abdullah's picture
Add files using upload-large-folder tool
ac87599 verified
raw
history blame
40.5 kB
1
00:00:20,670 --> 00:00:24,870
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ูŠูˆู… ุฅู† ุดุงุก ุงู„ู„ู‡ ุณุฃูƒู…ู„
2
00:00:24,870 --> 00:00:33,930
ู…ู‚ุงู„ุงุช ุงู„ุชุบูŠูŠุฑ ุณุฃุจุฏุฃ ู…ุน ู…ู‚ุงู„ุฉ ุงู„ุชุบูŠูŠุฑ ู…ุฑุฉ ุฃุฎุฑู‰ุŒ
3
00:00:33,930 --> 00:00:39,310
ู‡ุฐุง ุงู„ู…ู‚ุงู„ ูŠู‚ูˆู… ุจู…ู‚ุงู„ุฉ ุงู„ุชุบูŠูŠุฑ ุงู„ู…ุฑุชุจุทุŒ ุฃุนู†ูŠ
4
00:00:39,310 --> 00:00:43,690
ุงู„ุชุบูŠูŠุฑ ุงู„ู…ุฑุชุจุท ู…ู† ู…ู‚ุงู„ุฉ ุงู„ุจูŠุงู†ุงุช ุฅู„ู‰ ู…ู‚ุงู„ุชู‡ุง
5
00:00:43,690 --> 00:00:51,630
ุฏุงุฆู…ุงู‹ ููŠ ุงู„ู…ู‚ุงู„ุฉ ูˆูŠุธู‡ุฑ ุงู„ุชุบูŠูŠุฑ ู…ุฑุชุจุท ุจุงู„ู…ู‚ุงู„ ู„ูŠุณ ูู‚ุท
6
00:00:51,630 --> 00:00:57,370
ุงู„ุชุบูŠูŠุฑ ู„ูƒู† ุงู„ุชุบูŠูŠุฑ ู…ุฑุชุจุท ุจุงู„ู…ู‚ุงู„ ูˆูŠู…ูƒู† ุงุณุชุฎุฏุงู…ู‡
7
00:00:57,370 --> 00:01:04,570
ู„ุชู‚ุงุฑูŠุฑ ุฃูˆ ุฃูƒุซุฑ ู…ุฌู…ูˆุนุงุช ู…ู† ุงู„ุจูŠุงู†ุงุช ุงู„ู…ู‚ุงุฑู†ุฉ ููŠ
8
00:01:04,570 --> 00:01:07,750
ูƒู„ุง ุงู„ู…ุฌู…ูˆุนุชูŠู† ู…ุฎุชู„ูุชูŠู† ุฃูˆ ู†ูุณ ุงู„ู…ุฌู…ูˆุนุงุช ู„ูƒู† ุฃูƒุซุฑ
9
00:01:07,750 --> 00:01:14,330
ู…ู…ูƒู† ุฃู† ู†ุณุชุฎุฏู…ู‡ุง ู„ู…ุฌู…ูˆุนุงุช ู…ุฎุชู„ูุฉุŒ ุงู„ู…ุดูƒู„ุฉ ุงู„ุชูŠ ูŠุฌุจ
10
00:01:14,330 --> 00:01:20,850
ุฃู† ู†ุณุชุฎุฏู…ู‡ุง ู„ุชุบูŠูŠุฑ ู‡ุฐู‡ ุงู„ู…ู‚ุงู„ุฉ CV ู‡ูˆ S ุนู„ู‰ X ุจุงุฑ
11
00:01:20,850 --> 00:01:22,330
ู…ุฑุฉ ุฃุฎุฑู‰
12
00:01:22,330 --> 00:01:22,530
13
00:01:22,530 --> 00:01:25,890
14
00:01:25,890 --> 00:01:26,210
15
00:01:26,210 --> 00:01:27,010
16
00:01:27,010 --> 00:01:27,710
17
00:01:27,710 --> 00:01:28,830
18
00:01:28,830 --> 00:01:46,610
19
00:01:46,610 --> 00:01:52,430
ุฃูˆู„ุงู‹ ุงู„ู€ sample mean ูˆุงู„ู€ sample standard
20
00:01:52,430 --> 00:01:55,370
deviation ู„ูƒูŠ ู†ู‚ูˆู… ุจุญุณุงุจ ุงู„ู€ coefficient of
21
00:01:55,370 --> 00:01:59,130
variation ูˆุงุถุญุŒ ุนุดุงู† ุฃุญุณุจ ุงู„ CV ู„ุงุฒู… ููŠ ุงู„ุฃูˆู„ ุฃุญุณุจ
22
00:01:59,130 --> 00:02:02,330
ุงู„ mean ูˆุจุนุฏูŠู† ุงู„ standard deviationุŒ ูŠุนู†ูŠ ู„ูˆ ุทู„ุจุช
23
00:02:02,330 --> 00:02:06,570
ู…ู†ูƒ ุฃุทู„ุน ุงู„ CVุŒ ุฃุญุณุจ ุงู„ CVุŒ ูŠุฌุจ ุฃู† ู†ู‚ูˆู… ุฃูˆู„ุงู‹ ุจุญุณุงุจ X
24
00:02:06,570 --> 00:02:10,670
ุจุงุฑ ุซู… ู†ุณุชุทูŠุน ุฃู† ู†ู‚ูˆู… ุจุญุณุงุจ ุงู„ coefficient of
25
00:02:10,670 --> 00:02:15,090
variationุŒ ุฏุนูˆู†ุง ู†ู†ุธุฑ ุฅู„ู‰ ู‡ุฐุง ุงู„ู…ุซุงู„
26
00:02:17,880 --> 00:02:23,400
ุงู„ุขู† ู„ุฏูŠู†ุง ุงุชุตุงู„ูŠู†ุŒ ุงุชุตุงู„ AุŒ ุชุนุฑููŠู† ุงูŠุด ู…ุนู†ู‰ ุงุชุตุงู„
27
00:02:23,400 --> 00:02:35,040
ู†ุนู…ุŒ ุงูŠุด ู…ุนู†ู‰ ุงุชุตุงู„ุŸ ุณู‡ู…ุŒ ุงุชุตุงู„ AุŒ ู…ุนู†ู‰ ู‚ูŠู…ุฉ ุงุชุตุงู„
28
00:02:35,040 --> 00:02:41,900
A ููŠ ุงู„ุณู†ุฉ ุงู„ู…ุงุถูŠุฉ ูƒุงู†ุช 50 ุฏูˆู„ุงุฑุŒ ู…ุนู†ู‰ ู‚ูŠู…ุฉ
29
00:02:41,900 --> 00:02:44,500
ุงุชุตุงู„ A ูƒุงู†ุช 50 ุฏูˆู„ุงุฑ ููŠ ุงู„ุณู†ุฉ ุงู„ู…ุงุถูŠุฉ
30
00:02:48,090 --> 00:02:54,110
ูƒุงู† 5 ุฏูˆู„ุงุฑุŒ ู„ุฐู„ูƒ ู„ุฏูŠู†ุง ูƒู„ุงู‡ู…ุง ุงู„ุขู†ุŒ ุงู„ mean ูˆู…ู‚ุงุฑู†ุฉ
31
00:02:54,110 --> 00:02:59,070
ุงู„ุฃุณุนุงุฑ ู„ู€ Stock A ุงู„ุขู†
32
00:02:59,070 --> 00:03:04,510
ู…ู‚ุงุฑู†ุฉ ุฃุฎุฑู‰ ุงุณู…ู‡ุง Stock BุŒ ู…ู‚ุงุฑู†ุฉ Stock B ู„ุฏูŠู‡ุง
33
00:03:04,510 --> 00:03:11,050
ู‚ูŠู…ุฉ ูƒุจูŠุฑุฉ ููŠ ุงู„ุนุงู… ุงู„ู…ุงุถูŠ 100 ุฏูˆู„ุงุฑุŒ ุงู„ mean 100
34
00:03:11,050 --> 00:03:18,330
ุฏูˆู„ุงุฑุŒ ูˆู…ู‚ุงุฑู†ุฉ ุงู„ุฃุณุนุงุฑ ุฃูŠุถุงู‹ 5 ุฏูˆู„ุงุฑุŒ ุงู„ุขู† ูƒู„ุง ุงู„ุฃุณู‡ู…
35
00:03:18,330 --> 00:03:24,430
ูŠู…ุชู„ูƒูˆู† ู†ูุณ ุงู„ุงู†ุชุงุฌ ุงู„ุนุงู…ุŒ ู„ุฐุง ูŠุฌุจ ุฃู† ูŠูƒูˆู† ู…ู†
36
00:03:24,430 --> 00:03:30,310
ุงู„ู…ูู‡ูˆู… ุฃู†ู‡ู… ูŠู…ุชู„ูƒูˆู† ู†ูุณ ุงู„ุงู†ุชุงุฌ ุงู„ุนุงู…ุŒ ู…ุน ูƒุฐุง ู†ูุณ
37
00:03:30,310 --> 00:03:33,490
ุงู„ุงู†ุชุงุฌ ุงู„ุนุงู…ุŒ ู„ูƒู† ุฅุฐุง ุชู†ุธุฑ ุฅู„ู‰ ุฃุณุนุงุฑ ุงู„ุฃุณุนุงุฑ
38
00:03:33,490 --> 00:03:37,410
ุฃุณุนุงุฑ A ููŠ ุงู„ุนุงู… ุงู„ู…ุงุถูŠ ูƒุงู†ุช 50 ุฏูˆู„ุงุฑุŒ ุจูŠู†ู…ุง
39
00:03:37,410 --> 00:03:39,350
ุจุงู„ู†ุณุจุฉ ู„ุฃุณุนุงุฑ B ูƒุงู†ุช 100 ุฏูˆู„ุงุฑ
40
00:03:42,870 --> 00:03:46,610
ุฃู†ุง ุฃู‚ุตุฏ ุงู„ุงู†ุชุงุฌ ุงู„ุฃุณุงุณูŠุŒ ู„ุง ูŠู…ูƒู†ู†ุง ุฃู† ู†ู‚ุงุฑู†
41
00:03:46,610 --> 00:03:51,750
ุงู„ุชุบูŠูŠุฑ ุจูŠู† ุงู„ุงู†ุชุงุฌูŠู† ุงู„ุงุซู†ูŠู† ู„ุฃู†ู‡ู…
42
00:03:51,750 --> 00:03:54,750
ู„ุฏูŠู‡ู… ุงู†ุชุงุฌ ู†ูุณู‡ุŒ ู„ุง ูŠู…ูƒู†ู†ุง ุฃู† ู†ู‚ุงุฑู†ู‡ุŒ ูˆู‡ู… ุฃูŠุถุงู‹
43
00:03:54,750 --> 00:03:59,610
ู„ุฏูŠู‡ู… ุทุฑู‚ ู…ุฎุชู„ูุฉุŒ ู„ุฐู„ูƒ ู„ูƒูŠ ู†ู‚ุงุฑู† ุงู„ุชุบูŠูŠุฑ ุจูŠู†
44
00:03:59,610 --> 00:04:04,450
ุงู„ุงู†ุชุงุฌูŠู† ุงู„ุงุซู†ูŠู† ูŠุฌุจ ุฃู† ู†ู‚ุงุฑู† ุงู„ู€ CV ุงู„ุชูŠ ู‡ูŠ ู…ูŠุฒุฉ
45
00:04:04,450 --> 00:04:10,310
ุงู„ุชุบูŠูŠุฑ ุงู„ุชูŠ ุชู‚ูˆู… ุจู…ูŠุฒุฉ ุงู„ุชุบูŠูŠุฑ ุงู„ู…ุฑุชุจุท to the mean
46
00:04:10,310 --> 00:04:13,350
variabilityุŒ ู…ุด ุงู„ variability ุจุณ relative to the
47
00:04:13,350 --> 00:04:17,250
meanุŒ ูŠุนู†ูŠ ุงู„ุงุฎุชู„ุงู ุญุณุจ ุงู„ meanุŒ ู„ูˆ ุทู„ุนู†ุง ุงู„ CV
48
00:04:17,250 --> 00:04:22,430
ุงู„ุฃูˆู„ู‰ CV for stack AุŒ again the formula we have to
49
00:04:22,430 --> 00:04:27,610
use is S over X bar multiplied by 100ุŒ so now we
50
00:04:27,610 --> 00:04:35,910
have S divided by 50 multiplied by 100 gives 10%
51
00:04:37,420 --> 00:04:42,980
ุงู„ุขู† 10% ู„ุง ูŠุนู†ูŠ ู„ู†ุง ุฃูŠ ุดูŠุก ู„ุฃู†ู†ุง ูŠุฌุจ ุฃู† ู†ู‚ุงุฑู† ู‡ุฐุง
52
00:04:42,980 --> 00:04:50,160
ุงู„ู‚ูŠู…ุฉ ู„ู‚ูŠู…ุฉ ุฃุฎุฑู‰ุŒ ู„ุนุจุฉ ุฃุฎุฑู‰ุŒ ู„ุนุจุฉ BุŒ ู„ุฏูŠู†ุง X bar 100
53
00:04:50,160 --> 00:04:59,440
ู…ุน ู†ูุณ ุงู„ุงู†ุชุงุฌ ุงู„ูˆุงุณุนุŒ ู„ุฐุง CV ู„ู‡ุฐุง ุงู„ุนู…ูŠู„ S ู†ูุณู‡
54
00:04:59,440 --> 00:05:08,340
ู…ุฎุชู„ูุŒ ู…ู† 100 ู…ุฑุฉ 100%ุŒ ูŠุนู†ูŠ 5%ุŒ ุงู„ุนูŠู†ุฉ B ู„ุฏูŠู‡ุง ุนูŠู†ุฉ
55
00:05:08,340 --> 00:05:15,580
5%ุŒ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ูŠู…ูƒู†ู†ุง ุฃู† ู†ู‚ุงุฑู† ุนูŠู†ุฉ
56
00:05:15,580 --> 00:05:20,940
57
00:05:20,940 --> 00:05:23,780
58
00:05:23,780 --> 00:05:23,820
59
00:05:23,820 --> 00:05:25,040
60
00:05:25,040 --> 00:05:27,300
61
00:05:27,300 --> 00:05:34,880
62
00:05:34,880 --> 00:05:42,580
5 ุฃู‚ู„ ู…ู† 10ุŒ 5% ุฃู‚ู„ ู…ู† 10%ุŒ ูู‡ุฐุง ูŠุนู†ูŠ ุฃู† ูƒู„ุง
63
00:05:42,580 --> 00:05:49,240
ุงู„ูˆุงุญุฏูŠู† ู„ุฏูŠู‡ุง ู†ูุณ ู…ู‚ุงุฑู†ุฉ ุฃุณุงุณูŠุฉุŒ ุงู„ูˆู…ู†ุงูุณุฉุŒ ูˆู„ูƒู†
64
00:05:49,240 --> 00:05:52,420
ุงู„ูˆุงุญุฏ B ุฃู‚ู„ ู…ู‚ุงุฑู†ุฉ
65
00:05:52,420 --> 00:05:58,500
66
00:05:58,500 --> 00:06:02,240
67
00:06:03,810 --> 00:06:08,990
ูŠุนู†ูŠ ูˆุงุถุญ ุฃู† ุงู„ stack B ุงู„ุชุดุชุช ูŠุจู‚ู‰ ุฃู‚ู„ุŒ now if
68
00:06:08,990 --> 00:06:12,690
stack B is less variable to its mean than stack A
69
00:06:12,690 --> 00:06:17,750
which one is more stableุŸ ู…ูŠู† ุจูŠูƒูˆู† more stableุŸ
70
00:06:17,750 --> 00:06:23,330
ุงูŠุด ู…ุนู†ู‰ stableุŸ ูŠุนู†ูŠ ู…ุณุชู‚ุฑ
71
00:06:23,330 --> 00:06:27,270
which one is more stableุŸ if you want to recommend
72
00:06:27,270 --> 00:06:35,290
to buy stack A or BุŸ ุงู„ู€ ... ุงู„ู€ more stable is better
73
00:06:35,290 --> 00:06:40,330
ุทุจูŠุนูŠ ูˆู„ุง ... ู„ูˆ ูŠูƒูˆู† ุงู„ุดุบู„ more stable ู…ุน ูƒุฏู‡ ุงู„ู€
74
00:06:40,330 --> 00:06:47,490
risk ู…ุงู„ู‡ ุจูŠู‚ู„ุŒ ู…ุธุจูˆุทุŒ ููˆุงุถุญ ุฃู†ู‡ stock B more stable
75
00:06:47,490 --> 00:06:50,610
than stock AุŒ it has less variability relative to
76
00:06:50,610 --> 00:06:53,110
its meanุŒ ู„ู…ุง ุงู„ุดูŠุก ุงู„ู„ูŠ ู‡ุชูƒูˆู† ููŠู‡ุง ุชุดุชุช ูƒุจูŠุฑ
77
00:06:53,110 --> 00:06:55,690
variability ูƒุจูŠุฑุฉุŒ ุงู„ูˆุงุญุฏ ุจูŠุจุนุฏ ุนู†ู‡ุŒ ุงู„ุขู† ููŠู‡ุง
78
00:06:55,690 --> 00:07:00,050
ุงู„ู…ุฎุงุทุฑุฉ ู…ุงู„ู‡ุง ุจุงู„ุฒูŠุงุฏุฉุŒ ุฏุฑุณ ุงู„ูƒูˆู† ุนุงู„ูŠุŒ anyways we
79
00:07:00,050 --> 00:07:03,370
have to compute the CV for stack A and stack B
80
00:07:03,370 --> 00:07:06,690
just compare these two valuesุŒ now this is fiveุŒ it
81
00:07:06,690 --> 00:07:11,610
means stack
82
00:07:11,610 --> 00:07:18,010
A is more variable to its mean than stack A than
83
00:07:18,010 --> 00:07:23,410
stack BุŒ ู‡ุฐุง ุงู„ุชูŠู† ูˆู‡ุฐุง ุงู„ุฎู…ุณุŒ ูˆู‡ุฐุง ุฃูƒุจุฑุŒ look at
84
00:07:23,410 --> 00:07:31,040
the next slideุŒ ู„ุฏูŠู†ุง ู…ุตุฏุฑ ูˆุงุญุฏ ุขุฎุฑ ูŠุณู…ู‰ ู…ุตุฏุฑ CุŒ ู…ุตุฏุฑ
85
00:07:31,040 --> 00:07:36,400
C ู„ุฏูŠู‡
86
00:07:36,400 --> 00:07:43,020
ู‚ูŠู…ุฉ ูƒุจูŠุฑุฉ ููŠ ุงู„ุณู†ุฉ ู…ู† 8 ุฏูˆู„ุงุฑุŒ ูˆู…ุตุฏุฑ
87
00:07:43,020 --> 00:07:44,560
ู…ุตุฏุฑ ุงู„ุงู†ุชุงุฌ 2 ุฏูˆู„ุงุฑ
88
00:07:48,140 --> 00:07:50,960
ุนู„ู‰ ู…ู‚ุงุฑู†ุฉ ุงู„ู€ standard deviation ู‡ูˆ 2ุŒ ู‡ุฐุง
89
00:07:50,960 --> 00:07:54,680
ุงู„ู…ู‚ุงุฑู†ุฉ ุฃุตู„ุงู‹ ุตุบูŠุฑุฉุŒ ุฃูƒุซุฑ ู…ู† ู…ู‚ุงุฑู†ุฉ ุงู„ู€ standard
90
00:07:54,680 --> 00:07:56,860
deviationุŒ ุฃูƒุซุฑ ู…ู†
91
00:07:56,860 --> 00:07:59,900
92
00:07:59,900 --> 00:08:00,380
93
00:08:00,380 --> 00:08:00,800
94
00:08:00,800 --> 00:08:00,900
95
00:08:00,900 --> 00:08:03,880
96
00:08:03,880 --> 00:08:17,100
97
00:08:17,930 --> 00:08:25,010
ู‡ุฐุง ูŠุนุทูŠ 25%ุŒ ุนู„ู‰ ุงู„ุฑุบู… ู…ู† ุฃู†ู‡ ูŠุญุชูˆูŠ ุนู„ู‰ ุงุณุชุฎุฏุงู…
98
00:08:25,010 --> 00:08:26,990
ุงุณุชุฎุฏุงู…
99
00:08:26,990 --> 00:08:27,250
100
00:08:27,250 --> 00:08:28,390
101
00:08:28,390 --> 00:08:29,190
102
00:08:29,190 --> 00:08:35,310
103
00:08:35,310 --> 00:08:39,550
104
00:08:44,590 --> 00:08:48,690
ู„ุชู‚ุงุฑู† ุชุบูŠูŠุฑ ุงู„ุงู†ุชุงุฌุงุช ุงู„ู…ุฎุชู„ูุฉ ุญุชู‰ ู„ูˆ ูƒุงู†ุช ุชุญุชูˆูŠ
105
00:08:48,690 --> 00:08:50,730
ุนู„ู‰ ู†ูุณ ุงู„ุฃุฌู‡ุฒุฉุŒ ู‡ู†ุง ู†ุญู† ู†ุญุชูˆูŠ ุนู„ู‰ ู†ูุณ ุงู„ุฃุฌู‡ุฒุฉ
106
00:08:50,730 --> 00:08:58,010
ุฏูˆู„ุงุฑุŒ ูุงู„ู€ Stock X ู„ุญุธุฉ ุฃู† ุชุบูŠูŠุฑู‡ 25%ุŒ ูุงู„ู€ Stock X
107
00:08:58,010 --> 00:09:04,610
ู„ุฏูŠู‡ ุชุบูŠูŠุฑ ู‚ู„ูŠู„ ุฃู‚ู„ ุจูƒุซูŠุฑุŒ ุฏูˆู„ุงุฑ
108
00:09:04,610 --> 00:09:07,770
ูˆ 2 ุฏูˆู„ุงุฑุŒ ูˆู„ูƒู† ุชุบูŠูŠุฑู‡ ูƒุซูŠุฑ ุจูƒุซูŠุฑ
109
00:09:10,440 --> 00:09:12,600
ุฒูŠ ู…ุง ุฃู‚ูˆู„ุŒ ู„ุง ูŠู…ูƒู†ู†ุง ุฃู† ู†ุนุชู…ุฏ ูู‚ุท ุนู„ู‰ ุงู„ู€
110
00:09:12,600 --> 00:09:16,300
Standard Deviation ู„ูƒูŠ ู†ู‚ุงุฑู† ุงู„ุชุบูŠูŠุฑ ุจูŠู† ุงู„ู€
111
00:09:16,300 --> 00:09:19,880
different datasetsุŒ ูŠุฌุจ ุฃู† ู†ู‚ุงุฑู† ุงู„ู€ coefficient of
112
00:09:19,880 --> 00:09:23,400
variationุŒ ุฅุฐุง ุงู„ู…ู„ุฎุตุŒ ู„ูˆ ุฃุฑุฏุช ุฃู‚ุงุฑู† ุชุดุชุช ู…ุฌู…ูˆุนุชูŠู†
113
00:09:23,400 --> 00:09:27,280
ุฃูˆ ุฃูƒุซุฑุŒ ู„ุง ูŠู…ูƒู†ู†ูŠ ุฃู† ุฃุนุชู…ุฏ ุนู„ู‰ ุงู„ู€ S ู„ูˆุญุฏู‡ ูˆู„ุง
114
00:09:27,280 --> 00:09:30,320
ุนู„ู‰ ุงู„ู€ X bar ู„ูˆุญุฏู‡ุŒ ุจุฃุนุชู…ุฏ ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ ุงู„ู€
115
00:09:30,320 --> 00:09:32,460
coefficient of variationุŒ ู„ุฃู†ู‡ ู„ูŠุณ ูŠุนู…ู„ ุงู„ู€
116
00:09:32,460 --> 00:09:35,880
measures ุงู„ู€ variation ุฃูˆ ุงู„ู€ variability relative
117
00:09:35,880 --> 00:09:42,610
ู„ู„ู…ูŠู† ุชุจุนู‡ุŒ ูˆุงุถุญุŸ ูŠุนู†ูŠ ู„ูˆ ุญูƒูŠุช ุงู„ score ุณุจุนุชูƒูˆุง
118
00:09:42,610 --> 00:09:50,650
ุงู„ู‡ุง mean equal 85 ูˆุงู„ standard deviation equal 5
119
00:09:50,650 --> 00:09:54,430
ุฃูˆู„ุงุฏ
120
00:09:54,430 --> 00:09:58,390
for female studentsุŒ for male student suppose the
121
00:09:58,390 --> 00:10:06,690
mean was 75 and standard deviation 10ุŒ ุงู„ู„ุญุธุฉ
122
00:10:06,690 --> 00:10:07,650
ุฏูŠ ุฎู„ูŠู‡ุง 5
123
00:10:10,430 --> 00:10:14,270
both have the same meanุŒ but if you compute the CV
124
00:10:14,270 --> 00:10:18,930
for female S
125
00:10:18,930 --> 00:10:22,890
over eighty
126
00:10:22,890 --> 00:10:26,630
fiveุŒ ู„ูˆ
127
00:10:26,630 --> 00:10:33,230
ุถุฑุจุช ุฎู…ุณุฉ ููŠ ู…ุฆุฉ ุนู„ู‰ ุฎู…ุณุฉ ูˆุซู…ุงู†ูŠู†ุŒ ู†ุนู… ุฎู…ุณุฉ
128
00:10:33,230 --> 00:10:37,690
ูˆุซู…ุงู†ูŠู†
129
00:10:37,690 --> 00:10:38,690
ู…ู† ุฃูˆ ุซู…ุงู†ูŠุฉ ู…ู† ุนุดุฑุฉ
130
00:10:44,020 --> 00:10:54,660
ุฎู„ูŠู†ูŠ ุฃุญุณุจู‡ุง ุฎู…ุณุฉ
131
00:10:54,660 --> 00:10:58,620
point 22ุŒ ุฎู…ุณุฉ point 22ุŒ ุฎู…ุณุฉ point 22ุŒ ุฎู…ุณุฉ
132
00:10:58,620 --> 00:10:58,700
point 22ุŒ ุฎู…ุณุฉ point 22ุŒ ุฎู…ุณุฉ point 22ุŒ ุฎู…ุณุฉ
133
00:10:58,700 --> 00:11:01,860
point 22ุŒ ุฎู…ุณุฉ
134
00:11:01,860 --> 00:11:03,180
point 22ุŒ ุฎู…ุณุฉ point 22ุŒ ุฎู…ุณุฉ point 22ุŒ ุฎู…ุณุฉ
135
00:11:03,180 --> 00:11:04,660
point 22ุŒ ุฎู…ุณุฉ point 22ุŒ ุฎู…ุณุฉ point 22ุŒ ุฎู…ุณุฉ
136
00:11:04,660 --> 00:11:05,040
point 22ุŒ ุฎู…ุณุฉ point 22ุŒ ุฎู…ุณุฉ point 22ุŒ ุฎู…ุณุฉ
137
00:11:05,040 --> 00:11:07,640
point 22ุŒ ุฎู…ุณุฉ point 2
138
00:11:13,870 --> 00:11:19,110
500 over 75ุŒ 6
139
00:11:19,110 --> 00:11:25,730
.67ุŒ ูˆุงุถุญ
140
00:11:25,730 --> 00:11:35,970
ู‡ู†ุง ููŠ ุงู„ู…ุฏุฑุณุงุช ุงู„ุฅู†ุณุงู†ูŠุฉ ุฃู‚ู„ ู…ู†
141
00:11:35,970 --> 00:11:41,090
5.88 ุจุงู„ุฑุบู… ู…ู† ุงู„ุงุซู†ูŠู† ุงู„ู„ูŠ ู‡ู… ุนุงูŠุด ู†ูุณ ุงู„ู€
142
00:11:41,090 --> 00:11:49,510
standard deviationุŒ ุฃูŠ ุณุคุงู„ ุนู† ู…ู‚ุงูˆู…ุฉ ุงู„ุชุบูŠูŠุฑุŸ ุญุณู†ุงู‹ุŒ
143
00:11:49,510 --> 00:11:55,530
ุฏุนู†ุง ู†ุชุญุฑูƒ ุฅู„ู‰ ุงู„ุตูุญุฉ ุงู„ุชุงู„ูŠุฉุŒ ุฅุฐุง
144
00:11:55,530 --> 00:11:59,150
ุชุชุฐูƒุฑูŠู† ุนู†ุฏู…ุง ุชุญุฏุซู†ุง ุนู† ุงู„ู…ู‚ุงูˆู…ุฉุŒ ูˆุงู„ู…ู‚ุงูˆู…ุฉุŒ ุชุฐูƒุฑู†ุง
145
00:11:59,150 --> 00:12:03,770
ุฃู† ุงู„ู…ู‚ุงูˆู…ุฉ ู„ูŠุณุช ู…ุดุชุฑูƒุฉ ุจู‚ูŠู…ุงุช ุฃุนุธู… ุฃูˆ ุฃุณู„ุญุฉ ุฎุงุฑู‚ุฉ
146
00:12:05,520 --> 00:12:08,340
ุงู„ุณุคุงู„ ุงู„ุขู† ู‡ูˆ ูƒูŠู ูŠู…ูƒู†ู†ุง ุฃู† ู†ู‚ูˆู„ ุฅู† ู‡ุฐู‡ ุงู„ู†ู‚ุทุฉ
147
00:12:08,340 --> 00:12:18,380
ุชุนุชุจุฑ ุฎุงุทุฆุฉ ุฃูˆ ุฎุงุทุฆุฉ ุฃูˆ ุญุชู‰ ุฎุงุทุฆุฉุŒ ุฅุฐุง ูƒุงู† ู„ุฏูŠู†ุง
148
00:12:18,380 --> 00:12:21,800
ู…ุฌู„ุฉ ุฎุงุทุฆุฉุŒ ูƒูŠู ูŠู…ูƒู†ู†ุง ุฃู† ู†ู‚ูˆู„ ุฅู† ู‚ูŠู…ุฉ ู‡ุฐู‡ ุงู„ู…ุฌู„ุฉ
149
00:12:21,800 --> 00:12:25,020
ุชุนุชุจุฑ ุฎุงุทุฆุฉ ุฃูˆ ุฎุงุทุฆุฉุŸ ู…ู…ูƒู† ุฃู‚ูˆู„ ุฅู† ู‡ุฐู‡ ุงู„ู…ุฌู„ุฉ
150
00:12:25,020 --> 00:12:30,560
ู…ุดุชุจู‡ุฉ ุชูƒูˆู† ุฎุงุทุฆุฉ ุฃูˆ ุฎุงุทุฆุฉุŒ ู‡ู†ุงูƒ ุทุฑุญูŠู† ู…ุฎุชู„ููŠู†
151
00:12:30,560 --> 00:12:35,670
ู„ุชูˆุตูŠู„ ุฎุทูˆุงุช ุฎุงุทุฆุฉ ุฃูˆ ุฎุงุทุฆุฉุŒ ู‡ุฐุง ุงู„ููŠุฏูŠูˆ ูŠุชูƒู„ู… ุนู†
152
00:12:35,670 --> 00:12:42,510
ูˆุงุญุฏุฉ ู…ู† ู‡ุฐู‡ ุงู„ุทุฑู‚ ูŠุณู…ู‰ Z-scoreุŒ ู„ุฐู„ูƒ ุฏุนู†ุง ู†ุจุฏุฃ
153
00:12:42,510 --> 00:12:58,290
ุจุงู„ูˆุตูˆู„ ุฅู„ู‰ ุฃุนู„ู‰ ุจุงุณุชุฎุฏุงู… Z-scoreุŒ ููˆุตูˆู„ุฉ
154
00:12:58,290 --> 00:13:02,530
ุฃุนู„ู‰
155
00:13:12,240 --> 00:13:21,280
ุนู† ุทุฑูŠู‚ ุงุณุชุฎุฏุงู… ุงู„ู€ z-scoreุŒ ุฏุนูˆู†ุง
156
00:13:21,280 --> 00:13:27,520
ู†ุฑู‰ ูƒูŠู ู†ุณุชุฎุฏู… ุงู„ z-scoreุŒ ู…ุงุฐุง ูŠุนู†ูŠ z-scoreุŸ ูŠุฌุจ
157
00:13:27,520 --> 00:13:32,060
ุฃู† ู†ุนุฑู ูƒู„ุง ุงู„ุงุฎุชุตุงุฑุŒ ุฃุนู†ูŠ ุงู„ุชุฎุตูŠุต ู„ู„ z-score ุซู…
158
00:13:32,060 --> 00:13:32,480
ูƒูŠู ู†ุณุชุฎุฏู…ู‡ุŸ
159
00:13:36,220 --> 00:13:41,280
ุงู„ู†ุชูŠุฌุฉ ุงู„ุขู† ุชู‚ูˆู„ ุฃู†ูƒ ุชู‚ูˆู… ุจุชุฌุฑุจุฉ ุงู„ู€ z-score ู…ู†
160
00:13:41,280 --> 00:13:44,820
ู‚ูŠู…ุฉ ุงู„ุจูŠุงู†ุงุชุŒ ู†ุญุชุงุฌ
161
00:13:44,820 --> 00:13:48,400
ุฃู† ู†ุชู‚ู„ ุงู„ mean ูˆู†ู‚ู„ ู…ู† ู‚ูŠู…ุฉ ุงู„ุจูŠุงู†ุงุช ุจู‚ูŠู…ุฉ
162
00:13:48,400 --> 00:13:48,540
ุงู„ุจูŠุงู†ุงุช ุจู‚ูŠู…ุฉ ุงู„ุจูŠุงู†ุงุช ุจู‚ูŠู…ุฉ ุงู„ุจูŠุงู†ุงุช ุจู‚ูŠู…ุฉ
163
00:13:48,540 --> 00:13:55,580
ุงู„ุจูŠุงู†ุงุช ุจู‚ูŠู…ุฉ ุงู„ุจูŠุงู†ุงุช ุจู‚ูŠู…ุฉ ุงู„ุจูŠุงู†ุงุช ุจู‚ูŠู…ุฉ
164
00:13:55,580 --> 00:14:00,780
ุงู„ุจูŠุงู†ุงุช ุจู‚ูŠู…ุฉ ุงู„ุจูŠุงู†ุงุช ุจู‚ูŠู…ุฉ ุงู„ุจูŠุงู†ุงุช ุจู‚ูŠู…ุฉ
165
00:14:00,780 --> 00:14:02,880
ุงู„ุจูŠุงู†ุงุช ุจู‚ูŠู…ุฉ ุงู„ุจูŠุงู†ุงุช ุจู‚ูŠู…ุฉ ุงู„ุจูŠุงู†ุงุช ุจู‚ูŠู…ุฉ
166
00:14:02,880 --> 00:14:04,560
ุงู„ุจูŠุงู†ุงุช ุจู‚ูŠู…ุฉ ุงู„ุจูŠุงู†ุงุช ุจู‚ูŠู…ุฉ ุงู„ุจูŠุงู†ุงุช ุจุฒูŠ score
167
00:14:04,560 --> 00:14:11,280
it says it equalsุŒ so z score of a data value for
168
00:14:11,280 --> 00:14:15,980
score for exampleุŒ suppose my score is xุŒ suppose i
169
00:14:15,980 --> 00:14:21,540
got x in subject aุŒ now the question is how can we
170
00:14:21,540 --> 00:14:29,220
compute the z scoreุŒ it says subtract the meanุŒ ุฃูŠ
171
00:14:29,220 --> 00:14:42,170
ู…ุนู†ุงู‡ subtractุŒ ู…ุธุจูˆุทุŒ ุงุทุฑุญ ุงู„ meanุŒ ู†ู‚ุต ุงู„ meanุŒ ู†ู‚ุต
172
00:14:42,170 --> 00:14:46,670
ุงู„ meanุŒ ู†ู‚ุต ุงู„ meanุŒ
173
00:14:46,670 --> 00:14:47,270
ู†ู‚ุต ุงู„ meanุŒ ู†ู‚ุต ุงู„ meanุŒ ู†ู‚ุต ุงู„ meanุŒ ู†ู‚ุต ุงู„ meanุŒ
174
00:14:47,270 --> 00:14:47,390
ู†ู‚ุต ุงู„ meanุŒ ู†ู‚ุต ุงู„ meanุŒ ู†ู‚ุต ุงู„ meanุŒ ู†ู‚ุต ุงู„ meanุŒ
175
00:14:47,390 --> 00:14:48,410
ู†ู‚ุต ุงู„ meanุŒ ู†ู‚ุต ุงู„ meanุŒ ู†ู‚ุต ุงู„ meanุŒ ู†ู‚ุต ุงู„ meanุŒ
176
00:14:48,410 --> 00:14:53,410
ู†ู‚ุต ุงู„ meanุŒ ู†ู‚ุต ุงู„ meanุŒ ู†ู‚ุต ุงู„ meanุŒ ู†ู‚ุต ุงู„ meanุŒ
177
00:14:53,410 --> 00:15:01,830
ู†ู‚ุต ุงู„ meanุŒ
178
00:15:02,320 --> 00:15:06,140
ุชุนุฑูŠูู‡ number of standard deviations a data value
179
00:15:06,140 --> 00:15:09,800
is from the meanุŒ ูŠุนู†ูŠ ุงูŠุด ุนุฏุฏ ุงู„ุงู†ุญุฑุงูุงุช ุงู„ู…ุนูŠุงุฑูŠุฉ
180
00:15:09,800 --> 00:15:14,200
ุงู„ู†ู‚ุทุฉ ุจุชุงุนุชูƒ ุฃูˆ ุฏุฑุฌุชูƒ ุจุชุจุนุฏ ุนู† ุงู„ู…ุชูˆุณุทุŒ for example
181
00:15:14,200 --> 00:15:23,440
suppose my score was 85 againุŒ 85ุŒ so you got in
182
00:15:23,440 --> 00:15:29,160
statistics or in math or accounting 85ุŒ and the
183
00:15:29,160 --> 00:15:41,140
average of the entire class ู…ุซู„ู‹ุง ู‡ูˆ 80ุŒ ูˆู…ู‚ุงุฑู†ุฉ
184
00:15:41,140 --> 00:15:49,200
ุงู„ุฃุณุงุณูŠุฉ ูƒุงู†ุช 5ุŒ ุงู„ุขู† ุงู„ุณุคุงู„ ู‡ูˆ ู…ุงุฐุง ูŠุนู†ูŠ
185
00:15:49,200 --> 00:15:55,640
ุงู„ู€ z-scoreุŸ ุฏุนู†ุง ู†ู‚ูˆู… ุจู…ู‚ุงุฑู†ุฉ ุงู„ู€ z-scoreุŒ ุงู„ู…ูู‡ูˆู…
186
00:15:55,640 --> 00:15:59,540
ู‡ูˆ ุฅุถุงูุฉ ุงู„ู…ู‚ุงุฑู†ุฉ ู…ู† ู‡ุฐุง ุงู„ู‚ูŠู…ุฉ ุซู… ุฃู‚ูˆู… ุจุชู‚ุณูŠู…ู‡
187
00:15:59,540 --> 00:16:08,270
ุจุงู„ู…ู‚ุงุฑู†ุฉ ุงู„ุฃุณุงุณูŠุฉุŒ ู„ุฐู„ูƒ ู†ุญู† ู„ุฏูŠู†ุง 85 ู†ุงู‚ุต 80 ุนู„ู‰
188
00:16:08,270 --> 00:16:17,530
5ุŒ ู‡ุฐุง ูŠุนุทูŠ 1ุŒ ุงู„ุขู† ุฏุนูˆู†ุง ู†ุฑู‰ ู…ุนู†ู‰ 1ุŒ ุงู†ุธุฑ
189
00:16:17,530 --> 00:16:21,430
ุฅู„ู‰ ุงู„ูุฑู‚ ุจูŠู† ู…ู‚ุงุฑู†ุชูƒ ูˆู…ู‚ุงุฑู†ุชูƒุŒ ู…ุงู‡ูŠ ุงู„ูุฑู‚ ุจูŠู†
190
00:16:21,
216
00:18:47,670 --> 00:18:54,050
20 over 5 minus 4 ุงู„ุขู† ู…ุงุฐุง ูŠุนู†ูŠ ู‡ุฐุง ุงู„ู‚ูŠู… ู…ุฑุฉ
217
00:18:54,050 --> 00:19:02,190
ุฃุฎุฑู‰ุŸ ูŠุนู†ูŠ ู‚ูŠู…ุฉ 60 ู‡ูŠ ุฃุฑุจุน ู…ู‚ุงุฑู†ุฉ ุนุงู…ุฉ ุชุญุช
218
00:19:02,190 --> 00:19:07,050
ุงู„ู…ู‚ุงุฑู†ุฉ ุนุงู…ุฉ ุชุญุช ุงู„ู…ู‚ุงุฑู†ุฉ ุนุงู…ุฉ ุชุญุช ุงู„ู…ู‚ุงุฑู†ุฉ ุนุงู…ุฉ
219
00:19:07,050 --> 00:19:09,230
ุชุญุช ุงู„ู…ู‚ุงุฑู†ุฉ ุนุงู…ุฉ ุชุญุช ุงู„ู…ู‚ุงุฑู†ุฉ ุนุงู…ุฉ ุชุญุช ุงู„ู…ู‚ุงุฑู†ุฉ
220
00:19:09,230 --> 00:19:11,190
ุนุงู…ุฉ ุชุญุช ุงู„ู…ู‚ุงุฑู†ุฉ ุนุงู…ุฉ ุชุญุช ุงู„ู…ู‚ุงุฑู†ุฉ ุนุงู…ุฉ ุชุญุช
221
00:19:11,190 --> 00:19:13,810
ุงู„ู…ู‚ุงุฑู†ุฉ ุนุงู…ุฉ ุชุญุช ุงู„ู…ู‚ุงุฑู†ุฉ ุนุงู…ุฉ ุชุญุช ุงู„ู…ู‚ุงุฑู†ุฉ ุนุงู…ุฉ
222
00:19:13,810 --> 00:19:15,510
ุชุญุช ุงู„ู…ู‚ุงุฑู†ุฉ ุนุงู…ุฉ ุชุญุช ุงู„ู…ู‚ุงุฑู†ุฉ ุนุงู…ุฉ ุชุญุช ุงู„ู…ู‚ุงุฑู†ุฉ
223
00:19:15,510 --> 00:19:19,490
ุงู„ู…ู‚ุงุฑู†ุฉ ุนุงู…ุฉ ุชุญุช ุงู„ู…ู‚ุงุฑู†ุฉ ุนุงู…ุฉ ุชุญุช ุงู„ู…ู‚ุงุฑู†ุฉ ุนุงู…ุฉ
224
00:19:20,930 --> 00:19:24,710
ูˆุงุญุฏ ุฌุงุจ ุณุชูŠู† ุงู„ู…ุชูˆุณุท ุซู…ุงู†ูŠู† ู…ุง ู‡ูŠ ุงู„ูุฑู‚ ุนู„ู‰
225
00:19:24,710 --> 00:19:29,830
ุงู„ู…ุชูˆุณุทุŸ ุนุดุฑูŠู† ู…ุง ู‡ูŠ ุนู„ุงู‚ุฉ ุงู„ุนุดุฑูŠู† ุจุงู„ุฎู…ุณุฉุŸ ุฃุฑุจุน
226
00:19:29,830 --> 00:19:33,710
ุฃุถุนุงู ู…ุน ูƒุฏู‡ ุฏุฑุฌุชู‡ ุฃุฑุจุน ุฃุถุนุงู ู…ุง ู„ู‡ุง below the
227
00:19:33,710 --> 00:19:40,050
mean ู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉ ุชุญุณุจ z score now suppose one more
228
00:19:40,050 --> 00:19:45,790
example my score is eighty I
229
00:19:45,790 --> 00:19:49,810
got eighty in subject A for example now what's the
230
00:19:49,810 --> 00:19:56,800
value of z scoreุŸ ู„ูˆ ูƒุงู†ุช ุงู„ู€ mean 80 ูˆุฏุฑุฌุชูŠ 80
231
00:19:56,800 --> 00:20:02,740
ูŠุนู†ูŠ ุฃู†ุง ุฒูŠ ุงู„ู…ุชูˆุณุท ู…ุน ุงู„ู€ Z-score ู…ุด ู‡ูŠุณุงูˆูŠ 80 ู†ู‚ุต
232
00:20:02,740 --> 00:20:10,320
8 ุนู„ู‰ 5 ูŠุณุงูˆูŠ 0 ู…ุนู†ุงู‡ ุฅูŠุด my score is
233
00:20:10,320 --> 00:20:12,400
0 above the average or below the average it means
234
00:20:12,400 --> 00:20:19,600
my score equals the mean ุฒูŠ ู…ุง ูƒุฏู‡ my score equals
235
00:20:26,980 --> 00:20:33,120
ุงู„ุนู†ูˆุงู† ุงู„ู„ูŠ ู„ุฏูŠู‡ ู‡ูˆ ูƒูŠู ูŠู…ูƒู†ู†ุง ุฅูŠุฌุงุฏ ุฎุทูˆุงุช ุฃุฎุฑู‰
236
00:20:33,120 --> 00:20:37,320
ุฃุฎุฑู‰
237
00:20:37,320 --> 00:20:38,460
ู…ู† ุงู„ุฎุทูˆุงุช ุงู„ุฃุฎุฑู‰ ู…ู† ุงู„ุฎุทูˆุงุช ุงู„ุฃุฎุฑู‰ ู…ู† ุงู„ุฎุทูˆุงุช
238
00:20:38,460 --> 00:20:38,580
ุงู„ุฃุฎุฑู‰ ู…ู† ุงู„ุฎุทูˆุงุช ุงู„ุฃุฎุฑู‰ ู…ู† ุงู„ุฎุทูˆุงุช ุงู„ุฃุฎุฑู‰ ู…ู†
239
00:20:38,580 --> 00:20:40,080
ุงู„ุฎุทูˆุงุช ุงู„ุฃุฎุฑู‰ ู…ู† ุงู„ุฎุทูˆุงุช ุงู„ุฃุฎุฑู‰ ู…ู† ุงู„ุฎุทูˆุงุช ุงู„ุฃุฎุฑู‰
240
00:20:40,080 --> 00:20:40,840
ู…ู† ุงู„ุฎุทูˆุงุช ุงู„ุฃุฎุฑู‰ ู…ู† ุงู„ุฎุทูˆุงุช ุงู„ุฃุฎุฑู‰ ู…ู† ุงู„ุฎุทูˆุงุช
241
00:20:40,840 --> 00:20:40,860
ู…ู† ุงู„ุฎุทูˆุงุช ุงู„ุฃุฎุฑู‰ ู…ู† ุงู„ุฎุทูˆุงุช ุงู„ุฃุฎุฑู‰ ู…ู† ุงู„ุฎุทูˆุงุช
242
00:20:40,860 --> 00:20:40,880
ุงู„ุฃุฎุฑู‰ ู…ู† ุงู„ุฎุทูˆุงุช ุงู„ุฃุฎุฑู‰ ู…ู† ุงู„ุฎุทูˆุงุช ุงู„ุฃุฎุฑู‰ ู…ู†
243
00:20:40,880 --> 00:20:45,340
ุงู„ุฎุทูˆุงุช ุงู„ุฃุฎุฑู‰ ู…ู† ุงู„ุฎุทูˆุงุช ุงู„ุฃุฎุฑู‰ ู…ู† ุงู„ุฎุทูˆุงุช ุงู„ุฃุฎุฑู‰
244
00:20:45,340 --> 00:20:47,100
ู…ู† ุงู„
245
00:20:58,500 --> 00:21:03,600
ู‡ุฐุง ู‚ุงู†ูˆู† ุงู„ุซู„ุงุซ is as rule of thumb ู‚ุงุนุฏุฉ ุนุงู…ุฉ
246
00:21:03,600 --> 00:21:09,240
ุฅุฐุง ุงู„ู€ z score less than negative three ูŠุนู†ูŠ
247
00:21:09,240 --> 00:21:13,520
ููŠ ู‡ุฐู‡ ุงู„ู…ู†ุทู‚ุฉ or greater than three is considered
248
00:21:13,520 --> 00:21:17,720
to be extreme value now go back to the previous
249
00:21:17,720 --> 00:21:22,240
examples do you think z score of one is considered
250
00:21:22,240 --> 00:21:27,880
to be outlierุŸ ูˆุงุญุฏ ู…ูˆุฌูˆุฏุฉ ู‡ู†ุง ุจุงู„ุชุงู„ูŠ ู‡ูŠ ู„ูŠุณุช
251
00:21:27,880 --> 00:21:37,780
ุฎุงุฑุฌูŠุฉ ูุงู„ุงูˆู„ ู„ูŠุณ ุฎุงุฑุฌูŠุฉ ุงุชูุงู‚ 2 ู„ูŠุณ ุฎุงุฑุฌูŠุฉ ุงุชูุงู‚
252
00:21:37,780 --> 00:21:43,300
4 ู„ูŠุณ ุฎุงุฑุฌูŠุฉ ุงุชูุงู‚
253
00:21:43,300 --> 00:21:49,700
0 ู„ูŠุณ ุฎุงุฑุฌูŠุฉ ุงุชูุงู‚ ุงุชูุงู‚ ุงุชูุงู‚ 0 ู„ูŠุณ ุฎุงุฑุฌูŠุฉ ุงุชูุงู‚
254
00:21:49,700 --> 00:21:54,820
ุงุชูุงู‚ ุงุชูุงู‚ 100 ู„ูˆ
255
00:21:54,820 --> 00:21:59,440
ูƒุงู†ุช ุฏุฑุฌุฉ ุงู„ุทุงู„ุจ 100 ูŠุนู†ูŠ ุงู„ุทุงู„ุจ ุฌุงุจ ู…ูŠุฉ ู…ู† ู…ูŠุฉ ูˆ ุงู„ู…ุชูˆุณุท
256
00:21:59,440 --> 00:22:06,220
ุซู…ุงู†ูŠู† ู‡ู„ ู…ูŠุฉ ุชุนุชุจุฑ outlierุŸ ุทุงู„ุจ ุงุฒุงูŠ scoreุŸ ู…ูŠุฉ
257
00:22:06,220 --> 00:22:10,860
ู†ุงู‚ุต ุซู…ุงู†ูŠู† ุนู„ู‰ ุฎู…ุณุฉ four it means his score is
258
00:22:10,860 --> 00:22:15,060
four standard deviation above the mean and four is
259
00:22:15,060 --> 00:22:17,920
greater than plus three it means this point is
260
00:22:17,920 --> 00:22:22,870
considered to be an outlier or extreme values ู‡ุฐู‡
261
00:22:22,870 --> 00:22:25,110
ุงู„ุทุฑูŠู‚ุฉ ุฃุณู‡ู„ ุทุฑูŠู‚ุฉ ู†ุนุฑู ุฅุฐุง ูƒุงู†ุช ุงู„ู€ data is
262
00:22:25,110 --> 00:22:28,010
considered outlier ุฃูˆ extreme ุฃูˆ ู„ูŠุณ ูƒุฐู„ูƒ ูู‚ุท
263
00:22:28,010 --> 00:22:33,870
ุชุฌุฑุจุฉ ุงู„ู€ z-score ุฅุฐุง ูƒุงู†ุช ุฃู‚ู„ ู…ู† 3 ุฃูˆ ุฃู‚ู„ ู…ู† ุณุงู„ุจ
264
00:22:33,870 --> 00:22:41,570
ู…ู† 3 ูู‡ุฐู‡ ุงู„ู†ู‚ุทุฉ ุชุนุชุจุฑ ู†ู‚ุทุฉ ุฃู‚ู„ ู…ู† ุณุงู„ุจ ุชู„ุงุชุฉ ุจุณ
265
00:22:41,570 --> 00:22:45,190
ุฃูˆ ุณุงู„ุจ ู…ู† ุณุงู„ุจ ู…ู† ุณุงู„ุจ ู…ู† ุณุงู„ุจ ู…ู† ุณุงู„ุจ ู…ู† ุณุงู„ุจ ู…ู† ุณุงู„ุจ
266
00:22:45,190 --> 00:22:45,990
ู…ู† ุณุงู„ุจ ู…ู† ุณุงู„ุจ ู…ู† ุณุงู„ุจ ู…ู† ุณุงู„ุจ ู…ู† ุณุงู„ุจ ู…ู† ุณุงู„ุจ ู…ู† ุณุงู„ุจ
267
00:22:45,990 --> 00:22:49,930
ู…ู† ุณุงู„ุจ ู…ู† ุณุงู„ุจ ู…ู† ุณุงู„ุจ ู…ู† the farther the data value
268
00:22:49,930 --> 00:22:56,110
is from the mean ูŠุนู†ูŠ ุงู„ู‚ูŠู…ุฉ ุงู„ู…ุทู„ู‚ุฉ ูŠุนู†ูŠ ุงู„ู‚ูŠู…ุฉ
269
00:22:56,110 --> 00:23:01,090
ุงู„ู…ุทู„ู‚ุฉ ู„ู€ ู†ุงู‚ุต four four ู…ุด ู‡ูŠ ูุจูŠุญูƒูŠ ูƒู„ ู…ูƒุงู† ููŠู‡
270
00:23:01,090 --> 00:23:04,990
ู‚ูŠู…ุฉ ุฃูƒุจุฑ ุจุชูƒูˆู† ุงู„ู€ data ู…ุงู„ู‡ุง ุจุนูŠุฏุฉ ุนู† ุงู„ู€ mean
271
00:23:04,990 --> 00:23:09,810
ูŠุนู†ูŠ z score of negative four which one is far
272
00:23:09,810 --> 00:23:14,010
from the mean z score of negative four or z score
273
00:23:14,010 --> 00:23:19,260
of equals two ุงู†ุณู‰ ุงู„ุฅุดุงุฑุฉ ู†ู‚ุงุท ูู‚ุท ุงู†ุธุฑ ุฅู„ู‰ ู‚ูŠู…ุฉ
274
00:23:19,260 --> 00:23:25,000
ุงู„ุฑู‚ู…ูŠุฉ ู‡ุฐุง ุฃูƒุจุฑ ู…ู† 2 ู‡ุฐุง ูŠุนู†ูŠ ุฃู† ู‡ุฐุง ุงู„ู‚ูŠู…ุฉ ู‡ูŠ
275
00:23:25,000 --> 00:23:35,980
ุฃูƒุซุฑ ู…ู† ุงู„ูˆุงู‚ุน ุฃุจุนุฏ ู…ู† ุงู„ู…ุชูˆุณุท ู„ุฐู„ูƒ ู…ุฑุฉ
276
00:23:35,980 --> 00:23:41,780
ุฃุฎุฑู‰ ู‡ุฐู‡ ู‡ูŠ ุงู„ููˆุฑู…ูˆู„ุฉ ู„ู€ z-score ู‡ู„ ุชุนุชู‚ุฏ ุฃู† z
277
00:23:41,780 --> 00:23:47,690
-score ูŠู…ูƒู† ุฃู† ูŠูƒูˆู† ุฃูุถู„ ุฃูˆ ุฃู‚ู„ ุฃูˆ ุณุงู„ุจ 0ุŸ ูŠู…ูƒู† ุฃู†
278
00:23:47,690 --> 00:23:53,530
ูŠูƒูˆู† ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง
279
00:23:53,530 --> 00:23:57,450
ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง
280
00:23:57,450 --> 00:23:59,310
ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง
281
00:23:59,310 --> 00:23:59,430
ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง
282
00:23:59,430 --> 00:23:59,470
ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง
283
00:23:59,470 --> 00:24:14,770
ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง ุฃูŠุถุง
284
00:24:14,770 --> 00:24:16,890
ุฃูŠุถ
285
00:24:19,100 --> 00:24:25,100
and equals zero if x equals x bar ุฅุฐุง ู…ู…ูƒู† ุงู„ู€ z
286
00:24:25,100 --> 00:24:29,460
-score ูŠุงุฎุฐ ุซู„ุงุซ ุญุงู„ุงุช positive ุฅุฐุง ูƒุงู† ุงู„ู€ x
287
00:24:29,460 --> 00:24:34,520
greater than x bar negative ุฅุฐุง ูƒุงู† ุงู„ู€ x more than
288
00:24:34,520 --> 00:24:40,880
x bar equals zero if x equals x bar this is
289
00:24:40,880 --> 00:24:41,660
another example
290
00:24:46,390 --> 00:24:51,490
ูŠูƒูˆู† ุงูŠู‡ ุนู„ุงู‚ุชู‡ ุจุงู„ู…ูŠุฉ ุงูŠู‡ ุนู„ุงู‚ุชู‡ ุจุงู„ู…ูŠุฉ ุงูŠู‡
291
00:24:51,490 --> 00:24:52,530
ุนู„ุงู‚ุชู‡ ุจุงู„ู…ูŠุฉ ุงูŠู‡ ุนู„ุงู‚ุชู‡ ุจุงู„ู…ูŠุฉ ุงูŠู‡ ุนู„ุงู‚ุชู‡ ุจุงู„ู…ูŠุฉ
292
00:24:52,530 --> 00:24:54,710
ุงูŠู‡ ุนู„ุงู‚ุชู‡ ุจุงู„ู…ูŠุฉ ุงูŠู‡ ุนู„ุงู‚ุชู‡ ุจุงู„ู…ูŠุฉ ุงูŠู‡ ุนู„ุงู‚ุชู‡
293
00:24:54,710 --> 00:24:57,110
ุจุงู„ู…ูŠุฉ ุงูŠู‡ ุนู„ุงู‚ุชู‡ ุจุงู„ู…ูŠุฉ ุงูŠู‡ ุนู„ุงู‚ุชู‡ ุจุงู„ู…ูŠุฉ ุงูŠู‡
294
00:24:57,110 --> 00:24:57,690
ุนู„ุงู‚ุชู‡ ุจุงู„ู…ูŠุฉ ุงูŠู‡ ุนู„ุงู‚ุชู‡ ุจุงู„ู…ูŠุฉ ุงูŠู‡ ุนู„ุงู‚ุชู‡ ุจุงู„ู…ูŠุฉ
295
00:24:57,690 --> 00:24:57,910
ุงูŠู‡ ุนู„ุงู‚ุชู‡ ุจุงู„ู…ูŠุฉ ุงูŠู‡ ุนู„ุงู‚ุชู‡ ุจุงู„ู…ูŠุฉ ุงูŠู‡ ุนู„ุงู‚ุชู‡
296
00:24:57,910 --> 00:25:00,070
ุจุงู„ู…ูŠุฉ ุงูŠู‡ ุนู„ุงู‚ุชู‡ ุจุงู„ู…ูŠุฉ ุงูŠู‡ ุนู„ุงู‚ุชู‡ ุจุงู„ู…ูŠุฉ
297
00:25:00,070 --> 00:25:04,070
ุงูŠู‡
298
00:25:04,070 --> 00:25:12,130
ุนู„ุงู‚ุชู‡
299
00:25:12,130 --> 00:25:20,420
ุจุงู„ู…ูŠุฉ ุงูŠ ู…ุน ู…ู‚ุงุฑู†ุฉ ุฃุณุงุณูŠุฉ 100 ูˆุงู†ุช
300
00:25:20,420 --> 00:25:24,320
ุชุณุฃู„ ุนู† ู…ู‚ุงุฑู†ุฉ ุงู„ู€ z-score ุจู…ู‚ุงุฑู†ุฉ 620 ู…ู‚ุงุฑู†ุฉ ุงู„ู€
301
00:25:24,320 --> 00:25:28,060
z-score ุจู…ู‚ุงุฑู†ุฉ 620 ู…ู‚ุงุฑู†ุฉ ุงู„ู€ z-score ุจู…ู‚ุงุฑู†ุฉ 49
302
00:25:28,060 --> 00:25:31,140
ู…ู‚ุงุฑู†ุฉ ุงู„ู€ z-score ุจู…ู‚ุงุฑู†ุฉ 49 ู…ู‚ุงุฑู†ุฉ ุงู„ู€ z-score
303
00:25:31,140 --> 00:25:42,080
ุจู…ู‚ุงุฑู†ุฉ 100 ู…ู‚ุงุฑู†ุฉ ุงู„ู€ z-score ุจู…ู‚ุงุฑู†ุฉ 620
304
00:25:44,170 --> 00:25:50,930
620-490 ุฃูˆ 100 ูŠุนู†ูŠ 1.3 ูˆู‡ุฐุง ูŠุนู†ูŠ ุฃู† ู…ู‚ุงุฑู†ุชูŠ ุฃุนู„ู‰
305
00:25:50,930 --> 00:25:56,630
ุฃูˆ ุฃู‚ู„ ู…ู† ุงู„ู…ู‚ุงุฑู†ุฉุŒ ุฃุนู„ู‰ ู…ู† ุงู„ู…ู‚ุงุฑู†ุฉ ู…ุฑุฉ ุฃุฎุฑู‰ุŒ ู…ุฑุฉ
306
00:25:56,630 --> 00:25:57,070
ุฃุฎุฑู‰ุŒ ู…ุฑุฉ ุฃุฎุฑู‰ุŒ ู…ุฑุฉ ุฃุฎุฑู‰ุŒ ู…ุฑุฉ ุฃุฎุฑู‰ุŒ ู…ุฑุฉ ุฃุฎุฑู‰ุŒ ู…ุฑุฉ
307
00:25:57,070 --> 00:25:57,090
ุฃุฎุฑู‰ุŒ ู…ุฑุฉ ุฃุฎุฑู‰ุŒ ู…ุฑุฉ ุฃุฎุฑู‰ุŒ ู…ุฑุฉ ุฃุฎุฑู‰ุŒ ู…ุฑุฉ ุฃุฎุฑู‰ุŒ ู…ุฑุฉ
308
00:25:57,090 --> 00:25:59,510
ุฃุฎุฑู‰ุŒ ู…ุฑุฉ ุฃุฎุฑู‰ุŒ ู…ุฑุฉ ุฃุฎุฑู‰ุŒ ู…ุฑุฉ ุฃุฎุฑู‰ุŒ ู…ุฑุฉ ุฃุฎุฑู‰ุŒ ู…ุฑุฉ
309
00:25:59,510 --> 00:25:59,890
ุฃุฎุฑู‰ุŒ ู…ุฑุฉ ุฃุฎุฑู‰ุŒ ู…ุฑุฉ ุฃุฎุฑู‰ุŒ ู…ุฑุฉ ุฃุฎุฑู‰ุŒ ู…ุฑุฉ ุฃุฎุฑู‰ุŒ ู…ุฑุฉ
310
00:25:59,890 --> 00:26:01,730
ุฃุฎุฑู‰ุŒ ู…ุฑุฉ ุฃุฎุฑู‰ุŒ ู…ุฑุฉ ุฃุฎุฑู‰ุŒ ู…ุฑุฉ ุฃุฎุฑู‰ุŒ ู…ุฑุฉ ุฃุฎุฑู‰ุŒ ู…ุฑุฉ
311
00:26:01,730 --> 00:26:05,460
ุฃุฎุฑู‰ุŒ ู…ุฑุฉ ุฃุฎุฑู‰ุŒ ู…ุฑุฉ ุฃุฎุฑู‰ุŒ ู…ุฑุฉ ุฃุฎุฑู‰ ูŠู…ูƒู† ุฃู† ูŠูƒูˆู† 1.3
312
00:26:05,460 --> 00:26:09,260
ุฃูˆ 1.5 ุฃูˆ ู…ู‡ู…ุง ูƒุงู†ุช ุงู„ู‚ูŠู…ุฉ ู„ุฃู†ู†ุง ุญุตู„ู†ุง ุนู„ู‰ 1.3ุŒ
313
00:26:09,260 --> 00:26:13,700
ู„ุฐู„ูƒ ู‚ูŠู…ุฉ ู‡ุฐุง ู‡ูŠ 1.3 ู…ู‚ุงุฑู†ุฉ ุฃุนู„ู‰ ุงู„ู…ู‚ุงุฑู†ุฉ ุงู„ุฃุณุงุณูŠุฉ
314
00:26:13,700 --> 00:26:21,520
ู…ุฑุฉ ุฃุฎุฑู‰ ุชุนุชุจุฑ ู‡ุฐู‡ ุงู„ู‚ูŠู…ุฉ 620 ู…ูˆุฌูˆุฏุฉ ู‡ู†ุงูƒุŒ ุงู„ุขู†
315
00:26:21,520 --> 00:26:29,080
ู‚ูŠู…ุฉ 1.3 ู„ูŠุณุช ุฃูƒุจุฑ ู…ู† 3 ุฃูƒุจุฑุŒ ุฅู†ู‡ุง ุจูŠู† 3 ุฃู‚ู„ ูˆ3
316
00:26:29,080 --> 00:26:33,140
ุฃูƒุจุฑุŒ ู„ุฐู„ูƒ ู‡ุฐู‡ ุงู„ู†ู‚ุทุฉ ุฃูˆ ู‚ูŠู…ุฉ 620
317
00:26:35,640 --> 00:26:43,080
ุฃูˆ ุฃู‚ู„ ู…ู† ุณุงู„ุจ ุซู„ุงุซุฉ ุฃูˆ ุฃูƒุจุฑ ู…ู† ุซู„ุงุซุฉ ุฃูˆ ุฃู‚ู„ ู…ู† ุณุงู„ุจ ุซู„ุงุซุฉ ุฃูˆ
318
00:26:43,080 --> 00:26:44,180
ุฃู‚ู„ ู…ู† ุซู„ุงุซุฉ ุฃูˆ ุฃู‚ู„ ู…ู† ุซู„ุงุซุฉ ุฃูˆ ุฃู‚ู„ ู…ู† ุซู„ุงุซุฉ ุฃูˆ
319
00:26:44,180 --> 00:26:45,820
ุฃู‚ู„ ู…ู† ุซู„ุงุซุฉ ุฃูˆ ุฃู‚ู„ ู…ู† ุซู„ุงุซุฉ ุฃูˆ ุฃู‚ู„ ู…ู† ุซู„ุงุซุฉ ุฃูˆ
320
00:26:45,820 --> 00:26:46,500
ุฃู‚ู„ ู…ู† ุซู„ุงุซุฉ ุฃูˆ ุฃู‚ู„ ู…ู† ุซู„ุงุซุฉ ุฃูˆ ุฃู‚ู„ ู…ู† ุซู„ุงุซุฉ ุฃูˆ
321
00:26:46,500 --> 00:26:46,620
ุฃู‚ู„ ู…ู† ุซู„ุงุซุฉ ุฃูˆ ุฃู‚ู„ ู…ู† ุซู„ุงุซุฉ ุฃูˆ ุฃู‚ู„ ู…ู† ุซู„ุงุซุฉ ุฃูˆ
322
00:26:46,620 --> 00:26:53,900
ุฃู‚ู„ ู…ู† ุซู„ุงุซุฉ ุฃูˆ ุฃู‚ู„ ู…ู† ุซู„ุงุซุฉ ุฃูˆ ุฃู‚ู„ ู…ู† ุซู„ุงุซุฉ
323
00:26:53,900 --> 00:27:02,500
ุฃูˆ ุฃู‚ู„ ู…ู† ุซู„ุงุซุฉ ุฃูˆ ุฃู‚ู„ ู…ู† ุณุง
324
00:27:12,250 --> 00:27:16,010
ู…ุง ููŠุด ุงุฎุชู„ุงู ุฃู‡ูˆ ุจูŠู† ุงู„ู€ euro score and the average
325
00:27:16,010 --> 00:27:20,390
ูŠุนู†ูŠ ู…ุด ุจุนูŠุฏุฉ ุฃูƒุซุฑ ู„ูƒู† ู„ูˆ ู„ุงุญุธุช ู‡ู†ุง ู…ุซู„ู‹ุง ู„ู…ุง ูƒุงู†ุช
326
00:27:20,390 --> 00:27:24,530
eighty-five ูˆุงู„ู€ average eighty is okay my score
327
00:27:24,530 --> 00:27:28,200
is around the average so my score of eighty is
328
00:27:28,200 --> 00:27:31,220
eighty five is not large value is not extreme
329
00:27:31,220 --> 00:27:34,600
value but if you look at sixty if you got sixty in
330
00:27:34,600 --> 00:27:38,180
the scores and the average was eighty ูˆุงุถุญ ุฅู† ุงู„ูุฑู‚
331
00:27:38,180 --> 00:27:41,880
ูƒุจูŠุฑ ุจูŠู†ู‡ู… ูุฏุฑุฌุชูƒ ุจุนูŠุฏุฉ ูƒุซูŠุฑ ุนู† ุงู„ุทู„ุงุจ ูˆูŠู† ู„ุชุญุช
332
00:27:41,880 --> 00:27:46,200
ุจุนุฏ ูƒุฏู‡ ุฏุฑุฌุชูƒ ุฃู‚ู„ ู…ู† ุงู„ุทู„ุงุจ ุฃุฑุจุน ุงู†ุญุฑุงูุงุช ู…ุนูŠุงุฑูŠุฉ
333
00:27:46,200 --> 00:27:50,500
ู„ูˆ ูƒุงู†ุช ุฌุจุช ู…ูŠุฉ ุจุนุฏ ูƒุฏู‡ ุฏุฑุฌุชูŠ ุนุงู„ูŠุฉ ุฌุฏุง ูˆุงุทู„ุนุช
334
00:27:50,500 --> 00:27:54,180
ุฃุฑุจุน ุงู†ุญุฑุงูุงุช ู…ุนูŠุงุฑูŠุฉ any question?
335
00:28:01,410 --> 00:28:06,630
ุงู„ุณุงุจู‚ ู‡ูˆ ุดูƒู„ ุงู„ุชูˆุฒูŠุน if you remember when we
336
00:28:06,630 --> 00:28:13,990
started chapter three we started with three
337
00:28:13,990 --> 00:28:18,890
definitions similar
338
00:28:18,890 --> 00:28:22,590
definitions in slide four ุญูƒูŠู†ุง ุงู„ู€ central
339
00:28:22,590 --> 00:28:27,050
tendency ุฃุฎุฐู†ุง three measures mean, median and
340
00:28:27,050 --> 00:28:31,590
mode ุจุนุฏ ุงุฎุฐ ุงู„ู€ majors of variation ุฃุฎุฐู†ุง ุงู„ู€ range
341
00:28:31,590 --> 00:28:35,530
ุงู„ู€ standard deviation ูˆุงู„ู€ variance ูˆุงู„ู€
342
00:28:35,530 --> 00:28:40,830
coefficient of variation ุขุฎุฑ ูˆุงุญุฏุฉ ุฅูŠุด the shape ูˆ
343
00:28:40,830 --> 00:28:44,410
ุญูƒูŠู†ุง the shape is the pattern of distribution of
344
00:28:44,410 --> 00:28:49,150
values from lowest to the highest value ูƒูŠู ุดูƒู„
345
00:28:49,150 --> 00:28:51,910
ุงู„ุชูˆุฒูŠุน ู…ู† ุฃุตุบุฑ ู‚ูŠู…ุฉ ู„ุฃูƒุจุฑ ู‚ูŠู…ุฉ ูŠุนู†ูŠ ุฃู†ุง ุนุงูŠุฒ ุฃุนุฑู
346
00:28:51,910 --> 00:28:55,850
ุดูƒู„ ุงู„ุชูˆุฒูŠุน ู„ูƒู„ ุงู„ู€ data set ู‡ุฐุง ุงู„ู„ูŠ ู‡ู†ุญูƒูŠ ุนู„ูŠู‡
347
00:28:55,850 --> 00:29:03,350
ุงู„ุขู† ุฅู† ุดุงุก ุงู„ู„ู‡ ุงู„ู„ูŠ ู‡ูˆ ุขุฎุฑ ูˆุงุญุฏุฉ ุงู„ูŠูˆู… ุงู„ู„ูŠ ู‡ูˆ
348
00:29:03,350 --> 00:29:07,010
shape of a distribution ุดูƒู„ ุงู„ุชูˆุฒูŠุน
349
00:29:33,530 --> 00:29:36,330
ุจุนุฏูŠ ุจุนุฏูŠ
350
00:29:39,280 --> 00:29:43,240
ุงู„ุขู† suppose ู„ุฏูŠู†ุง ู…ุฌู…ูˆุนุงุช ุงู„ุจูŠุงู†ุงุช ูˆู†ุญู† ู…ู‡ุชู…ูŠู†
351
00:29:43,240 --> 00:29:51,320
ุจุงู„ุนุฑูุฉ ุนู† ุดูƒู„ ู…ุฌู…ูˆุนุงุช ุงู„ุจูŠุงู†ุงุช ู‡ุฐู‡ ุงู„ุดูƒู„ ุชุณู…ุญ
352
00:29:51,320 --> 00:29:55,700
ุจูƒูŠููŠุฉ ู…ุฌู…ูˆุนุฉ ุงู„ุจูŠุงู†ุงุช ุจูŠูˆุถุญ
353
00:29:55,700 --> 00:30:06,900
ุฃูˆ ูŠุตู ูƒูŠู ุชุชูˆุฒุน ุดูƒู„ ุงู„ุจูŠุงู†ุงุช ุดูƒู„ุชูŠู†
354
00:30:06,900 --> 00:30:16,890
ู…ู‡ู…ุฉ ุชุชุตุฑู ููŠ ุงู„ุดูƒู„ number one is called skewness
355
00:30:16,890 --> 00:30:27,970
skewness ุฃุณู…ุนุด skew ุฃูˆ skewness ุงู„ุชูˆุงุก ุงู„ุชูˆุงุก
356
00:30:27,970 --> 00:30:31,010
ุงู„ุชูˆุงุก
357
00:30:31,010 --> 00:30:33,850
ู…ุนู†ุงู‡ measures the extent to which data values are
358
00:30:33,850 --> 00:30:38,830
not symmetrical symmetrical ูŠุนู†ูŠ ู…ุชู…ุซู„
359
00:30:40,200 --> 00:30:48,320
ูˆ ุจูŠู† ุงู„ุฃูŠู…ุฏุฉ ุงู„ู€ data values ุจุชูƒูˆู† ู…ุชู…ุงุซู„ุฉ if you
360
00:30:48,320 --> 00:30:52,260
look at this data and suppose we have this graph
361
00:30:52,260 --> 00:30:55,700
suppose we have data set and we have this graph
362
00:30:55,700 --> 00:30:58,740
this
363
00:30:58,740 --> 00:30:59,300
is the mean
364
00:31:06,050 --> 00:31:11,070
ู„ูˆ this graph is symmetricุŒ symmetric ู…ุนู†ุงู‡ุŒ ู…ุนู†ุงู‡
365
00:31:11,070 --> 00:31:18,390
ู…ุชู…ุซู„ุŒ symmetric ู…ุนู†ุงู‡
366
00:31:18,390 --> 00:31:22,110
ู…ุชู…ุซู„ุŒ ุฅูŠุด ู…ุนู†ุงู‡ ู…ุชู…ุซู„ุŸ ูŠุนู†ูŠ ุงู„ู€ right ูˆุงู„ู€ left ู…ุง
367
00:31:22,110 --> 00:31:26,810
ู„ู‡ู… ุชู‚ุฑูŠุจุง ุฒูŠ ุจุนุถ ูŠุนู†ูŠ ุงู„ู€ main value is in the
368
00:31:26,810 --> 00:31:29,230
center of the distributionุŒ ููŠ ุงู„ู†ุต ุจุงู„ุถุจุท
369
00:31:29,230 --> 00:31:34,330
ูŠุนู†ูŠ ุงู„ู€ main value ููŠ ุงู„ู…ุฑูƒุฒุŒ ููŠ ุงู„ู€ center table
370
00:31:34,330 --> 00:31:40,950
skewed skewed ู…ุนู†ุงู‡ุง ู‡ูŠูƒ ู„ุญุธุฉ
371
00:31:40,950 --> 00:31:46,390
ู‡ูŠ ุงู„ู€ main value ุจุณ
372
00:31:46,390 --> 00:31:49,270
ู„ูˆ ุทู„ุนุช ุนู„ูŠู‡ ู…ู† ุทุฑู ุฃูŠ ู…ู†ุทู‚ุฉ ุงู„ูŠู…ูŠู† ุงู„ู„ูŠ ู‡ู†ุง ุงู„ู€
373
00:31:49,270 --> 00:31:53,830
right side ู…ุด ุฒูŠ ุงู„ู€ left side ุฅุฐุง ู‡ุฐุง ู…ุด .. ู…ุด
374
00:31:53,830 --> 00:32:00,650
symmetric ุจุฑุถู‡ ู„ูˆ ูƒุงู† ุงู„ุนูƒุณ ู„ูˆ
375
00:32:00,650 --> 00:32:01,650
ุญุงุฌุฉ ุฒูŠูƒ ู‡ูŠ ุงู„ู€ main
376
00:32:05,180 --> 00:32:10,700
ุจุฑุถู‡ ู‡ุฐุง not symmetric ุฅุฐุง ุงู„ู€ skewness measures
377
00:32:10,700 --> 00:32:13,520
the extent to which data values are not symmetric
378
00:32:13,520 --> 00:32:17,160
ุฎู„ูŠู†ูŠ
379
00:32:17,160 --> 00:32:19,800
ุฃุญูƒูŠ ุนู„ูŠู‡ุง ุงู„ูŠูˆู… ูˆุงู„ู„ู‚ุงุก ุงู„ุฌุงูŠ ุจู†ุญูƒูŠ ุนู„ูŠ ุงู„ู€
380
00:32:19,800 --> 00:32:27,520
kurtosis ุงู„ู€ kurtosis ู…ุนู†ุงู‡ุง ุชูู„ุทุญ ู‡ูŠ
381
00:32:27,520 --> 00:32:28,280
ูƒุฏู‡ ู…ุนู†ุงู‡ุง
382
00:32:32,660 --> 00:32:36,160
ุฃุญูŠุงู†ุง ู…ู…ูƒู† ุชูƒูˆู† ุงู„ู€ .. ุงู„ู€ expression ุจุงู„ุนุฑุจูŠ ู…ุด
383
00:32:36,160 --> 00:32:51,240
ุจูˆุถุญ ุงู„ู…ุนู†ู‰ ุชุจุนู‡ ู„ูƒู† ุงู„ุชุนุฑูŠู ู…ู…ูƒู† ุชูƒูˆู† ุฃูˆุถุญ ุฃู†ุช
384
00:32:51,240 --> 00:32:54,100
ุจู‚ุงู„ูƒ ุชุนุฑููŠู‡ุง ูƒูŠู ุงุชุฌู‡ุช ุงู„ู…ุนู†ู‰ ู‡ุณู‡ ุฃู†ุง ุชูู„ุทุญ ุฃูˆ
385
00:32:54,100 --> 00:32:59,160
ุชูุฑุทุญ ุญุณุจ ุงู„ูƒุชุฑ ุทุจ ู†ุงุฎุฏ ุงู„ู„ูุธ ุชุจุนู‡ ู…ุนู†ุงู‡
386
00:33:02,930 --> 00:33:07,230
ุงู„ู€ care measures the weakness of the care of
387
00:33:07,230 --> 00:33:15,510
distribution ุจูŠูƒ ู…ุนู†ุงู‡ ุฅูŠุดุŸ ู‚ู…ุฉุŒ ุจูŠุญูƒูŠ weakness ู„ุฃ
388
00:33:15,510 --> 00:33:21,030
ู…ุด ู…ุนู†ุงู‡ุง ุงู„ู‚ุงุนุฉุŒ ู…ุด ู…ุนู†ุงู‡ุง ุงู„ุนูƒุณ ูŠุนู†ูŠ
389
00:33:21,030 --> 00:33:28,870
ุทู„ุน
390
00:33:28,870 --> 00:33:35,520
ุนู„ู‰ ุงู„ู€ graph ุงู„ู„ูŠ ู‡ู†ุง ู‡ูŠ ุงู„ู‚ู…ุฉ ุชุจุนู‡ุง ูˆ graph ุชุงู†ูŠ
391
00:33:35,520 --> 00:33:42,280
ูˆุตู„ ุงู„ู€ center ู‡ูŠูƒ ูˆุงุญุฏ
392
00:33:42,280 --> 00:33:49,040
ุชุงู„ุช ูˆุตู„ ุงู„ู‚ู…ุฉ ุจุฐุง ุงู„ุดูƒู„ ูŠุนู†ูŠ
393
00:33:49,040 --> 00:33:54,760
ูˆุงุญุฏ ุงู„ู‚ู…ุฉ ุชุญุชู‡ ู…ุฏุจุจุฉ sharp ูˆุงุญุฏ flat ุฒูŠ ู‡ูŠูƒ ุฃูˆ
394
00:33:54,760 --> 00:33:58,560
flat ุฃูƒุซุฑ ู‡ุฐุง ู†ุณู…ูŠู‡ kurtosis ุชูู„ุทุญ
395
00:34:01,890 --> 00:34:07,330
that is how sharply the curve rises approaching
396
00:34:07,330 --> 00:34:11,430
the center of distribution ูƒู… ูƒุงู† ุญุฏ ุงู„ุชูˆุฒูŠุน ู„ู…ุง
397
00:34:11,430 --> 00:34:16,890
ูˆุตู„ ู„ู„ู‚ู…ุฉ ู‡ู„ sharp ุฒูŠ ู‡ูŠ ุงู„ู†ู‚ุทุฉ ุงู„ู„ูŠ ุชู…ุซู„ ุงู„ู€
398
00:34:16,890 --> 00:34:22,030
maximum ู…ุด ู‡ูŠ ู‡ูŠ ุงู„ู€ maximum ู„ู…ุง ูˆุตู„ ู„ ุงู„ู€ max ูƒุงู†
399
00:34:22,030 --> 00:34:2
431
00:36:51,430 --> 00:36:55,650
ุจู‡ุงุŒ ู…ุด ู‡ูŠูƒุŸ ู…ุด ู‡ูŠูƒ ุฃู† ุงู„ู€ mean is much affected
432
00:36:55,650 --> 00:36:59,310
by extreme values than the medianุŒ ู…ุน ูƒุฏู‡ ุงู„ู€ mean
433
00:36:59,310 --> 00:37:03,370
ุฏุงูŠู…ุง ุจูŠุชุฌู‡ ู„ู‡ูˆูŠู† ู„ู„ outliersุŒ ุงู„ outliers ุงู„ู„ูŠ
434
00:37:03,370 --> 00:37:07,830
ู…ูˆุฌูˆุฏูŠู† left sideุŒ ุฅุฐุง ู‡ูˆ ุจูŠุฑูˆุญ ุงู„ left ุทุงู„ู…ุง ูŠุฌูŠ
435
00:37:07,830 --> 00:37:11,010
ุนู„ู‰ ุงู„ leftุŒ ุฅุฐุง ู‚ูŠู…ุชู‡ ู…ุงู„ู‡ุง ุฃู‚ู„ ู…ู† ุงู„ medianุŒ
436
00:37:11,010 --> 00:37:12,710
look at the graph C
437
00:37:16,810 --> 00:37:20,090
ุงู„ุขู† ุฅูŠู‡ ุฃูƒุซุฑุŸ ุฅูŠู‡ ุฃูƒุซุฑุŸ ุฅูŠู‡ ุฃูƒุซุฑุŸ ุฅูŠู‡ ุฃูƒุซุฑุŸ ุฅูŠู‡
438
00:37:20,090 --> 00:37:21,110
ุฃูƒุซุฑุŸ ุฅูŠู‡ ุฃูƒุซุฑุŸ ุฅูŠู‡ ุฃูƒุซุฑุŸ ุฅูŠู‡ ุฃูƒุซุฑุŸ ุฃูƒุซุฑุŸ ุฃูƒุซุฑุŸ
439
00:37:21,110 --> 00:37:23,570
ุฃูƒุซุฑุŸ ุฃูƒุซุฑุŸ ุฃูƒุซุฑุŸ ุฃูƒุซุฑุŸ ุฃูƒุซุฑุŸ ุฃูƒุซุฑุŸ ุฃูƒุซุฑุŸ ุฃูƒุซุฑุŸ
440
00:37:23,570 --> 00:37:26,970
ุฃูƒุซุฑุŸ ุฃูƒุซุฑุŸ ุฃูƒุซุฑุŸ ุฃูƒุซุฑุŸ ุฃูƒุซุฑุŸ ุฃูƒุซุฑุŸ ุฃูƒุซุฑุŸ ุฃูƒุซุฑุŸ
441
00:37:26,970 --> 00:37:27,830
ุฃูƒุซุฑุŸ ุฃูƒุซุฑุŸ ุฃูƒุซุฑุŸ ุฃูƒุซุฑุŸ ุฃูƒุซุฑุŸ ุฃูƒุซุฑุŸ ุฃูƒุซุฑุŸ ุฃูƒุซุฑุŸ
442
00:37:27,830 --> 00:37:33,490
ุฃูƒุซุฑุŸ ุฃูƒุซุฑุŸ ุฃูƒุซุฑุŸ ุฃูƒุซุฑุŸ
443
00:37:33,490 --> 00:37:42,630
ุฃูƒุซุฑุŸ
444
00:37:42,630 --> 00:37:47,810
ุฃุนุชู‚ุฏ as a women's shirt, the mean tends to be in the
445
00:37:47,810 --> 00:37:52,110
direction of long tail ุจูŠุฑูˆุญ ู„ุชุฌุงู‡ ุงู„ุฃุทูˆู„, now the
446
00:37:52,110 --> 00:37:56,110
long tail is to the right side ุฅุฐุง ู…ุนุงูƒ ุฏู‡ ุงู„ mean
447
00:37:56,110 --> 00:38:03,910
ู‡ู†ุง which is bigger, mean or median ุงู„ median .. ุงู„
448
00:38:03,910 --> 00:38:08,190
mean ุฑุงุญ ุนู„ู‰ ุงู„ูŠู…ูŠู† ุทุฑู ุงู„ูŠู…ูŠู† ุฏูŠ ุฃู…ุง ุงู„ุฃุทูˆู„ ุงู„ู„ูŠ
449
00:38:08,190 --> 00:38:13,010
ู„ู…ุง ุจูƒูˆู† ุนู†ุฏูŠ ุฃุฑู‚ุงู… ู…ู† ูˆุงุญุฏ ู„ุฃู„ู ุงู„ู„ูŠ ู‡ูŠูƒ ุจูŠูƒูˆู† ุฃุท
450
00:38:13,010 --> 00:38:18,010
ูˆู„ุŒ ุจุงู„ุชุงู„ูŠ ุงู„ mean ุฃูƒุจุฑุŒ ุฅุฐุง for right skewed the
451
00:38:18,010 --> 00:38:21,270
mean is always greater than the median so we have
452
00:38:21,270 --> 00:38:25,330
three different situations if we have symmetric
453
00:38:25,330 --> 00:38:28,890
distribution then mean and the median are equals
454
00:38:28,890 --> 00:38:33,910
but for left skewed the mean is smaller than the
455
00:38:33,910 --> 00:38:37,490
median and for right skewed the mean is greater
456
00:38:37,490 --> 00:38:43,370
than the median ูŠุนู†ูŠ ู…ุนู†ุงู‡ ูƒุฏู‡ for left skewed
457
00:38:43,370 --> 00:38:45,130
skewness
458
00:38:51,970 --> 00:38:55,130
ุงู„ุงุณุชุฎุฏุงู… ูŠูƒูˆู† ู…ูˆุฌุจ ุฃูˆ ุณุงู„ุจ ุนู„ู‰ ุญุณุจูƒ ุงู„ุงุณุชุฎุฏุงู…
459
00:38:55,130 --> 00:39:00,990
ูŠูƒูˆู† ู†ูŠุฌุงุชูŠู ูˆุงู„ุงุณุชุฎุฏุงู… ูŠุตุจุญ
460
00:39:00,990 --> 00:39:01,390
ุฃู…ุฑูŠูƒูŠ ุฃู…ุฑูŠูƒู…ูŠ ุฃู…ุฑูŠูƒู…ูŠ ุฃู…ุฑูŠูƒู…ูŠ ุฃู…ุฑูŠูƒู…ูŠ ุฃู…ุฑูŠูƒู…ูŠ ุฃู…ุฑูŠูƒู…ูŠ
461
00:39:01,390 --> 00:39:05,530
ุฃู…ุฑูŠูƒูŠ ุฃู…ุฑูŠูƒู…ูŠ ุฃู…ุฑูŠูƒู…ูŠ ุฃู…ุฑูŠูƒู…ูŠ ุฃู…ุฑูŠูƒู…ูŠ ุฃู…ุฑูŠูƒู…ูŠ ุฃู…ุฑูŠูƒู…ูŠ
462
00:39:05,530 --> 00:39:06,350
ุฃู…ุฑูŠูƒูŠ ุฃู…ุฑูŠูƒู…ูŠ ุฃู…ุฑูŠูƒู…ูŠ ุฃู…ุฑูŠูƒู…ูŠ ุฃู…ุฑูŠูƒู…ูŠ ุฃู…ุฑูŠูƒู…ูŠ ุฃู…ุฑูŠูƒู…ูŠ
463
00:39:06,350 --> 00:39:06,370
ุฃู…ุฑูŠูƒูŠ ุฃู…ุฑูŠูƒู…ูŠ ุฃู…ุฑูŠูƒู…ูŠ ุฃู…ุฑูŠูƒู…ูŠ ุฃู…ุฑูŠูƒู…ูŠ ุฃู…ุฑูŠูƒู…ูŠ ุฃู…ุฑูŠูƒู…ูŠ
464
00:39:06,370 --> 00:39:07,490
ุฃู…ุฑูŠูƒูŠ ุฃู…ุฑูŠูƒู…ูŠ ุฃู…ุฑูŠูƒู…ูŠ ุฃู…ุฑูŠูƒู…ูŠ ุฃู…ุฑูŠูƒู…ูŠ ุฃู…ุฑูŠูƒู…ูŠ ุฃู…ุฑูŠูƒู…ูŠ
465
00:39:07,490 --> 00:39:15,430
ุฃู…ุฑูŠูƒูŠ
466
00:39:18,590 --> 00:39:24,990
ู‡ูŠ ุฅูŠู‡ุŸ Symmetric B skewed to the left C skewed to
467
00:39:24,990 --> 00:39:28,310
the right which one suspected to have an outlier?
468
00:39:29,670 --> 00:39:37,430
B and C ู‡ุฐุง ุฅูŠู‡ุŸ A B and C which one has outlier?
469
00:39:38,590 --> 00:39:45,130
A and C could be outlier exist in these two graphs
470
00:39:46,090 --> 00:39:50,130
ู„ูƒู† ุฅุฐุง ูƒุงู† ู„ุฏูŠูƒ ู…ุฌู…ูˆุนุฉ ู…ุชุณุงูˆูŠุฉ ูู‡ุฐุง ูŠุนู†ูŠ ุฃู†
471
00:39:50,130 --> 00:39:55,690
ุงู„ุงุฎุชู„ุงูุงุช ู„ูŠุณุช ู…ูˆุฌูˆุฏุฉุŒ ูู„ู…ุฌู…ูˆุนุฉ ุงู„ู…ุชุณุงูˆูŠุฉ
472
00:39:55,690 --> 00:39:59,730
ุงู„ุจูŠุงู†ุงุช ุฎู„ุงุตุฉ ู…ู† ุงู„ุฎู„ุงุทุงุช ุงู„ุฎุงุฑุฌูŠุฉ ู…ููŠุด ููŠู‡ุง
473
00:39:59,730 --> 00:40:05,870
ุฎู„ุงุทุงุช ุฎุงุฑุฌูŠุฉุŒ ุฃู†ุง ุณุฃุชูˆู‚ู ู‡ู†ุงุŒ ูˆููŠ ุงู„ู…ุฑุฉ ุงู„ู‚ุงุฏู…ุฉ ุฅู†
474
00:40:05,870 --> 00:40:11,050
ุดุงุก ุงู„ู„ู‡ ุณู†ุณุชู…ุฑ ููŠ ู…ุดุงู‡ุฏุฉ ู…ุฌู…ูˆุนุงุช ุงู„ุชุณุงูˆู…ุฉ