|
1 |
|
00:00:20,670 --> 00:00:24,870 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ุงูููู
ุฅู ุดุงุก ุงููู ุณุฃูู
ู |
|
|
|
2 |
|
00:00:24,870 --> 00:00:33,930 |
|
ู
ูุงูุงุช ุงูุชุบููุฑ ุณุฃุจุฏุฃ ู
ุน ู
ูุงูุฉ ุงูุชุบููุฑ ู
ุฑุฉ ุฃุฎุฑูุ |
|
|
|
3 |
|
00:00:33,930 --> 00:00:39,310 |
|
ูุฐุง ุงูู
ูุงู ูููู
ุจู
ูุงูุฉ ุงูุชุบููุฑ ุงูู
ุฑุชุจุทุ ุฃุนูู |
|
|
|
4 |
|
00:00:39,310 --> 00:00:43,690 |
|
ุงูุชุบููุฑ ุงูู
ุฑุชุจุท ู
ู ู
ูุงูุฉ ุงูุจูุงูุงุช ุฅูู ู
ูุงูุชูุง |
|
|
|
5 |
|
00:00:43,690 --> 00:00:51,630 |
|
ุฏุงุฆู
ุงู ูู ุงูู
ูุงูุฉ ููุธูุฑ ุงูุชุบููุฑ ู
ุฑุชุจุท ุจุงูู
ูุงู ููุณ ููุท |
|
|
|
6 |
|
00:00:51,630 --> 00:00:57,370 |
|
ุงูุชุบููุฑ ููู ุงูุชุบููุฑ ู
ุฑุชุจุท ุจุงูู
ูุงู ููู
ูู ุงุณุชุฎุฏุงู
ู |
|
|
|
7 |
|
00:00:57,370 --> 00:01:04,570 |
|
ูุชูุงุฑูุฑ ุฃู ุฃูุซุฑ ู
ุฌู
ูุนุงุช ู
ู ุงูุจูุงูุงุช ุงูู
ูุงุฑูุฉ ูู |
|
|
|
8 |
|
00:01:04,570 --> 00:01:07,750 |
|
ููุง ุงูู
ุฌู
ูุนุชูู ู
ุฎุชููุชูู ุฃู ููุณ ุงูู
ุฌู
ูุนุงุช ููู ุฃูุซุฑ |
|
|
|
9 |
|
00:01:07,750 --> 00:01:14,330 |
|
ู
ู
ูู ุฃู ูุณุชุฎุฏู
ูุง ูู
ุฌู
ูุนุงุช ู
ุฎุชููุฉุ ุงูู
ุดููุฉ ุงูุชู ูุฌุจ |
|
|
|
10 |
|
00:01:14,330 --> 00:01:20,850 |
|
ุฃู ูุณุชุฎุฏู
ูุง ูุชุบููุฑ ูุฐู ุงูู
ูุงูุฉ CV ูู S ุนูู X ุจุงุฑ |
|
|
|
11 |
|
00:01:20,850 --> 00:01:22,330 |
|
ู
ุฑุฉ ุฃุฎุฑู |
|
|
|
12 |
|
00:01:22,330 --> 00:01:22,530 |
|
|
|
|
|
13 |
|
00:01:22,530 --> 00:01:25,890 |
|
|
|
|
|
14 |
|
00:01:25,890 --> 00:01:26,210 |
|
|
|
|
|
15 |
|
00:01:26,210 --> 00:01:27,010 |
|
|
|
|
|
16 |
|
00:01:27,010 --> 00:01:27,710 |
|
|
|
|
|
17 |
|
00:01:27,710 --> 00:01:28,830 |
|
|
|
|
|
18 |
|
00:01:28,830 --> 00:01:46,610 |
|
|
|
|
|
19 |
|
00:01:46,610 --> 00:01:52,430 |
|
ุฃููุงู ุงูู sample mean ูุงูู sample standard |
|
|
|
20 |
|
00:01:52,430 --> 00:01:55,370 |
|
deviation ููู ูููู
ุจุญุณุงุจ ุงูู coefficient of |
|
|
|
21 |
|
00:01:55,370 --> 00:01:59,130 |
|
variation ูุงุถุญุ ุนุดุงู ุฃุญุณุจ ุงู CV ูุงุฒู
ูู ุงูุฃูู ุฃุญุณุจ |
|
|
|
22 |
|
00:01:59,130 --> 00:02:02,330 |
|
ุงู mean ูุจุนุฏูู ุงู standard deviationุ ูุนูู ูู ุทูุจุช |
|
|
|
23 |
|
00:02:02,330 --> 00:02:06,570 |
|
ู
ูู ุฃุทูุน ุงู CVุ ุฃุญุณุจ ุงู CVุ ูุฌุจ ุฃู ูููู
ุฃููุงู ุจุญุณุงุจ X |
|
|
|
24 |
|
00:02:06,570 --> 00:02:10,670 |
|
ุจุงุฑ ุซู
ูุณุชุทูุน ุฃู ูููู
ุจุญุณุงุจ ุงู coefficient of |
|
|
|
25 |
|
00:02:10,670 --> 00:02:15,090 |
|
variationุ ุฏุนููุง ููุธุฑ ุฅูู ูุฐุง ุงูู
ุซุงู |
|
|
|
26 |
|
00:02:17,880 --> 00:02:23,400 |
|
ุงูุขู ูุฏููุง ุงุชุตุงูููุ ุงุชุตุงู Aุ ุชุนุฑููู ุงูุด ู
ุนูู ุงุชุตุงู |
|
|
|
27 |
|
00:02:23,400 --> 00:02:35,040 |
|
ูุนู
ุ ุงูุด ู
ุนูู ุงุชุตุงูุ ุณูู
ุ ุงุชุตุงู Aุ ู
ุนูู ููู
ุฉ ุงุชุตุงู |
|
|
|
28 |
|
00:02:35,040 --> 00:02:41,900 |
|
A ูู ุงูุณูุฉ ุงูู
ุงุถูุฉ ูุงูุช 50 ุฏููุงุฑุ ู
ุนูู ููู
ุฉ |
|
|
|
29 |
|
00:02:41,900 --> 00:02:44,500 |
|
ุงุชุตุงู A ูุงูุช 50 ุฏููุงุฑ ูู ุงูุณูุฉ ุงูู
ุงุถูุฉ |
|
|
|
30 |
|
00:02:48,090 --> 00:02:54,110 |
|
ูุงู 5 ุฏููุงุฑุ ูุฐูู ูุฏููุง ููุงูู
ุง ุงูุขูุ ุงู mean ูู
ูุงุฑูุฉ |
|
|
|
31 |
|
00:02:54,110 --> 00:02:59,070 |
|
ุงูุฃุณุนุงุฑ ูู Stock A ุงูุขู |
|
|
|
32 |
|
00:02:59,070 --> 00:03:04,510 |
|
ู
ูุงุฑูุฉ ุฃุฎุฑู ุงุณู
ูุง Stock Bุ ู
ูุงุฑูุฉ Stock B ูุฏููุง |
|
|
|
33 |
|
00:03:04,510 --> 00:03:11,050 |
|
ููู
ุฉ ูุจูุฑุฉ ูู ุงูุนุงู
ุงูู
ุงุถู 100 ุฏููุงุฑุ ุงู mean 100 |
|
|
|
34 |
|
00:03:11,050 --> 00:03:18,330 |
|
ุฏููุงุฑุ ูู
ูุงุฑูุฉ ุงูุฃุณุนุงุฑ ุฃูุถุงู 5 ุฏููุงุฑุ ุงูุขู ููุง ุงูุฃุณูู
|
|
|
|
35 |
|
00:03:18,330 --> 00:03:24,430 |
|
ูู
ุชูููู ููุณ ุงูุงูุชุงุฌ ุงูุนุงู
ุ ูุฐุง ูุฌุจ ุฃู ูููู ู
ู |
|
|
|
36 |
|
00:03:24,430 --> 00:03:30,310 |
|
ุงูู
ูููู
ุฃููู
ูู
ุชูููู ููุณ ุงูุงูุชุงุฌ ุงูุนุงู
ุ ู
ุน ูุฐุง ููุณ |
|
|
|
37 |
|
00:03:30,310 --> 00:03:33,490 |
|
ุงูุงูุชุงุฌ ุงูุนุงู
ุ ููู ุฅุฐุง ุชูุธุฑ ุฅูู ุฃุณุนุงุฑ ุงูุฃุณุนุงุฑ |
|
|
|
38 |
|
00:03:33,490 --> 00:03:37,410 |
|
ุฃุณุนุงุฑ A ูู ุงูุนุงู
ุงูู
ุงุถู ูุงูุช 50 ุฏููุงุฑุ ุจููู
ุง |
|
|
|
39 |
|
00:03:37,410 --> 00:03:39,350 |
|
ุจุงููุณุจุฉ ูุฃุณุนุงุฑ B ูุงูุช 100 ุฏููุงุฑ |
|
|
|
40 |
|
00:03:42,870 --> 00:03:46,610 |
|
ุฃูุง ุฃูุตุฏ ุงูุงูุชุงุฌ ุงูุฃุณุงุณูุ ูุง ูู
ูููุง ุฃู ููุงุฑู |
|
|
|
41 |
|
00:03:46,610 --> 00:03:51,750 |
|
ุงูุชุบููุฑ ุจูู ุงูุงูุชุงุฌูู ุงูุงุซููู ูุฃููู
|
|
|
|
42 |
|
00:03:51,750 --> 00:03:54,750 |
|
ูุฏููู
ุงูุชุงุฌ ููุณูุ ูุง ูู
ูููุง ุฃู ููุงุฑููุ ููู
ุฃูุถุงู |
|
|
|
43 |
|
00:03:54,750 --> 00:03:59,610 |
|
ูุฏููู
ุทุฑู ู
ุฎุชููุฉุ ูุฐูู ููู ููุงุฑู ุงูุชุบููุฑ ุจูู |
|
|
|
44 |
|
00:03:59,610 --> 00:04:04,450 |
|
ุงูุงูุชุงุฌูู ุงูุงุซููู ูุฌุจ ุฃู ููุงุฑู ุงูู CV ุงูุชู ูู ู
ูุฒุฉ |
|
|
|
45 |
|
00:04:04,450 --> 00:04:10,310 |
|
ุงูุชุบููุฑ ุงูุชู ุชููู
ุจู
ูุฒุฉ ุงูุชุบููุฑ ุงูู
ุฑุชุจุท to the mean |
|
|
|
46 |
|
00:04:10,310 --> 00:04:13,350 |
|
variabilityุ ู
ุด ุงู variability ุจุณ relative to the |
|
|
|
47 |
|
00:04:13,350 --> 00:04:17,250 |
|
meanุ ูุนูู ุงูุงุฎุชูุงู ุญุณุจ ุงู meanุ ูู ุทูุนูุง ุงู CV |
|
|
|
48 |
|
00:04:17,250 --> 00:04:22,430 |
|
ุงูุฃููู CV for stack Aุ again the formula we have to |
|
|
|
49 |
|
00:04:22,430 --> 00:04:27,610 |
|
use is S over X bar multiplied by 100ุ so now we |
|
|
|
50 |
|
00:04:27,610 --> 00:04:35,910 |
|
have S divided by 50 multiplied by 100 gives 10% |
|
|
|
51 |
|
00:04:37,420 --> 00:04:42,980 |
|
ุงูุขู 10% ูุง ูุนูู ููุง ุฃู ุดูุก ูุฃููุง ูุฌุจ ุฃู ููุงุฑู ูุฐุง |
|
|
|
52 |
|
00:04:42,980 --> 00:04:50,160 |
|
ุงูููู
ุฉ ูููู
ุฉ ุฃุฎุฑูุ ูุนุจุฉ ุฃุฎุฑูุ ูุนุจุฉ Bุ ูุฏููุง X bar 100 |
|
|
|
53 |
|
00:04:50,160 --> 00:04:59,440 |
|
ู
ุน ููุณ ุงูุงูุชุงุฌ ุงููุงุณุนุ ูุฐุง CV ููุฐุง ุงูุนู
ูู S ููุณู |
|
|
|
54 |
|
00:04:59,440 --> 00:05:08,340 |
|
ู
ุฎุชููุ ู
ู 100 ู
ุฑุฉ 100%ุ ูุนูู 5%ุ ุงูุนููุฉ B ูุฏููุง ุนููุฉ |
|
|
|
55 |
|
00:05:08,340 --> 00:05:15,580 |
|
5%ุ ูู ูุฐู ุงูุญุงูุฉ ูู
ูููุง ุฃู ููุงุฑู ุนููุฉ |
|
|
|
56 |
|
00:05:15,580 --> 00:05:20,940 |
|
|
|
|
|
57 |
|
00:05:20,940 --> 00:05:23,780 |
|
|
|
|
|
58 |
|
00:05:23,780 --> 00:05:23,820 |
|
|
|
|
|
59 |
|
00:05:23,820 --> 00:05:25,040 |
|
|
|
|
|
60 |
|
00:05:25,040 --> 00:05:27,300 |
|
|
|
|
|
61 |
|
00:05:27,300 --> 00:05:34,880 |
|
|
|
|
|
62 |
|
00:05:34,880 --> 00:05:42,580 |
|
5 ุฃูู ู
ู 10ุ 5% ุฃูู ู
ู 10%ุ ููุฐุง ูุนูู ุฃู ููุง |
|
|
|
63 |
|
00:05:42,580 --> 00:05:49,240 |
|
ุงููุงุญุฏูู ูุฏููุง ููุณ ู
ูุงุฑูุฉ ุฃุณุงุณูุฉุ ุงููู
ูุงูุณุฉุ ูููู |
|
|
|
64 |
|
00:05:49,240 --> 00:05:52,420 |
|
ุงููุงุญุฏ B ุฃูู ู
ูุงุฑูุฉ |
|
|
|
65 |
|
00:05:52,420 --> 00:05:58,500 |
|
|
|
|
|
66 |
|
00:05:58,500 --> 00:06:02,240 |
|
|
|
|
|
67 |
|
00:06:03,810 --> 00:06:08,990 |
|
ูุนูู ูุงุถุญ ุฃู ุงู stack B ุงูุชุดุชุช ูุจูู ุฃููุ now if |
|
|
|
68 |
|
00:06:08,990 --> 00:06:12,690 |
|
stack B is less variable to its mean than stack A |
|
|
|
69 |
|
00:06:12,690 --> 00:06:17,750 |
|
which one is more stableุ ู
ูู ุจูููู more stableุ |
|
|
|
70 |
|
00:06:17,750 --> 00:06:23,330 |
|
ุงูุด ู
ุนูู stableุ ูุนูู ู
ุณุชูุฑ |
|
|
|
71 |
|
00:06:23,330 --> 00:06:27,270 |
|
which one is more stableุ if you want to recommend |
|
|
|
72 |
|
00:06:27,270 --> 00:06:35,290 |
|
to buy stack A or Bุ ุงูู ... ุงูู more stable is better |
|
|
|
73 |
|
00:06:35,290 --> 00:06:40,330 |
|
ุทุจูุนู ููุง ... ูู ูููู ุงูุดุบู more stable ู
ุน ูุฏู ุงูู |
|
|
|
74 |
|
00:06:40,330 --> 00:06:47,490 |
|
risk ู
ุงูู ุจูููุ ู
ุธุจูุทุ ููุงุถุญ ุฃูู stock B more stable |
|
|
|
75 |
|
00:06:47,490 --> 00:06:50,610 |
|
than stock Aุ it has less variability relative to |
|
|
|
76 |
|
00:06:50,610 --> 00:06:53,110 |
|
its meanุ ูู
ุง ุงูุดูุก ุงููู ูุชููู ูููุง ุชุดุชุช ูุจูุฑ |
|
|
|
77 |
|
00:06:53,110 --> 00:06:55,690 |
|
variability ูุจูุฑุฉุ ุงููุงุญุฏ ุจูุจุนุฏ ุนููุ ุงูุขู ูููุง |
|
|
|
78 |
|
00:06:55,690 --> 00:07:00,050 |
|
ุงูู
ุฎุงุทุฑุฉ ู
ุงููุง ุจุงูุฒูุงุฏุฉุ ุฏุฑุณ ุงูููู ุนุงููุ anyways we |
|
|
|
79 |
|
00:07:00,050 --> 00:07:03,370 |
|
have to compute the CV for stack A and stack B |
|
|
|
80 |
|
00:07:03,370 --> 00:07:06,690 |
|
just compare these two valuesุ now this is fiveุ it |
|
|
|
81 |
|
00:07:06,690 --> 00:07:11,610 |
|
means stack |
|
|
|
82 |
|
00:07:11,610 --> 00:07:18,010 |
|
A is more variable to its mean than stack A than |
|
|
|
83 |
|
00:07:18,010 --> 00:07:23,410 |
|
stack Bุ ูุฐุง ุงูุชูู ููุฐุง ุงูุฎู
ุณุ ููุฐุง ุฃูุจุฑุ look at |
|
|
|
84 |
|
00:07:23,410 --> 00:07:31,040 |
|
the next slideุ ูุฏููุง ู
ุตุฏุฑ ูุงุญุฏ ุขุฎุฑ ูุณู
ู ู
ุตุฏุฑ Cุ ู
ุตุฏุฑ |
|
|
|
85 |
|
00:07:31,040 --> 00:07:36,400 |
|
C ูุฏูู |
|
|
|
86 |
|
00:07:36,400 --> 00:07:43,020 |
|
ููู
ุฉ ูุจูุฑุฉ ูู ุงูุณูุฉ ู
ู 8 ุฏููุงุฑุ ูู
ุตุฏุฑ |
|
|
|
87 |
|
00:07:43,020 --> 00:07:44,560 |
|
ู
ุตุฏุฑ ุงูุงูุชุงุฌ 2 ุฏููุงุฑ |
|
|
|
88 |
|
00:07:48,140 --> 00:07:50,960 |
|
ุนูู ู
ูุงุฑูุฉ ุงูู standard deviation ูู 2ุ ูุฐุง |
|
|
|
89 |
|
00:07:50,960 --> 00:07:54,680 |
|
ุงูู
ูุงุฑูุฉ ุฃุตูุงู ุตุบูุฑุฉุ ุฃูุซุฑ ู
ู ู
ูุงุฑูุฉ ุงูู standard |
|
|
|
90 |
|
00:07:54,680 --> 00:07:56,860 |
|
deviationุ ุฃูุซุฑ ู
ู |
|
|
|
91 |
|
00:07:56,860 --> 00:07:59,900 |
|
|
|
|
|
92 |
|
00:07:59,900 --> 00:08:00,380 |
|
|
|
|
|
93 |
|
00:08:00,380 --> 00:08:00,800 |
|
|
|
|
|
94 |
|
00:08:00,800 --> 00:08:00,900 |
|
|
|
|
|
95 |
|
00:08:00,900 --> 00:08:03,880 |
|
|
|
|
|
96 |
|
00:08:03,880 --> 00:08:17,100 |
|
|
|
|
|
97 |
|
00:08:17,930 --> 00:08:25,010 |
|
ูุฐุง ูุนุทู 25%ุ ุนูู ุงูุฑุบู
ู
ู ุฃูู ูุญุชูู ุนูู ุงุณุชุฎุฏุงู
|
|
|
|
98 |
|
00:08:25,010 --> 00:08:26,990 |
|
ุงุณุชุฎุฏุงู
|
|
|
|
99 |
|
00:08:26,990 --> 00:08:27,250 |
|
|
|
|
|
100 |
|
00:08:27,250 --> 00:08:28,390 |
|
|
|
|
|
101 |
|
00:08:28,390 --> 00:08:29,190 |
|
|
|
|
|
102 |
|
00:08:29,190 --> 00:08:35,310 |
|
|
|
|
|
103 |
|
00:08:35,310 --> 00:08:39,550 |
|
|
|
|
|
104 |
|
00:08:44,590 --> 00:08:48,690 |
|
ูุชูุงุฑู ุชุบููุฑ ุงูุงูุชุงุฌุงุช ุงูู
ุฎุชููุฉ ุญุชู ูู ูุงูุช ุชุญุชูู |
|
|
|
105 |
|
00:08:48,690 --> 00:08:50,730 |
|
ุนูู ููุณ ุงูุฃุฌูุฒุฉุ ููุง ูุญู ูุญุชูู ุนูู ููุณ ุงูุฃุฌูุฒุฉ |
|
|
|
106 |
|
00:08:50,730 --> 00:08:58,010 |
|
ุฏููุงุฑุ ูุงูู Stock X ูุญุธุฉ ุฃู ุชุบููุฑู 25%ุ ูุงูู Stock X |
|
|
|
107 |
|
00:08:58,010 --> 00:09:04,610 |
|
ูุฏูู ุชุบููุฑ ูููู ุฃูู ุจูุซูุฑุ ุฏููุงุฑ |
|
|
|
108 |
|
00:09:04,610 --> 00:09:07,770 |
|
ู 2 ุฏููุงุฑุ ูููู ุชุบููุฑู ูุซูุฑ ุจูุซูุฑ |
|
|
|
109 |
|
00:09:10,440 --> 00:09:12,600 |
|
ุฒู ู
ุง ุฃูููุ ูุง ูู
ูููุง ุฃู ูุนุชู
ุฏ ููุท ุนูู ุงูู |
|
|
|
110 |
|
00:09:12,600 --> 00:09:16,300 |
|
Standard Deviation ููู ููุงุฑู ุงูุชุบููุฑ ุจูู ุงูู |
|
|
|
111 |
|
00:09:16,300 --> 00:09:19,880 |
|
different datasetsุ ูุฌุจ ุฃู ููุงุฑู ุงูู coefficient of |
|
|
|
112 |
|
00:09:19,880 --> 00:09:23,400 |
|
variationุ ุฅุฐุง ุงูู
ูุฎุตุ ูู ุฃุฑุฏุช ุฃูุงุฑู ุชุดุชุช ู
ุฌู
ูุนุชูู |
|
|
|
113 |
|
00:09:23,400 --> 00:09:27,280 |
|
ุฃู ุฃูุซุฑุ ูุง ูู
ูููู ุฃู ุฃุนุชู
ุฏ ุนูู ุงูู S ููุญุฏู ููุง |
|
|
|
114 |
|
00:09:27,280 --> 00:09:30,320 |
|
ุนูู ุงูู X bar ููุญุฏูุ ุจุฃุนุชู
ุฏ ุนูู ู
ููุ ุนูู ุงูู |
|
|
|
115 |
|
00:09:30,320 --> 00:09:32,460 |
|
coefficient of variationุ ูุฃูู ููุณ ูุนู
ู ุงูู |
|
|
|
116 |
|
00:09:32,460 --> 00:09:35,880 |
|
measures ุงูู variation ุฃู ุงูู variability relative |
|
|
|
117 |
|
00:09:35,880 --> 00:09:42,610 |
|
ููู
ูู ุชุจุนูุ ูุงุถุญุ ูุนูู ูู ุญููุช ุงู score ุณุจุนุชููุง |
|
|
|
118 |
|
00:09:42,610 --> 00:09:50,650 |
|
ุงููุง mean equal 85 ูุงู standard deviation equal 5 |
|
|
|
119 |
|
00:09:50,650 --> 00:09:54,430 |
|
ุฃููุงุฏ |
|
|
|
120 |
|
00:09:54,430 --> 00:09:58,390 |
|
for female studentsุ for male student suppose the |
|
|
|
121 |
|
00:09:58,390 --> 00:10:06,690 |
|
mean was 75 and standard deviation 10ุ ุงููุญุธุฉ |
|
|
|
122 |
|
00:10:06,690 --> 00:10:07,650 |
|
ุฏู ุฎูููุง 5 |
|
|
|
123 |
|
00:10:10,430 --> 00:10:14,270 |
|
both have the same meanุ but if you compute the CV |
|
|
|
124 |
|
00:10:14,270 --> 00:10:18,930 |
|
for female S |
|
|
|
125 |
|
00:10:18,930 --> 00:10:22,890 |
|
over eighty |
|
|
|
126 |
|
00:10:22,890 --> 00:10:26,630 |
|
fiveุ ูู |
|
|
|
127 |
|
00:10:26,630 --> 00:10:33,230 |
|
ุถุฑุจุช ุฎู
ุณุฉ ูู ู
ุฆุฉ ุนูู ุฎู
ุณุฉ ูุซู
ุงูููุ ูุนู
ุฎู
ุณุฉ |
|
|
|
128 |
|
00:10:33,230 --> 00:10:37,690 |
|
ูุซู
ุงููู |
|
|
|
129 |
|
00:10:37,690 --> 00:10:38,690 |
|
ู
ู ุฃู ุซู
ุงููุฉ ู
ู ุนุดุฑุฉ |
|
|
|
130 |
|
00:10:44,020 --> 00:10:54,660 |
|
ุฎูููู ุฃุญุณุจูุง ุฎู
ุณุฉ |
|
|
|
131 |
|
00:10:54,660 --> 00:10:58,620 |
|
point 22ุ ุฎู
ุณุฉ point 22ุ ุฎู
ุณุฉ point 22ุ ุฎู
ุณุฉ |
|
|
|
132 |
|
00:10:58,620 --> 00:10:58,700 |
|
point 22ุ ุฎู
ุณุฉ point 22ุ ุฎู
ุณุฉ point 22ุ ุฎู
ุณุฉ |
|
|
|
133 |
|
00:10:58,700 --> 00:11:01,860 |
|
point 22ุ ุฎู
ุณุฉ |
|
|
|
134 |
|
00:11:01,860 --> 00:11:03,180 |
|
point 22ุ ุฎู
ุณุฉ point 22ุ ุฎู
ุณุฉ point 22ุ ุฎู
ุณุฉ |
|
|
|
135 |
|
00:11:03,180 --> 00:11:04,660 |
|
point 22ุ ุฎู
ุณุฉ point 22ุ ุฎู
ุณุฉ point 22ุ ุฎู
ุณุฉ |
|
|
|
136 |
|
00:11:04,660 --> 00:11:05,040 |
|
point 22ุ ุฎู
ุณุฉ point 22ุ ุฎู
ุณุฉ point 22ุ ุฎู
ุณุฉ |
|
|
|
137 |
|
00:11:05,040 --> 00:11:07,640 |
|
point 22ุ ุฎู
ุณุฉ point 2 |
|
|
|
138 |
|
00:11:13,870 --> 00:11:19,110 |
|
500 over 75ุ 6 |
|
|
|
139 |
|
00:11:19,110 --> 00:11:25,730 |
|
.67ุ ูุงุถุญ |
|
|
|
140 |
|
00:11:25,730 --> 00:11:35,970 |
|
ููุง ูู ุงูู
ุฏุฑุณุงุช ุงูุฅูุณุงููุฉ ุฃูู ู
ู |
|
|
|
141 |
|
00:11:35,970 --> 00:11:41,090 |
|
5.88 ุจุงูุฑุบู
ู
ู ุงูุงุซููู ุงููู ูู
ุนุงูุด ููุณ ุงูู |
|
|
|
142 |
|
00:11:41,090 --> 00:11:49,510 |
|
standard deviationุ ุฃู ุณุคุงู ุนู ู
ูุงูู
ุฉ ุงูุชุบููุฑุ ุญุณูุงูุ |
|
|
|
143 |
|
00:11:49,510 --> 00:11:55,530 |
|
ุฏุนูุง ูุชุญุฑู ุฅูู ุงูุตูุญุฉ ุงูุชุงููุฉุ ุฅุฐุง |
|
|
|
144 |
|
00:11:55,530 --> 00:11:59,150 |
|
ุชุชุฐูุฑูู ุนูุฏู
ุง ุชุญุฏุซูุง ุนู ุงูู
ูุงูู
ุฉุ ูุงูู
ูุงูู
ุฉุ ุชุฐูุฑูุง |
|
|
|
145 |
|
00:11:59,150 --> 00:12:03,770 |
|
ุฃู ุงูู
ูุงูู
ุฉ ููุณุช ู
ุดุชุฑูุฉ ุจููู
ุงุช ุฃุนุธู
ุฃู ุฃุณูุญุฉ ุฎุงุฑูุฉ |
|
|
|
146 |
|
00:12:05,520 --> 00:12:08,340 |
|
ุงูุณุคุงู ุงูุขู ูู ููู ูู
ูููุง ุฃู ูููู ุฅู ูุฐู ุงูููุทุฉ |
|
|
|
147 |
|
00:12:08,340 --> 00:12:18,380 |
|
ุชุนุชุจุฑ ุฎุงุทุฆุฉ ุฃู ุฎุงุทุฆุฉ ุฃู ุญุชู ุฎุงุทุฆุฉุ ุฅุฐุง ูุงู ูุฏููุง |
|
|
|
148 |
|
00:12:18,380 --> 00:12:21,800 |
|
ู
ุฌูุฉ ุฎุงุทุฆุฉุ ููู ูู
ูููุง ุฃู ูููู ุฅู ููู
ุฉ ูุฐู ุงูู
ุฌูุฉ |
|
|
|
149 |
|
00:12:21,800 --> 00:12:25,020 |
|
ุชุนุชุจุฑ ุฎุงุทุฆุฉ ุฃู ุฎุงุทุฆุฉุ ู
ู
ูู ุฃููู ุฅู ูุฐู ุงูู
ุฌูุฉ |
|
|
|
150 |
|
00:12:25,020 --> 00:12:30,560 |
|
ู
ุดุชุจูุฉ ุชููู ุฎุงุทุฆุฉ ุฃู ุฎุงุทุฆุฉุ ููุงู ุทุฑุญูู ู
ุฎุชูููู |
|
|
|
151 |
|
00:12:30,560 --> 00:12:35,670 |
|
ูุชูุตูู ุฎุทูุงุช ุฎุงุทุฆุฉ ุฃู ุฎุงุทุฆุฉุ ูุฐุง ุงูููุฏูู ูุชููู
ุนู |
|
|
|
152 |
|
00:12:35,670 --> 00:12:42,510 |
|
ูุงุญุฏุฉ ู
ู ูุฐู ุงูุทุฑู ูุณู
ู Z-scoreุ ูุฐูู ุฏุนูุง ูุจุฏุฃ |
|
|
|
153 |
|
00:12:42,510 --> 00:12:58,290 |
|
ุจุงููุตูู ุฅูู ุฃุนูู ุจุงุณุชุฎุฏุงู
Z-scoreุ ููุตููุฉ |
|
|
|
154 |
|
00:12:58,290 --> 00:13:02,530 |
|
ุฃุนูู |
|
|
|
155 |
|
00:13:12,240 --> 00:13:21,280 |
|
ุนู ุทุฑูู ุงุณุชุฎุฏุงู
ุงูู z-scoreุ ุฏุนููุง |
|
|
|
156 |
|
00:13:21,280 --> 00:13:27,520 |
|
ูุฑู ููู ูุณุชุฎุฏู
ุงู z-scoreุ ู
ุงุฐุง ูุนูู z-scoreุ ูุฌุจ |
|
|
|
157 |
|
00:13:27,520 --> 00:13:32,060 |
|
ุฃู ูุนุฑู ููุง ุงูุงุฎุชุตุงุฑุ ุฃุนูู ุงูุชุฎุตูุต ูู z-score ุซู
|
|
|
|
158 |
|
00:13:32,060 --> 00:13:32,480 |
|
ููู ูุณุชุฎุฏู
ูุ |
|
|
|
159 |
|
00:13:36,220 --> 00:13:41,280 |
|
ุงููุชูุฌุฉ ุงูุขู ุชููู ุฃูู ุชููู
ุจุชุฌุฑุจุฉ ุงูู z-score ู
ู |
|
|
|
160 |
|
00:13:41,280 --> 00:13:44,820 |
|
ููู
ุฉ ุงูุจูุงูุงุชุ ูุญุชุงุฌ |
|
|
|
161 |
|
00:13:44,820 --> 00:13:48,400 |
|
ุฃู ูุชูู ุงู mean ูููู ู
ู ููู
ุฉ ุงูุจูุงูุงุช ุจููู
ุฉ |
|
|
|
162 |
|
00:13:48,400 --> 00:13:48,540 |
|
ุงูุจูุงูุงุช ุจููู
ุฉ ุงูุจูุงูุงุช ุจููู
ุฉ ุงูุจูุงูุงุช ุจููู
ุฉ |
|
|
|
163 |
|
00:13:48,540 --> 00:13:55,580 |
|
ุงูุจูุงูุงุช ุจููู
ุฉ ุงูุจูุงูุงุช ุจููู
ุฉ ุงูุจูุงูุงุช ุจููู
ุฉ |
|
|
|
164 |
|
00:13:55,580 --> 00:14:00,780 |
|
ุงูุจูุงูุงุช ุจููู
ุฉ ุงูุจูุงูุงุช ุจููู
ุฉ ุงูุจูุงูุงุช ุจููู
ุฉ |
|
|
|
165 |
|
00:14:00,780 --> 00:14:02,880 |
|
ุงูุจูุงูุงุช ุจููู
ุฉ ุงูุจูุงูุงุช ุจููู
ุฉ ุงูุจูุงูุงุช ุจููู
ุฉ |
|
|
|
166 |
|
00:14:02,880 --> 00:14:04,560 |
|
ุงูุจูุงูุงุช ุจููู
ุฉ ุงูุจูุงูุงุช ุจููู
ุฉ ุงูุจูุงูุงุช ุจุฒู score |
|
|
|
167 |
|
00:14:04,560 --> 00:14:11,280 |
|
it says it equalsุ so z score of a data value for |
|
|
|
168 |
|
00:14:11,280 --> 00:14:15,980 |
|
score for exampleุ suppose my score is xุ suppose i |
|
|
|
169 |
|
00:14:15,980 --> 00:14:21,540 |
|
got x in subject aุ now the question is how can we |
|
|
|
170 |
|
00:14:21,540 --> 00:14:29,220 |
|
compute the z scoreุ it says subtract the meanุ ุฃู |
|
|
|
171 |
|
00:14:29,220 --> 00:14:42,170 |
|
ู
ุนูุงู subtractุ ู
ุธุจูุทุ ุงุทุฑุญ ุงู meanุ ููุต ุงู meanุ ููุต |
|
|
|
172 |
|
00:14:42,170 --> 00:14:46,670 |
|
ุงู meanุ ููุต ุงู meanุ |
|
|
|
173 |
|
00:14:46,670 --> 00:14:47,270 |
|
ููุต ุงู meanุ ููุต ุงู meanุ ููุต ุงู meanุ ููุต ุงู meanุ |
|
|
|
174 |
|
00:14:47,270 --> 00:14:47,390 |
|
ููุต ุงู meanุ ููุต ุงู meanุ ููุต ุงู meanุ ููุต ุงู meanุ |
|
|
|
175 |
|
00:14:47,390 --> 00:14:48,410 |
|
ููุต ุงู meanุ ููุต ุงู meanุ ููุต ุงู meanุ ููุต ุงู meanุ |
|
|
|
176 |
|
00:14:48,410 --> 00:14:53,410 |
|
ููุต ุงู meanุ ููุต ุงู meanุ ููุต ุงู meanุ ููุต ุงู meanุ |
|
|
|
177 |
|
00:14:53,410 --> 00:15:01,830 |
|
ููุต ุงู meanุ |
|
|
|
178 |
|
00:15:02,320 --> 00:15:06,140 |
|
ุชุนุฑููู number of standard deviations a data value |
|
|
|
179 |
|
00:15:06,140 --> 00:15:09,800 |
|
is from the meanุ ูุนูู ุงูุด ุนุฏุฏ ุงูุงูุญุฑุงูุงุช ุงูู
ุนูุงุฑูุฉ |
|
|
|
180 |
|
00:15:09,800 --> 00:15:14,200 |
|
ุงูููุทุฉ ุจุชุงุนุชู ุฃู ุฏุฑุฌุชู ุจุชุจุนุฏ ุนู ุงูู
ุชูุณุทุ for example |
|
|
|
181 |
|
00:15:14,200 --> 00:15:23,440 |
|
suppose my score was 85 againุ 85ุ so you got in |
|
|
|
182 |
|
00:15:23,440 --> 00:15:29,160 |
|
statistics or in math or accounting 85ุ and the |
|
|
|
183 |
|
00:15:29,160 --> 00:15:41,140 |
|
average of the entire class ู
ุซููุง ูู 80ุ ูู
ูุงุฑูุฉ |
|
|
|
184 |
|
00:15:41,140 --> 00:15:49,200 |
|
ุงูุฃุณุงุณูุฉ ูุงูุช 5ุ ุงูุขู ุงูุณุคุงู ูู ู
ุงุฐุง ูุนูู |
|
|
|
185 |
|
00:15:49,200 --> 00:15:55,640 |
|
ุงูู z-scoreุ ุฏุนูุง ูููู
ุจู
ูุงุฑูุฉ ุงูู z-scoreุ ุงูู
ูููู
|
|
|
|
186 |
|
00:15:55,640 --> 00:15:59,540 |
|
ูู ุฅุถุงูุฉ ุงูู
ูุงุฑูุฉ ู
ู ูุฐุง ุงูููู
ุฉ ุซู
ุฃููู
ุจุชูุณูู
ู |
|
|
|
187 |
|
00:15:59,540 --> 00:16:08,270 |
|
ุจุงูู
ูุงุฑูุฉ ุงูุฃุณุงุณูุฉุ ูุฐูู ูุญู ูุฏููุง 85 ูุงูุต 80 ุนูู |
|
|
|
188 |
|
00:16:08,270 --> 00:16:17,530 |
|
5ุ ูุฐุง ูุนุทู 1ุ ุงูุขู ุฏุนููุง ูุฑู ู
ุนูู 1ุ ุงูุธุฑ |
|
|
|
189 |
|
00:16:17,530 --> 00:16:21,430 |
|
ุฅูู ุงููุฑู ุจูู ู
ูุงุฑูุชู ูู
ูุงุฑูุชูุ ู
ุงูู ุงููุฑู ุจูู |
|
|
|
190 |
|
00:16:21, |
|
|
|
216 |
|
00:18:47,670 --> 00:18:54,050 |
|
20 over 5 minus 4 ุงูุขู ู
ุงุฐุง ูุนูู ูุฐุง ุงูููู
ู
ุฑุฉ |
|
|
|
217 |
|
00:18:54,050 --> 00:19:02,190 |
|
ุฃุฎุฑูุ ูุนูู ููู
ุฉ 60 ูู ุฃุฑุจุน ู
ูุงุฑูุฉ ุนุงู
ุฉ ุชุญุช |
|
|
|
218 |
|
00:19:02,190 --> 00:19:07,050 |
|
ุงูู
ูุงุฑูุฉ ุนุงู
ุฉ ุชุญุช ุงูู
ูุงุฑูุฉ ุนุงู
ุฉ ุชุญุช ุงูู
ูุงุฑูุฉ ุนุงู
ุฉ |
|
|
|
219 |
|
00:19:07,050 --> 00:19:09,230 |
|
ุชุญุช ุงูู
ูุงุฑูุฉ ุนุงู
ุฉ ุชุญุช ุงูู
ูุงุฑูุฉ ุนุงู
ุฉ ุชุญุช ุงูู
ูุงุฑูุฉ |
|
|
|
220 |
|
00:19:09,230 --> 00:19:11,190 |
|
ุนุงู
ุฉ ุชุญุช ุงูู
ูุงุฑูุฉ ุนุงู
ุฉ ุชุญุช ุงูู
ูุงุฑูุฉ ุนุงู
ุฉ ุชุญุช |
|
|
|
221 |
|
00:19:11,190 --> 00:19:13,810 |
|
ุงูู
ูุงุฑูุฉ ุนุงู
ุฉ ุชุญุช ุงูู
ูุงุฑูุฉ ุนุงู
ุฉ ุชุญุช ุงูู
ูุงุฑูุฉ ุนุงู
ุฉ |
|
|
|
222 |
|
00:19:13,810 --> 00:19:15,510 |
|
ุชุญุช ุงูู
ูุงุฑูุฉ ุนุงู
ุฉ ุชุญุช ุงูู
ูุงุฑูุฉ ุนุงู
ุฉ ุชุญุช ุงูู
ูุงุฑูุฉ |
|
|
|
223 |
|
00:19:15,510 --> 00:19:19,490 |
|
ุงูู
ูุงุฑูุฉ ุนุงู
ุฉ ุชุญุช ุงูู
ูุงุฑูุฉ ุนุงู
ุฉ ุชุญุช ุงูู
ูุงุฑูุฉ ุนุงู
ุฉ |
|
|
|
224 |
|
00:19:20,930 --> 00:19:24,710 |
|
ูุงุญุฏ ุฌุงุจ ุณุชูู ุงูู
ุชูุณุท ุซู
ุงููู ู
ุง ูู ุงููุฑู ุนูู |
|
|
|
225 |
|
00:19:24,710 --> 00:19:29,830 |
|
ุงูู
ุชูุณุทุ ุนุดุฑูู ู
ุง ูู ุนูุงูุฉ ุงูุนุดุฑูู ุจุงูุฎู
ุณุฉุ ุฃุฑุจุน |
|
|
|
226 |
|
00:19:29,830 --> 00:19:33,710 |
|
ุฃุถุนุงู ู
ุน ูุฏู ุฏุฑุฌุชู ุฃุฑุจุน ุฃุถุนุงู ู
ุง ููุง below the |
|
|
|
227 |
|
00:19:33,710 --> 00:19:40,050 |
|
mean ูุฐู ุงูุทุฑููุฉ ุชุญุณุจ z score now suppose one more |
|
|
|
228 |
|
00:19:40,050 --> 00:19:45,790 |
|
example my score is eighty I |
|
|
|
229 |
|
00:19:45,790 --> 00:19:49,810 |
|
got eighty in subject A for example now what's the |
|
|
|
230 |
|
00:19:49,810 --> 00:19:56,800 |
|
value of z scoreุ ูู ูุงูุช ุงูู mean 80 ูุฏุฑุฌุชู 80 |
|
|
|
231 |
|
00:19:56,800 --> 00:20:02,740 |
|
ูุนูู ุฃูุง ุฒู ุงูู
ุชูุณุท ู
ุน ุงูู Z-score ู
ุด ููุณุงูู 80 ููุต |
|
|
|
232 |
|
00:20:02,740 --> 00:20:10,320 |
|
8 ุนูู 5 ูุณุงูู 0 ู
ุนูุงู ุฅูุด my score is |
|
|
|
233 |
|
00:20:10,320 --> 00:20:12,400 |
|
0 above the average or below the average it means |
|
|
|
234 |
|
00:20:12,400 --> 00:20:19,600 |
|
my score equals the mean ุฒู ู
ุง ูุฏู my score equals |
|
|
|
235 |
|
00:20:26,980 --> 00:20:33,120 |
|
ุงูุนููุงู ุงููู ูุฏูู ูู ููู ูู
ูููุง ุฅูุฌุงุฏ ุฎุทูุงุช ุฃุฎุฑู |
|
|
|
236 |
|
00:20:33,120 --> 00:20:37,320 |
|
ุฃุฎุฑู |
|
|
|
237 |
|
00:20:37,320 --> 00:20:38,460 |
|
ู
ู ุงูุฎุทูุงุช ุงูุฃุฎุฑู ู
ู ุงูุฎุทูุงุช ุงูุฃุฎุฑู ู
ู ุงูุฎุทูุงุช |
|
|
|
238 |
|
00:20:38,460 --> 00:20:38,580 |
|
ุงูุฃุฎุฑู ู
ู ุงูุฎุทูุงุช ุงูุฃุฎุฑู ู
ู ุงูุฎุทูุงุช ุงูุฃุฎุฑู ู
ู |
|
|
|
239 |
|
00:20:38,580 --> 00:20:40,080 |
|
ุงูุฎุทูุงุช ุงูุฃุฎุฑู ู
ู ุงูุฎุทูุงุช ุงูุฃุฎุฑู ู
ู ุงูุฎุทูุงุช ุงูุฃุฎุฑู |
|
|
|
240 |
|
00:20:40,080 --> 00:20:40,840 |
|
ู
ู ุงูุฎุทูุงุช ุงูุฃุฎุฑู ู
ู ุงูุฎุทูุงุช ุงูุฃุฎุฑู ู
ู ุงูุฎุทูุงุช |
|
|
|
241 |
|
00:20:40,840 --> 00:20:40,860 |
|
ู
ู ุงูุฎุทูุงุช ุงูุฃุฎุฑู ู
ู ุงูุฎุทูุงุช ุงูุฃุฎุฑู ู
ู ุงูุฎุทูุงุช |
|
|
|
242 |
|
00:20:40,860 --> 00:20:40,880 |
|
ุงูุฃุฎุฑู ู
ู ุงูุฎุทูุงุช ุงูุฃุฎุฑู ู
ู ุงูุฎุทูุงุช ุงูุฃุฎุฑู ู
ู |
|
|
|
243 |
|
00:20:40,880 --> 00:20:45,340 |
|
ุงูุฎุทูุงุช ุงูุฃุฎุฑู ู
ู ุงูุฎุทูุงุช ุงูุฃุฎุฑู ู
ู ุงูุฎุทูุงุช ุงูุฃุฎุฑู |
|
|
|
244 |
|
00:20:45,340 --> 00:20:47,100 |
|
ู
ู ุงู |
|
|
|
245 |
|
00:20:58,500 --> 00:21:03,600 |
|
ูุฐุง ูุงููู ุงูุซูุงุซ is as rule of thumb ูุงุนุฏุฉ ุนุงู
ุฉ |
|
|
|
246 |
|
00:21:03,600 --> 00:21:09,240 |
|
ุฅุฐุง ุงูู z score less than negative three ูุนูู |
|
|
|
247 |
|
00:21:09,240 --> 00:21:13,520 |
|
ูู ูุฐู ุงูู
ูุทูุฉ or greater than three is considered |
|
|
|
248 |
|
00:21:13,520 --> 00:21:17,720 |
|
to be extreme value now go back to the previous |
|
|
|
249 |
|
00:21:17,720 --> 00:21:22,240 |
|
examples do you think z score of one is considered |
|
|
|
250 |
|
00:21:22,240 --> 00:21:27,880 |
|
to be outlierุ ูุงุญุฏ ู
ูุฌูุฏุฉ ููุง ุจุงูุชุงูู ูู ููุณุช |
|
|
|
251 |
|
00:21:27,880 --> 00:21:37,780 |
|
ุฎุงุฑุฌูุฉ ูุงูุงูู ููุณ ุฎุงุฑุฌูุฉ ุงุชูุงู 2 ููุณ ุฎุงุฑุฌูุฉ ุงุชูุงู |
|
|
|
252 |
|
00:21:37,780 --> 00:21:43,300 |
|
4 ููุณ ุฎุงุฑุฌูุฉ ุงุชูุงู |
|
|
|
253 |
|
00:21:43,300 --> 00:21:49,700 |
|
0 ููุณ ุฎุงุฑุฌูุฉ ุงุชูุงู ุงุชูุงู ุงุชูุงู 0 ููุณ ุฎุงุฑุฌูุฉ ุงุชูุงู |
|
|
|
254 |
|
00:21:49,700 --> 00:21:54,820 |
|
ุงุชูุงู ุงุชูุงู 100 ูู |
|
|
|
255 |
|
00:21:54,820 --> 00:21:59,440 |
|
ูุงูุช ุฏุฑุฌุฉ ุงูุทุงูุจ 100 ูุนูู ุงูุทุงูุจ ุฌุงุจ ู
ูุฉ ู
ู ู
ูุฉ ู ุงูู
ุชูุณุท |
|
|
|
256 |
|
00:21:59,440 --> 00:22:06,220 |
|
ุซู
ุงููู ูู ู
ูุฉ ุชุนุชุจุฑ outlierุ ุทุงูุจ ุงุฒุงู scoreุ ู
ูุฉ |
|
|
|
257 |
|
00:22:06,220 --> 00:22:10,860 |
|
ูุงูุต ุซู
ุงููู ุนูู ุฎู
ุณุฉ four it means his score is |
|
|
|
258 |
|
00:22:10,860 --> 00:22:15,060 |
|
four standard deviation above the mean and four is |
|
|
|
259 |
|
00:22:15,060 --> 00:22:17,920 |
|
greater than plus three it means this point is |
|
|
|
260 |
|
00:22:17,920 --> 00:22:22,870 |
|
considered to be an outlier or extreme values ูุฐู |
|
|
|
261 |
|
00:22:22,870 --> 00:22:25,110 |
|
ุงูุทุฑููุฉ ุฃุณูู ุทุฑููุฉ ูุนุฑู ุฅุฐุง ูุงูุช ุงูู data is |
|
|
|
262 |
|
00:22:25,110 --> 00:22:28,010 |
|
considered outlier ุฃู extreme ุฃู ููุณ ูุฐูู ููุท |
|
|
|
263 |
|
00:22:28,010 --> 00:22:33,870 |
|
ุชุฌุฑุจุฉ ุงูู z-score ุฅุฐุง ูุงูุช ุฃูู ู
ู 3 ุฃู ุฃูู ู
ู ุณุงูุจ |
|
|
|
264 |
|
00:22:33,870 --> 00:22:41,570 |
|
ู
ู 3 ููุฐู ุงูููุทุฉ ุชุนุชุจุฑ ููุทุฉ ุฃูู ู
ู ุณุงูุจ ุชูุงุชุฉ ุจุณ |
|
|
|
265 |
|
00:22:41,570 --> 00:22:45,190 |
|
ุฃู ุณุงูุจ ู
ู ุณุงูุจ ู
ู ุณุงูุจ ู
ู ุณุงูุจ ู
ู ุณุงูุจ ู
ู ุณุงูุจ ู
ู ุณุงูุจ |
|
|
|
266 |
|
00:22:45,190 --> 00:22:45,990 |
|
ู
ู ุณุงูุจ ู
ู ุณุงูุจ ู
ู ุณุงูุจ ู
ู ุณุงูุจ ู
ู ุณุงูุจ ู
ู ุณุงูุจ ู
ู ุณุงูุจ |
|
|
|
267 |
|
00:22:45,990 --> 00:22:49,930 |
|
ู
ู ุณุงูุจ ู
ู ุณุงูุจ ู
ู ุณุงูุจ ู
ู the farther the data value |
|
|
|
268 |
|
00:22:49,930 --> 00:22:56,110 |
|
is from the mean ูุนูู ุงูููู
ุฉ ุงูู
ุทููุฉ ูุนูู ุงูููู
ุฉ |
|
|
|
269 |
|
00:22:56,110 --> 00:23:01,090 |
|
ุงูู
ุทููุฉ ูู ูุงูุต four four ู
ุด ูู ูุจูุญูู ูู ู
ูุงู ููู |
|
|
|
270 |
|
00:23:01,090 --> 00:23:04,990 |
|
ููู
ุฉ ุฃูุจุฑ ุจุชููู ุงูู data ู
ุงููุง ุจุนูุฏุฉ ุนู ุงูู mean |
|
|
|
271 |
|
00:23:04,990 --> 00:23:09,810 |
|
ูุนูู z score of negative four which one is far |
|
|
|
272 |
|
00:23:09,810 --> 00:23:14,010 |
|
from the mean z score of negative four or z score |
|
|
|
273 |
|
00:23:14,010 --> 00:23:19,260 |
|
of equals two ุงูุณู ุงูุฅุดุงุฑุฉ ููุงุท ููุท ุงูุธุฑ ุฅูู ููู
ุฉ |
|
|
|
274 |
|
00:23:19,260 --> 00:23:25,000 |
|
ุงูุฑูู
ูุฉ ูุฐุง ุฃูุจุฑ ู
ู 2 ูุฐุง ูุนูู ุฃู ูุฐุง ุงูููู
ุฉ ูู |
|
|
|
275 |
|
00:23:25,000 --> 00:23:35,980 |
|
ุฃูุซุฑ ู
ู ุงููุงูุน ุฃุจุนุฏ ู
ู ุงูู
ุชูุณุท ูุฐูู ู
ุฑุฉ |
|
|
|
276 |
|
00:23:35,980 --> 00:23:41,780 |
|
ุฃุฎุฑู ูุฐู ูู ุงูููุฑู
ููุฉ ูู z-score ูู ุชุนุชูุฏ ุฃู z |
|
|
|
277 |
|
00:23:41,780 --> 00:23:47,690 |
|
-score ูู
ูู ุฃู ูููู ุฃูุถู ุฃู ุฃูู ุฃู ุณุงูุจ 0ุ ูู
ูู ุฃู |
|
|
|
278 |
|
00:23:47,690 --> 00:23:53,530 |
|
ูููู ุฃูุถุง ุฃูุถุง ุฃูุถุง ุฃูุถุง ุฃูุถุง ุฃูุถุง ุฃูุถุง ุฃูุถุง ุฃูุถุง |
|
|
|
279 |
|
00:23:53,530 --> 00:23:57,450 |
|
ุฃูุถุง ุฃูุถุง ุฃูุถุง ุฃูุถุง ุฃูุถุง ุฃูุถุง ุฃูุถุง ุฃูุถุง ุฃูุถุง |
|
|
|
280 |
|
00:23:57,450 --> 00:23:59,310 |
|
ุฃูุถุง ุฃูุถุง ุฃูุถุง ุฃูุถุง ุฃูุถุง ุฃูุถุง ุฃูุถุง ุฃูุถุง ุฃูุถุง |
|
|
|
281 |
|
00:23:59,310 --> 00:23:59,430 |
|
ุฃูุถุง ุฃูุถุง ุฃูุถุง ุฃูุถุง ุฃูุถุง ุฃูุถุง ุฃูุถุง ุฃูุถุง ุฃูุถุง |
|
|
|
282 |
|
00:23:59,430 --> 00:23:59,470 |
|
ุฃูุถุง ุฃูุถุง ุฃูุถุง ุฃูุถุง ุฃูุถุง ุฃูุถุง ุฃูุถุง ุฃูุถุง ุฃูุถุง |
|
|
|
283 |
|
00:23:59,470 --> 00:24:14,770 |
|
ุฃูุถุง ุฃูุถุง ุฃูุถุง ุฃูุถุง ุฃูุถุง |
|
|
|
284 |
|
00:24:14,770 --> 00:24:16,890 |
|
ุฃูุถ |
|
|
|
285 |
|
00:24:19,100 --> 00:24:25,100 |
|
and equals zero if x equals x bar ุฅุฐุง ู
ู
ูู ุงูู z |
|
|
|
286 |
|
00:24:25,100 --> 00:24:29,460 |
|
-score ูุงุฎุฐ ุซูุงุซ ุญุงูุงุช positive ุฅุฐุง ูุงู ุงูู x |
|
|
|
287 |
|
00:24:29,460 --> 00:24:34,520 |
|
greater than x bar negative ุฅุฐุง ูุงู ุงูู x more than |
|
|
|
288 |
|
00:24:34,520 --> 00:24:40,880 |
|
x bar equals zero if x equals x bar this is |
|
|
|
289 |
|
00:24:40,880 --> 00:24:41,660 |
|
another example |
|
|
|
290 |
|
00:24:46,390 --> 00:24:51,490 |
|
ูููู ุงูู ุนูุงูุชู ุจุงูู
ูุฉ ุงูู ุนูุงูุชู ุจุงูู
ูุฉ ุงูู |
|
|
|
291 |
|
00:24:51,490 --> 00:24:52,530 |
|
ุนูุงูุชู ุจุงูู
ูุฉ ุงูู ุนูุงูุชู ุจุงูู
ูุฉ ุงูู ุนูุงูุชู ุจุงูู
ูุฉ |
|
|
|
292 |
|
00:24:52,530 --> 00:24:54,710 |
|
ุงูู ุนูุงูุชู ุจุงูู
ูุฉ ุงูู ุนูุงูุชู ุจุงูู
ูุฉ ุงูู ุนูุงูุชู |
|
|
|
293 |
|
00:24:54,710 --> 00:24:57,110 |
|
ุจุงูู
ูุฉ ุงูู ุนูุงูุชู ุจุงูู
ูุฉ ุงูู ุนูุงูุชู ุจุงูู
ูุฉ ุงูู |
|
|
|
294 |
|
00:24:57,110 --> 00:24:57,690 |
|
ุนูุงูุชู ุจุงูู
ูุฉ ุงูู ุนูุงูุชู ุจุงูู
ูุฉ ุงูู ุนูุงูุชู ุจุงูู
ูุฉ |
|
|
|
295 |
|
00:24:57,690 --> 00:24:57,910 |
|
ุงูู ุนูุงูุชู ุจุงูู
ูุฉ ุงูู ุนูุงูุชู ุจุงูู
ูุฉ ุงูู ุนูุงูุชู |
|
|
|
296 |
|
00:24:57,910 --> 00:25:00,070 |
|
ุจุงูู
ูุฉ ุงูู ุนูุงูุชู ุจุงูู
ูุฉ ุงูู ุนูุงูุชู ุจุงูู
ูุฉ |
|
|
|
297 |
|
00:25:00,070 --> 00:25:04,070 |
|
ุงูู |
|
|
|
298 |
|
00:25:04,070 --> 00:25:12,130 |
|
ุนูุงูุชู |
|
|
|
299 |
|
00:25:12,130 --> 00:25:20,420 |
|
ุจุงูู
ูุฉ ุงู ู
ุน ู
ูุงุฑูุฉ ุฃุณุงุณูุฉ 100 ูุงูุช |
|
|
|
300 |
|
00:25:20,420 --> 00:25:24,320 |
|
ุชุณุฃู ุนู ู
ูุงุฑูุฉ ุงูู z-score ุจู
ูุงุฑูุฉ 620 ู
ูุงุฑูุฉ ุงูู |
|
|
|
301 |
|
00:25:24,320 --> 00:25:28,060 |
|
z-score ุจู
ูุงุฑูุฉ 620 ู
ูุงุฑูุฉ ุงูู z-score ุจู
ูุงุฑูุฉ 49 |
|
|
|
302 |
|
00:25:28,060 --> 00:25:31,140 |
|
ู
ูุงุฑูุฉ ุงูู z-score ุจู
ูุงุฑูุฉ 49 ู
ูุงุฑูุฉ ุงูู z-score |
|
|
|
303 |
|
00:25:31,140 --> 00:25:42,080 |
|
ุจู
ูุงุฑูุฉ 100 ู
ูุงุฑูุฉ ุงูู z-score ุจู
ูุงุฑูุฉ 620 |
|
|
|
304 |
|
00:25:44,170 --> 00:25:50,930 |
|
620-490 ุฃู 100 ูุนูู 1.3 ููุฐุง ูุนูู ุฃู ู
ูุงุฑูุชู ุฃุนูู |
|
|
|
305 |
|
00:25:50,930 --> 00:25:56,630 |
|
ุฃู ุฃูู ู
ู ุงูู
ูุงุฑูุฉุ ุฃุนูู ู
ู ุงูู
ูุงุฑูุฉ ู
ุฑุฉ ุฃุฎุฑูุ ู
ุฑุฉ |
|
|
|
306 |
|
00:25:56,630 --> 00:25:57,070 |
|
ุฃุฎุฑูุ ู
ุฑุฉ ุฃุฎุฑูุ ู
ุฑุฉ ุฃุฎุฑูุ ู
ุฑุฉ ุฃุฎุฑูุ ู
ุฑุฉ ุฃุฎุฑูุ ู
ุฑุฉ |
|
|
|
307 |
|
00:25:57,070 --> 00:25:57,090 |
|
ุฃุฎุฑูุ ู
ุฑุฉ ุฃุฎุฑูุ ู
ุฑุฉ ุฃุฎุฑูุ ู
ุฑุฉ ุฃุฎุฑูุ ู
ุฑุฉ ุฃุฎุฑูุ ู
ุฑุฉ |
|
|
|
308 |
|
00:25:57,090 --> 00:25:59,510 |
|
ุฃุฎุฑูุ ู
ุฑุฉ ุฃุฎุฑูุ ู
ุฑุฉ ุฃุฎุฑูุ ู
ุฑุฉ ุฃุฎุฑูุ ู
ุฑุฉ ุฃุฎุฑูุ ู
ุฑุฉ |
|
|
|
309 |
|
00:25:59,510 --> 00:25:59,890 |
|
ุฃุฎุฑูุ ู
ุฑุฉ ุฃุฎุฑูุ ู
ุฑุฉ ุฃุฎุฑูุ ู
ุฑุฉ ุฃุฎุฑูุ ู
ุฑุฉ ุฃุฎุฑูุ ู
ุฑุฉ |
|
|
|
310 |
|
00:25:59,890 --> 00:26:01,730 |
|
ุฃุฎุฑูุ ู
ุฑุฉ ุฃุฎุฑูุ ู
ุฑุฉ ุฃุฎุฑูุ ู
ุฑุฉ ุฃุฎุฑูุ ู
ุฑุฉ ุฃุฎุฑูุ ู
ุฑุฉ |
|
|
|
311 |
|
00:26:01,730 --> 00:26:05,460 |
|
ุฃุฎุฑูุ ู
ุฑุฉ ุฃุฎุฑูุ ู
ุฑุฉ ุฃุฎุฑูุ ู
ุฑุฉ ุฃุฎุฑู ูู
ูู ุฃู ูููู 1.3 |
|
|
|
312 |
|
00:26:05,460 --> 00:26:09,260 |
|
ุฃู 1.5 ุฃู ู
ูู
ุง ูุงูุช ุงูููู
ุฉ ูุฃููุง ุญุตููุง ุนูู 1.3ุ |
|
|
|
313 |
|
00:26:09,260 --> 00:26:13,700 |
|
ูุฐูู ููู
ุฉ ูุฐุง ูู 1.3 ู
ูุงุฑูุฉ ุฃุนูู ุงูู
ูุงุฑูุฉ ุงูุฃุณุงุณูุฉ |
|
|
|
314 |
|
00:26:13,700 --> 00:26:21,520 |
|
ู
ุฑุฉ ุฃุฎุฑู ุชุนุชุจุฑ ูุฐู ุงูููู
ุฉ 620 ู
ูุฌูุฏุฉ ููุงูุ ุงูุขู |
|
|
|
315 |
|
00:26:21,520 --> 00:26:29,080 |
|
ููู
ุฉ 1.3 ููุณุช ุฃูุจุฑ ู
ู 3 ุฃูุจุฑุ ุฅููุง ุจูู 3 ุฃูู ู3 |
|
|
|
316 |
|
00:26:29,080 --> 00:26:33,140 |
|
ุฃูุจุฑุ ูุฐูู ูุฐู ุงูููุทุฉ ุฃู ููู
ุฉ 620 |
|
|
|
317 |
|
00:26:35,640 --> 00:26:43,080 |
|
ุฃู ุฃูู ู
ู ุณุงูุจ ุซูุงุซุฉ ุฃู ุฃูุจุฑ ู
ู ุซูุงุซุฉ ุฃู ุฃูู ู
ู ุณุงูุจ ุซูุงุซุฉ ุฃู |
|
|
|
318 |
|
00:26:43,080 --> 00:26:44,180 |
|
ุฃูู ู
ู ุซูุงุซุฉ ุฃู ุฃูู ู
ู ุซูุงุซุฉ ุฃู ุฃูู ู
ู ุซูุงุซุฉ ุฃู |
|
|
|
319 |
|
00:26:44,180 --> 00:26:45,820 |
|
ุฃูู ู
ู ุซูุงุซุฉ ุฃู ุฃูู ู
ู ุซูุงุซุฉ ุฃู ุฃูู ู
ู ุซูุงุซุฉ ุฃู |
|
|
|
320 |
|
00:26:45,820 --> 00:26:46,500 |
|
ุฃูู ู
ู ุซูุงุซุฉ ุฃู ุฃูู ู
ู ุซูุงุซุฉ ุฃู ุฃูู ู
ู ุซูุงุซุฉ ุฃู |
|
|
|
321 |
|
00:26:46,500 --> 00:26:46,620 |
|
ุฃูู ู
ู ุซูุงุซุฉ ุฃู ุฃูู ู
ู ุซูุงุซุฉ ุฃู ุฃูู ู
ู ุซูุงุซุฉ ุฃู |
|
|
|
322 |
|
00:26:46,620 --> 00:26:53,900 |
|
ุฃูู ู
ู ุซูุงุซุฉ ุฃู ุฃูู ู
ู ุซูุงุซุฉ ุฃู ุฃูู ู
ู ุซูุงุซุฉ |
|
|
|
323 |
|
00:26:53,900 --> 00:27:02,500 |
|
ุฃู ุฃูู ู
ู ุซูุงุซุฉ ุฃู ุฃูู ู
ู ุณุง |
|
|
|
324 |
|
00:27:12,250 --> 00:27:16,010 |
|
ู
ุง ููุด ุงุฎุชูุงู ุฃูู ุจูู ุงูู euro score and the average |
|
|
|
325 |
|
00:27:16,010 --> 00:27:20,390 |
|
ูุนูู ู
ุด ุจุนูุฏุฉ ุฃูุซุฑ ููู ูู ูุงุญุธุช ููุง ู
ุซููุง ูู
ุง ูุงูุช |
|
|
|
326 |
|
00:27:20,390 --> 00:27:24,530 |
|
eighty-five ูุงูู average eighty is okay my score |
|
|
|
327 |
|
00:27:24,530 --> 00:27:28,200 |
|
is around the average so my score of eighty is |
|
|
|
328 |
|
00:27:28,200 --> 00:27:31,220 |
|
eighty five is not large value is not extreme |
|
|
|
329 |
|
00:27:31,220 --> 00:27:34,600 |
|
value but if you look at sixty if you got sixty in |
|
|
|
330 |
|
00:27:34,600 --> 00:27:38,180 |
|
the scores and the average was eighty ูุงุถุญ ุฅู ุงููุฑู |
|
|
|
331 |
|
00:27:38,180 --> 00:27:41,880 |
|
ูุจูุฑ ุจูููู
ูุฏุฑุฌุชู ุจุนูุฏุฉ ูุซูุฑ ุนู ุงูุทูุงุจ ููู ูุชุญุช |
|
|
|
332 |
|
00:27:41,880 --> 00:27:46,200 |
|
ุจุนุฏ ูุฏู ุฏุฑุฌุชู ุฃูู ู
ู ุงูุทูุงุจ ุฃุฑุจุน ุงูุญุฑุงูุงุช ู
ุนูุงุฑูุฉ |
|
|
|
333 |
|
00:27:46,200 --> 00:27:50,500 |
|
ูู ูุงูุช ุฌุจุช ู
ูุฉ ุจุนุฏ ูุฏู ุฏุฑุฌุชู ุนุงููุฉ ุฌุฏุง ูุงุทูุนุช |
|
|
|
334 |
|
00:27:50,500 --> 00:27:54,180 |
|
ุฃุฑุจุน ุงูุญุฑุงูุงุช ู
ุนูุงุฑูุฉ any question? |
|
|
|
335 |
|
00:28:01,410 --> 00:28:06,630 |
|
ุงูุณุงุจู ูู ุดูู ุงูุชูุฒูุน if you remember when we |
|
|
|
336 |
|
00:28:06,630 --> 00:28:13,990 |
|
started chapter three we started with three |
|
|
|
337 |
|
00:28:13,990 --> 00:28:18,890 |
|
definitions similar |
|
|
|
338 |
|
00:28:18,890 --> 00:28:22,590 |
|
definitions in slide four ุญูููุง ุงูู central |
|
|
|
339 |
|
00:28:22,590 --> 00:28:27,050 |
|
tendency ุฃุฎุฐูุง three measures mean, median and |
|
|
|
340 |
|
00:28:27,050 --> 00:28:31,590 |
|
mode ุจุนุฏ ุงุฎุฐ ุงูู majors of variation ุฃุฎุฐูุง ุงูู range |
|
|
|
341 |
|
00:28:31,590 --> 00:28:35,530 |
|
ุงูู standard deviation ูุงูู variance ูุงูู |
|
|
|
342 |
|
00:28:35,530 --> 00:28:40,830 |
|
coefficient of variation ุขุฎุฑ ูุงุญุฏุฉ ุฅูุด the shape ู |
|
|
|
343 |
|
00:28:40,830 --> 00:28:44,410 |
|
ุญูููุง the shape is the pattern of distribution of |
|
|
|
344 |
|
00:28:44,410 --> 00:28:49,150 |
|
values from lowest to the highest value ููู ุดูู |
|
|
|
345 |
|
00:28:49,150 --> 00:28:51,910 |
|
ุงูุชูุฒูุน ู
ู ุฃุตุบุฑ ููู
ุฉ ูุฃูุจุฑ ููู
ุฉ ูุนูู ุฃูุง ุนุงูุฒ ุฃุนุฑู |
|
|
|
346 |
|
00:28:51,910 --> 00:28:55,850 |
|
ุดูู ุงูุชูุฒูุน ููู ุงูู data set ูุฐุง ุงููู ููุญูู ุนููู |
|
|
|
347 |
|
00:28:55,850 --> 00:29:03,350 |
|
ุงูุขู ุฅู ุดุงุก ุงููู ุงููู ูู ุขุฎุฑ ูุงุญุฏุฉ ุงูููู
ุงููู ูู |
|
|
|
348 |
|
00:29:03,350 --> 00:29:07,010 |
|
shape of a distribution ุดูู ุงูุชูุฒูุน |
|
|
|
349 |
|
00:29:33,530 --> 00:29:36,330 |
|
ุจุนุฏู ุจุนุฏู |
|
|
|
350 |
|
00:29:39,280 --> 00:29:43,240 |
|
ุงูุขู suppose ูุฏููุง ู
ุฌู
ูุนุงุช ุงูุจูุงูุงุช ููุญู ู
ูุชู
ูู |
|
|
|
351 |
|
00:29:43,240 --> 00:29:51,320 |
|
ุจุงูุนุฑูุฉ ุนู ุดูู ู
ุฌู
ูุนุงุช ุงูุจูุงูุงุช ูุฐู ุงูุดูู ุชุณู
ุญ |
|
|
|
352 |
|
00:29:51,320 --> 00:29:55,700 |
|
ุจููููุฉ ู
ุฌู
ูุนุฉ ุงูุจูุงูุงุช ุจููุถุญ |
|
|
|
353 |
|
00:29:55,700 --> 00:30:06,900 |
|
ุฃู ูุตู ููู ุชุชูุฒุน ุดูู ุงูุจูุงูุงุช ุดููุชูู |
|
|
|
354 |
|
00:30:06,900 --> 00:30:16,890 |
|
ู
ูู
ุฉ ุชุชุตุฑู ูู ุงูุดูู number one is called skewness |
|
|
|
355 |
|
00:30:16,890 --> 00:30:27,970 |
|
skewness ุฃุณู
ุนุด skew ุฃู skewness ุงูุชูุงุก ุงูุชูุงุก |
|
|
|
356 |
|
00:30:27,970 --> 00:30:31,010 |
|
ุงูุชูุงุก |
|
|
|
357 |
|
00:30:31,010 --> 00:30:33,850 |
|
ู
ุนูุงู measures the extent to which data values are |
|
|
|
358 |
|
00:30:33,850 --> 00:30:38,830 |
|
not symmetrical symmetrical ูุนูู ู
ุชู
ุซู |
|
|
|
359 |
|
00:30:40,200 --> 00:30:48,320 |
|
ู ุจูู ุงูุฃูู
ุฏุฉ ุงูู data values ุจุชููู ู
ุชู
ุงุซูุฉ if you |
|
|
|
360 |
|
00:30:48,320 --> 00:30:52,260 |
|
look at this data and suppose we have this graph |
|
|
|
361 |
|
00:30:52,260 --> 00:30:55,700 |
|
suppose we have data set and we have this graph |
|
|
|
362 |
|
00:30:55,700 --> 00:30:58,740 |
|
this |
|
|
|
363 |
|
00:30:58,740 --> 00:30:59,300 |
|
is the mean |
|
|
|
364 |
|
00:31:06,050 --> 00:31:11,070 |
|
ูู this graph is symmetricุ symmetric ู
ุนูุงูุ ู
ุนูุงู |
|
|
|
365 |
|
00:31:11,070 --> 00:31:18,390 |
|
ู
ุชู
ุซูุ symmetric ู
ุนูุงู |
|
|
|
366 |
|
00:31:18,390 --> 00:31:22,110 |
|
ู
ุชู
ุซูุ ุฅูุด ู
ุนูุงู ู
ุชู
ุซูุ ูุนูู ุงูู right ูุงูู left ู
ุง |
|
|
|
367 |
|
00:31:22,110 --> 00:31:26,810 |
|
ููู
ุชูุฑูุจุง ุฒู ุจุนุถ ูุนูู ุงูู main value is in the |
|
|
|
368 |
|
00:31:26,810 --> 00:31:29,230 |
|
center of the distributionุ ูู ุงููุต ุจุงูุถุจุท |
|
|
|
369 |
|
00:31:29,230 --> 00:31:34,330 |
|
ูุนูู ุงูู main value ูู ุงูู
ุฑูุฒุ ูู ุงูู center table |
|
|
|
370 |
|
00:31:34,330 --> 00:31:40,950 |
|
skewed skewed ู
ุนูุงูุง ููู ูุญุธุฉ |
|
|
|
371 |
|
00:31:40,950 --> 00:31:46,390 |
|
ูู ุงูู main value ุจุณ |
|
|
|
372 |
|
00:31:46,390 --> 00:31:49,270 |
|
ูู ุทูุนุช ุนููู ู
ู ุทุฑู ุฃู ู
ูุทูุฉ ุงููู
ูู ุงููู ููุง ุงูู |
|
|
|
373 |
|
00:31:49,270 --> 00:31:53,830 |
|
right side ู
ุด ุฒู ุงูู left side ุฅุฐุง ูุฐุง ู
ุด .. ู
ุด |
|
|
|
374 |
|
00:31:53,830 --> 00:32:00,650 |
|
symmetric ุจุฑุถู ูู ูุงู ุงูุนูุณ ูู |
|
|
|
375 |
|
00:32:00,650 --> 00:32:01,650 |
|
ุญุงุฌุฉ ุฒูู ูู ุงูู main |
|
|
|
376 |
|
00:32:05,180 --> 00:32:10,700 |
|
ุจุฑุถู ูุฐุง not symmetric ุฅุฐุง ุงูู skewness measures |
|
|
|
377 |
|
00:32:10,700 --> 00:32:13,520 |
|
the extent to which data values are not symmetric |
|
|
|
378 |
|
00:32:13,520 --> 00:32:17,160 |
|
ุฎูููู |
|
|
|
379 |
|
00:32:17,160 --> 00:32:19,800 |
|
ุฃุญูู ุนูููุง ุงูููู
ูุงูููุงุก ุงูุฌุงู ุจูุญูู ุนูู ุงูู |
|
|
|
380 |
|
00:32:19,800 --> 00:32:27,520 |
|
kurtosis ุงูู kurtosis ู
ุนูุงูุง ุชููุทุญ ูู |
|
|
|
381 |
|
00:32:27,520 --> 00:32:28,280 |
|
ูุฏู ู
ุนูุงูุง |
|
|
|
382 |
|
00:32:32,660 --> 00:32:36,160 |
|
ุฃุญูุงูุง ู
ู
ูู ุชููู ุงูู .. ุงูู expression ุจุงูุนุฑุจู ู
ุด |
|
|
|
383 |
|
00:32:36,160 --> 00:32:51,240 |
|
ุจูุถุญ ุงูู
ุนูู ุชุจุนู ููู ุงูุชุนุฑูู ู
ู
ูู ุชููู ุฃูุถุญ ุฃูุช |
|
|
|
384 |
|
00:32:51,240 --> 00:32:54,100 |
|
ุจูุงูู ุชุนุฑูููุง ููู ุงุชุฌูุช ุงูู
ุนูู ูุณู ุฃูุง ุชููุทุญ ุฃู |
|
|
|
385 |
|
00:32:54,100 --> 00:32:59,160 |
|
ุชูุฑุทุญ ุญุณุจ ุงููุชุฑ ุทุจ ูุงุฎุฏ ุงูููุธ ุชุจุนู ู
ุนูุงู |
|
|
|
386 |
|
00:33:02,930 --> 00:33:07,230 |
|
ุงูู care measures the weakness of the care of |
|
|
|
387 |
|
00:33:07,230 --> 00:33:15,510 |
|
distribution ุจูู ู
ุนูุงู ุฅูุดุ ูู
ุฉุ ุจูุญูู weakness ูุฃ |
|
|
|
388 |
|
00:33:15,510 --> 00:33:21,030 |
|
ู
ุด ู
ุนูุงูุง ุงููุงุนุฉุ ู
ุด ู
ุนูุงูุง ุงูุนูุณ ูุนูู |
|
|
|
389 |
|
00:33:21,030 --> 00:33:28,870 |
|
ุทูุน |
|
|
|
390 |
|
00:33:28,870 --> 00:33:35,520 |
|
ุนูู ุงูู graph ุงููู ููุง ูู ุงููู
ุฉ ุชุจุนูุง ู graph ุชุงูู |
|
|
|
391 |
|
00:33:35,520 --> 00:33:42,280 |
|
ูุตู ุงูู center ููู ูุงุญุฏ |
|
|
|
392 |
|
00:33:42,280 --> 00:33:49,040 |
|
ุชุงูุช ูุตู ุงููู
ุฉ ุจุฐุง ุงูุดูู ูุนูู |
|
|
|
393 |
|
00:33:49,040 --> 00:33:54,760 |
|
ูุงุญุฏ ุงููู
ุฉ ุชุญุชู ู
ุฏุจุจุฉ sharp ูุงุญุฏ flat ุฒู ููู ุฃู |
|
|
|
394 |
|
00:33:54,760 --> 00:33:58,560 |
|
flat ุฃูุซุฑ ูุฐุง ูุณู
ูู kurtosis ุชููุทุญ |
|
|
|
395 |
|
00:34:01,890 --> 00:34:07,330 |
|
that is how sharply the curve rises approaching |
|
|
|
396 |
|
00:34:07,330 --> 00:34:11,430 |
|
the center of distribution ูู
ูุงู ุญุฏ ุงูุชูุฒูุน ูู
ุง |
|
|
|
397 |
|
00:34:11,430 --> 00:34:16,890 |
|
ูุตู ูููู
ุฉ ูู sharp ุฒู ูู ุงูููุทุฉ ุงููู ุชู
ุซู ุงูู |
|
|
|
398 |
|
00:34:16,890 --> 00:34:22,030 |
|
maximum ู
ุด ูู ูู ุงูู maximum ูู
ุง ูุตู ู ุงูู max ูุงู |
|
|
|
399 |
|
00:34:22,030 --> 00:34:2 |
|
|
|
431 |
|
00:36:51,430 --> 00:36:55,650 |
|
ุจูุงุ ู
ุด ูููุ ู
ุด ููู ุฃู ุงูู mean is much affected |
|
|
|
432 |
|
00:36:55,650 --> 00:36:59,310 |
|
by extreme values than the medianุ ู
ุน ูุฏู ุงูู mean |
|
|
|
433 |
|
00:36:59,310 --> 00:37:03,370 |
|
ุฏุงูู
ุง ุจูุชุฌู ููููู ูู outliersุ ุงู outliers ุงููู |
|
|
|
434 |
|
00:37:03,370 --> 00:37:07,830 |
|
ู
ูุฌูุฏูู left sideุ ุฅุฐุง ูู ุจูุฑูุญ ุงู left ุทุงูู
ุง ูุฌู |
|
|
|
435 |
|
00:37:07,830 --> 00:37:11,010 |
|
ุนูู ุงู leftุ ุฅุฐุง ููู
ุชู ู
ุงููุง ุฃูู ู
ู ุงู medianุ |
|
|
|
436 |
|
00:37:11,010 --> 00:37:12,710 |
|
look at the graph C |
|
|
|
437 |
|
00:37:16,810 --> 00:37:20,090 |
|
ุงูุขู ุฅูู ุฃูุซุฑุ ุฅูู ุฃูุซุฑุ ุฅูู ุฃูุซุฑุ ุฅูู ุฃูุซุฑุ ุฅูู |
|
|
|
438 |
|
00:37:20,090 --> 00:37:21,110 |
|
ุฃูุซุฑุ ุฅูู ุฃูุซุฑุ ุฅูู ุฃูุซุฑุ ุฅูู ุฃูุซุฑุ ุฃูุซุฑุ ุฃูุซุฑุ |
|
|
|
439 |
|
00:37:21,110 --> 00:37:23,570 |
|
ุฃูุซุฑุ ุฃูุซุฑุ ุฃูุซุฑุ ุฃูุซุฑุ ุฃูุซุฑุ ุฃูุซุฑุ ุฃูุซุฑุ ุฃูุซุฑุ |
|
|
|
440 |
|
00:37:23,570 --> 00:37:26,970 |
|
ุฃูุซุฑุ ุฃูุซุฑุ ุฃูุซุฑุ ุฃูุซุฑุ ุฃูุซุฑุ ุฃูุซุฑุ ุฃูุซุฑุ ุฃูุซุฑุ |
|
|
|
441 |
|
00:37:26,970 --> 00:37:27,830 |
|
ุฃูุซุฑุ ุฃูุซุฑุ ุฃูุซุฑุ ุฃูุซุฑุ ุฃูุซุฑุ ุฃูุซุฑุ ุฃูุซุฑุ ุฃูุซุฑุ |
|
|
|
442 |
|
00:37:27,830 --> 00:37:33,490 |
|
ุฃูุซุฑุ ุฃูุซุฑุ ุฃูุซุฑุ ุฃูุซุฑุ |
|
|
|
443 |
|
00:37:33,490 --> 00:37:42,630 |
|
ุฃูุซุฑุ |
|
|
|
444 |
|
00:37:42,630 --> 00:37:47,810 |
|
ุฃุนุชูุฏ as a women's shirt, the mean tends to be in the |
|
|
|
445 |
|
00:37:47,810 --> 00:37:52,110 |
|
direction of long tail ุจูุฑูุญ ูุชุฌุงู ุงูุฃุทูู, now the |
|
|
|
446 |
|
00:37:52,110 --> 00:37:56,110 |
|
long tail is to the right side ุฅุฐุง ู
ุนุงู ุฏู ุงู mean |
|
|
|
447 |
|
00:37:56,110 --> 00:38:03,910 |
|
ููุง which is bigger, mean or median ุงู median .. ุงู |
|
|
|
448 |
|
00:38:03,910 --> 00:38:08,190 |
|
mean ุฑุงุญ ุนูู ุงููู
ูู ุทุฑู ุงููู
ูู ุฏู ุฃู
ุง ุงูุฃุทูู ุงููู |
|
|
|
449 |
|
00:38:08,190 --> 00:38:13,010 |
|
ูู
ุง ุจููู ุนูุฏู ุฃุฑูุงู
ู
ู ูุงุญุฏ ูุฃูู ุงููู ููู ุจูููู ุฃุท |
|
|
|
450 |
|
00:38:13,010 --> 00:38:18,010 |
|
ููุ ุจุงูุชุงูู ุงู mean ุฃูุจุฑุ ุฅุฐุง for right skewed the |
|
|
|
451 |
|
00:38:18,010 --> 00:38:21,270 |
|
mean is always greater than the median so we have |
|
|
|
452 |
|
00:38:21,270 --> 00:38:25,330 |
|
three different situations if we have symmetric |
|
|
|
453 |
|
00:38:25,330 --> 00:38:28,890 |
|
distribution then mean and the median are equals |
|
|
|
454 |
|
00:38:28,890 --> 00:38:33,910 |
|
but for left skewed the mean is smaller than the |
|
|
|
455 |
|
00:38:33,910 --> 00:38:37,490 |
|
median and for right skewed the mean is greater |
|
|
|
456 |
|
00:38:37,490 --> 00:38:43,370 |
|
than the median ูุนูู ู
ุนูุงู ูุฏู for left skewed |
|
|
|
457 |
|
00:38:43,370 --> 00:38:45,130 |
|
skewness |
|
|
|
458 |
|
00:38:51,970 --> 00:38:55,130 |
|
ุงูุงุณุชุฎุฏุงู
ูููู ู
ูุฌุจ ุฃู ุณุงูุจ ุนูู ุญุณุจู ุงูุงุณุชุฎุฏุงู
|
|
|
|
459 |
|
00:38:55,130 --> 00:39:00,990 |
|
ูููู ููุฌุงุชูู ูุงูุงุณุชุฎุฏุงู
ูุตุจุญ |
|
|
|
460 |
|
00:39:00,990 --> 00:39:01,390 |
|
ุฃู
ุฑููู ุฃู
ุฑููู
ู ุฃู
ุฑููู
ู ุฃู
ุฑููู
ู ุฃู
ุฑููู
ู ุฃู
ุฑููู
ู ุฃู
ุฑููู
ู |
|
|
|
461 |
|
00:39:01,390 --> 00:39:05,530 |
|
ุฃู
ุฑููู ุฃู
ุฑููู
ู ุฃู
ุฑููู
ู ุฃู
ุฑููู
ู ุฃู
ุฑููู
ู ุฃู
ุฑููู
ู ุฃู
ุฑููู
ู |
|
|
|
462 |
|
00:39:05,530 --> 00:39:06,350 |
|
ุฃู
ุฑููู ุฃู
ุฑููู
ู ุฃู
ุฑููู
ู ุฃู
ุฑููู
ู ุฃู
ุฑููู
ู ุฃู
ุฑููู
ู ุฃู
ุฑููู
ู |
|
|
|
463 |
|
00:39:06,350 --> 00:39:06,370 |
|
ุฃู
ุฑููู ุฃู
ุฑููู
ู ุฃู
ุฑููู
ู ุฃู
ุฑููู
ู ุฃู
ุฑููู
ู ุฃู
ุฑููู
ู ุฃู
ุฑููู
ู |
|
|
|
464 |
|
00:39:06,370 --> 00:39:07,490 |
|
ุฃู
ุฑููู ุฃู
ุฑููู
ู ุฃู
ุฑููู
ู ุฃู
ุฑููู
ู ุฃู
ุฑููู
ู ุฃู
ุฑููู
ู ุฃู
ุฑููู
ู |
|
|
|
465 |
|
00:39:07,490 --> 00:39:15,430 |
|
ุฃู
ุฑููู |
|
|
|
466 |
|
00:39:18,590 --> 00:39:24,990 |
|
ูู ุฅููุ Symmetric B skewed to the left C skewed to |
|
|
|
467 |
|
00:39:24,990 --> 00:39:28,310 |
|
the right which one suspected to have an outlier? |
|
|
|
468 |
|
00:39:29,670 --> 00:39:37,430 |
|
B and C ูุฐุง ุฅููุ A B and C which one has outlier? |
|
|
|
469 |
|
00:39:38,590 --> 00:39:45,130 |
|
A and C could be outlier exist in these two graphs |
|
|
|
470 |
|
00:39:46,090 --> 00:39:50,130 |
|
ููู ุฅุฐุง ูุงู ูุฏูู ู
ุฌู
ูุนุฉ ู
ุชุณุงููุฉ ููุฐุง ูุนูู ุฃู |
|
|
|
471 |
|
00:39:50,130 --> 00:39:55,690 |
|
ุงูุงุฎุชูุงูุงุช ููุณุช ู
ูุฌูุฏุฉุ ููู
ุฌู
ูุนุฉ ุงูู
ุชุณุงููุฉ |
|
|
|
472 |
|
00:39:55,690 --> 00:39:59,730 |
|
ุงูุจูุงูุงุช ุฎูุงุตุฉ ู
ู ุงูุฎูุงุทุงุช ุงูุฎุงุฑุฌูุฉ ู
ููุด ูููุง |
|
|
|
473 |
|
00:39:59,730 --> 00:40:05,870 |
|
ุฎูุงุทุงุช ุฎุงุฑุฌูุฉุ ุฃูุง ุณุฃุชููู ููุงุ ููู ุงูู
ุฑุฉ ุงููุงุฏู
ุฉ ุฅู |
|
|
|
474 |
|
00:40:05,870 --> 00:40:11,050 |
|
ุดุงุก ุงููู ุณูุณุชู
ุฑ ูู ู
ุดุงูุฏุฉ ู
ุฌู
ูุนุงุช ุงูุชุณุงูู
ุฉ |
|
|