐู ุจุฏู |
|
|
|
377 |
|
00:40:46,580 --> 00:40:57,400 |
|
ูุตูุฑ AX ุฒุงุฆุฏ ุจููุณ ู ุงุชููู Y ู ุงุชููู Z ุชู
ุงู
ุ ูุจูู |
|
|
|
378 |
|
00:40:57,400 --> 00:41:03,950 |
|
ุงูุด ุฑุฃููุ ูู ูุฐู ุงููู ููู ูู ูุฐูุุทุจุนุง ูุฐู ุจูุฏุฑ |
|
|
|
379 |
|
00:41:03,950 --> 00:41:10,590 |
|
ุงููู a ุฒุงุฆุฏ ุงู b ูู ุงู x ู ุงุชููู y ู ุงุชููู z ุทุจุนุง |
|
|
|
380 |
|
00:41:10,590 --> 00:41:17,170 |
|
ุงููู ููู ู
ุงููุงุด ุงููู ุชุญุช ูุจูู ููุง ุงู a ุฒุงุฆุฏ ุงู b |
|
|
|
381 |
|
00:41:17,170 --> 00:41:27,570 |
|
ุถุงุช ุงู u ูุง ูุณุงูู ุงู au ุฒุงุฆุฏ ุงู b ุงู a ุถุงุช ุงู u |
|
|
|
382 |
|
00:41:27,570 --> 00:41:32,940 |
|
ุฒุงุฆุฏ ุงู b ุถุงุช ุงู uูุง ูุฒุงู ููุงู ุงูุนุฏูุฏ ู
ู ุงูุฃู
ุซูุฉ |
|
|
|
383 |
|
00:41:32,940 --> 00:41:36,820 |
|
ูุชุนุฑุถ ููุง ุงูู
ุฑุฉ ุงููุงุฏู
ุฉ ุงู ุดุงุก ุงููู ุชุนุงูู |
|
|
|
|