abdullah's picture
Add files using upload-large-folder tool
db9b795 verified
raw
history blame
37.5 kB
1
00:00:20,490 --> 00:00:26,150
ุงู„ุขู† ุจู†ุฑุฌุน ู„ู†ุฐูƒู‘ุฑ ูู‚ุท ุจุชุฐูƒูŠุฑ ุงู„ู„ูŠ ุฃุนุทุงู†ุงู‡ ููŠ
2
00:00:26,150 --> 00:00:31,210
ุงู„ู…ุญุงุถุฑุฉ ุงู„ู…ุงุถูŠุฉ ููŠ ู†ู‡ุงูŠุชู‡ุง ุจุฏุฃู†ุง ููŠ Section 1 ูˆ 11
3
00:00:31,210 --> 00:00:35,450
ุงู„ู„ูŠ ุจุชุญุฏุซ ุนู† two special types of second order
4
00:00:35,450 --> 00:00:39,530
differential equations ูˆู‚ู„ู†ุง ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ ู…ู†
5
00:00:39,530 --> 00:00:43,610
ุงู„ุฑุชุจุฉ ุงู„ุซุงู†ูŠุฉ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ู„ูŠ ู‚ุฏุงู…ู†ุง ู‡ุฐุง ุนุดุงู† ุฃุญู„ู‡ุง
6
00:00:43,610 --> 00:00:48,950
ุจุฏุฃู†ุง ู†ู†ุฒู„ู‡ุง ุฅู„ู‰ ุงู„ุฑุชุจุฉ ุงู„ุฃูˆู„ู‰ ู„ุฃู† ู…ูˆุถูˆุนู†ุง ู…ูˆุถูˆุนู†ุง ุงู„
7
00:00:48,950 --> 00:00:52,910
first order differential equation ูุจู†ุฌูŠุจ ู†ุญุท dx
8
00:00:52,910 --> 00:00:57,170
ุนู„ู‰ dt ุจุชุนูˆูŠุถ g ุชุญุฏูŠู‡ุง ุงู„ runs v ู„ูˆ ุงุดุชู‚ุชู†ุง
9
00:00:57,170 --> 00:01:00,130
ุจุงู„ู†ุณุจุฉ ู„ t ุจุตูŠุฑ dยฒx ุนู„ู‰ dtยฒ
10
00:01:15,480 --> 00:01:22,350
ุจู†ูุณ ุงู„ุทุฑูŠู‚ุฉ ู†ูุณ ุงู„ุทุฑูŠู‚ุฉ ู†ูุณ ุงู„ุทุฑูŠู‚ุฉ ูŠุจู‚ู‰ ุจูŠุตุจุญ dv
11
00:01:22,350 --> 00:01:28,290
ุนู„ู‰ dt ุงู„ู„ูŠ ู…ู…ูƒู† ุฃูƒุชุจู‡ุง dv ุนู„ู‰ dx ููŠ dx ุนู„ู‰ dt dx
12
00:01:28,290 --> 00:01:34,490
ุนู„ู‰ dt ู‡ูŠ v ุจูŠุจู‚ู‰ v ููŠ dv ุนู„ู‰ dx ูŠุจู‚ู‰ ุจูŠุตุจุญ v ู‡ูˆ
13
00:01:34,490 --> 00:01:40,010
ุงู„ู…ุชุบูŠุฑ ุงู„ุชุงุจุน ูˆ x ู‡ูˆ ุงู„ู…ุชุบูŠุฑ ุงู„ู…ุณุชู‚ู„ ู„ูƒู† ููˆู‚ t ู‡ูˆ
14
00:01:40,010 --> 00:01:46,210
ุงู„ู…ุชุบูŠุฑ ุงู„ู…ุณุชู‚ู„ ูˆ v ู‡ูˆ ุงู„ู…ุชุบูŠุฑ ุงู„ุชุงุจุน ุฒูŠ ู…ุง ุฃู†ุชู…
15
00:01:46,210 --> 00:01:53,210
ุดุงูŠููŠู† ุทูŠุจ ู„ูˆ ูƒุงู†ุช ุงู„ู…ุณุฃู„ุฉ ููŠู‡ุง t missing ูˆ x
16
00:01:53,210 --> 00:01:57,610
missing ุงุซู†ูŠู† missing ุฃุญู„ ุนู„ู‰ ุงู„ุทุฑูŠู‚ุฉ ุงู„ุฃูˆู„ู‰ ูˆู„ุง
17
00:01:57,610 --> 00:02:03,370
ุนู„ู‰ ุงู„ุทุฑูŠู‚ุฉ ุงู„ุซุงู†ูŠุฉ ุงุซู†ูŠู† missing ุฃุญู„ ุนู„ู‰ ุงู„ุฃูˆู„ู‰
18
00:02:03,370 --> 00:02:08,110
ูˆู„ุง ุนู„ู‰ ุงู„ุซุงู†ูŠุฉ ุฃูŠ ูˆุงุญุฏุฉ ููŠู‡ู… ู†ู†ุชู‚ู„ ุงู„ุตุญ ูŠุง ู…ุง
19
00:02:08,110 --> 00:02:10,370
ุจุชุญู„ูŠ ุนู„ู‰ ุงู„ุทุฑูŠู‚ุฉ ุงู„ุฃูˆู„ู‰ ูŠุง ู…ุง ุจุชุญู„ูŠ ุนู„ู‰ ุงู„ุทุฑูŠู‚ุฉ
20
00:02:10,370 --> 00:02:14,670
ุงู„ู„ูŠ ุชุดูˆู ููŠู‡ุง ุฑุงุญุฉ ู„ูƒ ุจุชุฑูˆุญ ุชุดุชุบู„ูŠู‡ุง ู„ูƒู† ุฃู†ุง ุดุงูŠู
21
00:02:14,670 --> 00:02:21,450
ุฃู† ุงู„ุฃูˆู„ู‰ ุฃุณู‡ู„ ุดูˆูŠุฉ ูŠุนู†ูŠ ุฃู‚ู„ ุฃู‚ู„ ุฑู…ูˆุฒ ูˆุฃู‚ู„ ุดุบู„
22
00:02:21,450 --> 00:02:26,330
ุดูˆูŠุฉ ู…ุง ุนู„ูŠู†ุง ู†ุจุฏุฃ ู†ุงุฎุฐ ุฃู…ุซู„ุฉ ุชูˆุถูŠุญูŠุฉ ุนู„ู‰ ุฐู„ูƒ ูŠุจู‚ู‰
23
00:02:26,330 --> 00:02:29,250
ุจู†ุฌูŠ ู…ุฌู‡ูˆู„ solve the following differential
24
00:02:29,250 --> 00:02:31,590
equations ูŠุจู‚ู‰ examples
25
00:02:36,250 --> 00:02:45,070
Solve the following differential
26
00:02:45,070 --> 00:02:48,490
equations
27
00:02:48,490 --> 00:02:55,590
ุงู„ู…ุนุงุฏู„ุงุช ุงู„ุชุงู„ูŠุฉ ุฃูˆู„ ู…ุนุงุฏู„ุฉ ู…ู† ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุงุช ุงู„ุชูŠ
28
00:02:55,590 --> 00:03:03,610
ู‡ูŠ tยฒ dยฒ x ุนู„ู‰ dtยฒ
29
00:03:22,590 --> 00:03:26,990
ู„ูˆ ู†ุธุฑุช ู„ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ู…ู† ุงู„ู…ูู‚ูˆุฏ
30
00:03:29,210 --> 00:03:33,790
x ู‡ูŠ ุงู„ู„ูŠ ู…ูู‚ูˆุฏุฉ t ุงู„ุญู…ุฏ ู„ู„ู‡ ู‡ูŠ ู…ูˆุฌูˆุฏุฉ ู„ูƒู† x
31
00:03:33,790 --> 00:03:39,110
ู…ุง ุนู†ุฏูŠุด ุนู†ุฏูŠ dx ุนู„ู‰ dt ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู†ูˆุน ุงู„ู„ูŠ ู‡ูˆ
32
00:03:39,110 --> 00:03:44,210
ุนู„ู…ูŠุง ุนู„ู‰ ุงู„ุญุงู„ุฉ ุงู„ุฃูˆู„ู‰ ูŠุจู‚ู‰ ู‡ุฐู‡ ู„ูˆ ุฑูˆุญุช ุณู…ูŠุชู‡ุง ุงู„
33
00:03:44,210 --> 00:03:54,090
equation star ูŠุจู‚ู‰ equation star is a differential
34
00:03:54,090 --> 00:04:03,980
equation with x missing ูŠุจู‚ู‰ x ู‡ูŠ ุงู„ู…ูู‚ูˆุฏุฉ ุดูˆ ู†ุนู…ู„
35
00:04:03,980 --> 00:04:12,360
ุจู†ู‚ูˆู„ ุญุท ุฃู† ุงู„ dx ุนู„ู‰ dt ุชุณุงูˆูŠ v ูˆุฑูˆุญูˆุง ุงุดุชู‚ูˆู‡ุง
36
00:04:12,360 --> 00:04:22,080
ุจุตูŠุฑ d2x ุนู„ู‰ dt2 ูŠุณุงูˆูŠ dv ุนู„ู‰ dt ุจู†ุงุฎุฏ ุงู„ู…ุนู„ูˆู…ุงุช
37
00:04:22,080 --> 00:04:25,960
ู‡ุฐู‡ ูˆู†ุนูˆุถ ููŠ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ star ุงู„ู„ูŠ ุนู†ุฏู†ุง ูŠุจู‚ู‰
38
00:04:25,960 --> 00:04:34,340
ุจุงุฌูŠ ุจู‚ูˆู„ ู‡ู†ุง ุงู„ุตุงุจุณ ุชุชูŠูˆุช in equation a star we
39
00:04:34,340 --> 00:04:40,680
got ุจู†ุญุตู„ ุนู„ู‰ ู…ุง ูŠุฃุชูŠ ูŠุจู‚ู‰ t square ู…ุง ู„ู‡ ุฏุนูˆุฉ ุงูŠู‡
40
00:04:40,680 --> 00:04:46,260
t square ุจุนุฏ ู‡ูŠูƒ d x d square x ุนู„ู‰ d t square ู‡ูŠ
41
00:04:46,260 --> 00:04:58,540
ุจ dv ุนู„ู‰ dt ูŠุจู‚ู‰ ู‡ุฐู‡ dv ุนู„ู‰ dt ุงู„ู„ูŠ ุจุนุฏู‡ุง ุฒุงุฆุฏ v
42
00:04:58,540 --> 00:05:08,040
ุชุฑุจูŠุน ูŠุณุงูˆูŠ 2 t ููŠ v ูŠุณุงูˆูŠ 2 t ููŠ ู…ู‡ู… ููŠ v
43
00:05:09,810 --> 00:05:13,830
ุงู„ุฎุงุทุฑ ู‡ูˆ ุฃู† ูŠุฌุนู„ ู…ุนุงู…ู„ dv ุนู„ู‰ dt ู‡ูˆ ุงู„ูˆุงุญุฏ
44
00:05:13,830 --> 00:05:18,270
ุงู„ุตุญูŠุญ ุฅุฐุง ูƒู†ุช ุฃุฐู‡ุจ ูˆ ุฃู‚ุณู… ุงู„ุทุฑููŠู† ุงู„ุนุงู„ู…ูŠู† ุนู„ู‰ t
45
00:05:18,270 --> 00:05:25,870
ุชุฑุจูŠุน ุฅุฐุง ู„ูˆ ู‚ุณู…ู†ุง ุนู„ู‰ t ุชุฑุจูŠุน ุจูŠุตูŠุฑ ุฃู† dv ุนู„ู‰ dt
46
00:05:25,870 --> 00:05:29,010
ุฒุงุฆุฏ
47
00:05:44,480 --> 00:05:54,220
dv ุนู„ู‰ dt ู†ุงู‚ุต 2 ุนู„ู‰ t ููŠ v ูŠุณุงูˆูŠ 1 ุนู„ู‰ t ุชุฑุจูŠุน ููŠ
48
00:05:54,220 --> 00:05:59,330
v ุชุฑุจูŠุน ู…ู†ู‡ุง ุงู„ู…ุนุงุฏู„ุงุช ุงู„ู„ูŠ ู…ุฑุช ุนู„ูŠู†ุงุŒ ุญุฏ ุจุชู‚ุฏุฑ
49
00:05:59,330 --> 00:06:05,110
ุชู‚ูˆู„ูŠ ููŠูƒูˆุง ุดูˆ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉุŸ ุดูˆ ุงุณู…ู‡ุงุŸ ู…ุด ุณุงู…ุนุŒ
50
00:06:05,110 --> 00:06:08,150
ุงู„ู„ูŠ ุจุชุนุฑู ุชุฑูุนูŠุฏู‡ุง ููˆู‚ุŒ ู„ุณู‡ ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช
51
00:06:08,150 --> 00:06:13,850
ุฃุฎุฏู†ุงู‡ุงุŒ ู†ุนู…ุŸ ู…ุชุฃูƒุฏุงุŒ homogeneous ูŠุนู†ูŠุŒ ู‡ุงูŠ ููŠู‡
52
00:06:13,850 --> 00:06:18,390
ุนู„ุฉ ุชูŠุŒ ุฃู‡ุŒ homogeneous ุจุชู†ูุนุŒ ู…ูŠุฉ ู„ู…ูŠุฉุŒ ูƒู„ุงู… ุฃุฎุชู†ุง
53
00:06:18,390 --> 00:06:21,370
ู‡ุฐุง ุตุญูŠุญุŒ ูŠุจู‚ู‰ homogeneous ูˆุจู‚ุฏุฑ ุฃุญู„ ุนู„ู‰
54
00:06:21,370 --> 00:06:26,800
homogeneous ู‡ูŠ ุงู„ุทุฑูŠู‚ุฉุŒ ููŠ ุทุฑูŠู‚ุฉ ุซุงู†ูŠุฉ ูƒู…ุงู†ุŸ ูƒูŠูุŸ
55
00:06:26,800 --> 00:06:35,860
ู‡ุฐู‡ linearุŸ ูˆุงุญุฏ ุนู„ุชูŠู‡ ุชุฑุจูŠุน ููŠ v ุชุฑุจูŠุน ุทูŠุจ ุดูˆ
56
00:06:35,860 --> 00:06:43,970
ุงุณู… ู‡ุฐู‡ุŸ ุชู†ูุนุด BernoulliุŸ ู…ุด ู‡ูŠ Bernoulli ู‡ุฏู‰ ูˆู„ุง
57
00:06:43,970 --> 00:06:48,370
ู„ุฃ ูŠุจู‚ู‰ ู‡ุฏู‰ Bernoulli equation ูŠุจู‚ู‰ homogeneous ุตุญ
58
00:06:48,370 --> 00:06:53,670
ูˆ Bernoulli ุตุญ ู„ู„ุดูƒุชุจ ูŠุจู‚ู‰ ู‡ุฏู‰ ู‡ู‡ ู…ุฏุงู… ุฃู†ุชู…
59
00:06:53,670 --> 00:06:55,910
ู‚ูˆู„ุชูˆุง homogeneous ุนู„ู‰ ุทูˆู„ ูˆ ุชุญุจูˆุง ุฃู† ู…ุง ุนู†ุฏูŠุด
60
00:06:55,910 --> 00:06:59,310
ู…ุดูƒู„ุฉ ู„ูƒู† ุฃู†ุง ุจู‚ูˆู„ Bernoulli ุจุฏูŠ ุฃุฑูˆุญ ุฃุญู„ูƒ ูƒู…ุงู† ุจ
61
00:06:59,310 --> 00:07:04,090
Bernoulli as a Bernoulli equation ูŠุจู‚ู‰ ู‡ุฏู‰ ุนู„ู‰ ุทูˆู„
62
00:07:04,090 --> 00:07:06,750
ุงู„ุฎุงุทุฑ ุงู„ู„ูŠ ู‡ูŠ Bernoulli equation
63
00:07:12,430 --> 00:07:18,650
ุจุนุฏ ุฐู„ูƒ ุณุฃุถุฑุจ ุงู„ุทุฑููŠู† ููŠ v to the minus two ูŠุจู‚ู‰ v
64
00:07:18,650 --> 00:07:26,570
ุฃุณ ู†ุงู‚ุต ุงุซู†ูŠู† dv ุนู„ู‰ dt ู†ุงู‚ุต ุงุซู†ูŠู† ุนู„ู‰ t ููŠ v ุฃุณ
65
00:07:26,570 --> 00:07:33,750
ู†ุงู‚ุต ูˆุงุญุฏ ูŠุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰ t ุชุฑุจูŠุน ุจุนุฏ ุฐู„ูƒ ุณุฃุถุน ุงู„
66
00:07:33,750 --> 00:07:40,590
u ููŠ v ุฃุณ ู†ุงู‚ุต ูˆุงุญุฏ ูŠุจู‚ู‰ ู‡ู†ุง ุงู„ u' ู†ุงู‚ุต v ุฃุณ ู†ุงู‚ุต
67
00:07:40,590 --> 00:07:45,830
ุงุซู†ูŠู† ููŠ v' ุฅุฐุง ู‡ุฐู‡ ุจู‚ุฏุฑ ุฃุดูŠู„ู‡ุง ูˆุฃูƒุชุจ ุจุฏู„ู‡ุง
68
00:07:45,830 --> 00:07:54,410
ู†ุงู‚ุต u' ุจุฏูŠ ุฃุณุงูˆูŠ ู…ู† v ุฃุณ ู†ุงู‚ุต ุงุซู†ูŠู† ููŠ v' ูŠุจู‚ู‰
69
00:07:54,410 --> 00:08:03,530
ู‡ุฐู‡ ู†ุงู‚ุต u' ูˆู‡ู†ุง ู†ุงู‚ุต ุงุซู†ูŠู† ุนู„ู‰ t ููŠ ุงู„ u ุจุฏูŠ ุฃุณุงูˆูŠ
70
00:08:03,530 --> 00:08:05,750
ูˆุงุญุฏ ุนู„ู‰ t ุชุฑุจูŠุน
71
00:08:09,540 --> 00:08:13,220
ู„ุญุธุฉ ู…ุง ูŠุฃุชูŠ ุงุญู†ุง ุนู†ุฏู†ุง ุงู„ู…ุนุงุฏู„ุฉ ู‡ูŠ ููˆู‚
72
00:08:39,630 --> 00:08:47,850
ุดูˆ ุดูƒู„ู‡ุง ู‡ุฐู‡ ุฒุงุฏ ุฒุงุฏ ุงู‡ ุฒุงุฏ ุตุญูŠุญ ูŠุจู‚ู‰ ู‡ุฐู‡ ุดูˆ ุดูƒู„ู‡ุง
73
00:08:47,850 --> 00:08:55,450
ู‡ุง ุดูˆ ุงุณู…ู‡ุง ู‡ุฐู‡ u prime ุฏู‡ ุงู„ู„ูŠ ููŠ t ููŠ ุงู„ u ุจุชุณุงูˆูŠ
74
00:08:55,450 --> 00:09:02,870
ุฏู‡ ุงู„ู„ูŠ ููŠ t ู…ู† ุฃุฑุจุน ุญุงู„ุงุช exact homogeneous
75
00:09:02,870 --> 00:09:10,760
separable linear linear ู‡ุฐู‡ linear ุฃุฎุฑ ุญุงุฌุฉ ุฃุฎุฐู†ุงู‡ุง
76
00:09:10,760 --> 00:09:18,980
ูŠุจู‚ู‰ ู‡ุฐู‡ linear linear differential equation ูŠุจู‚ู‰
77
00:09:18,980 --> 00:09:23,340
ู‡ุฐู‡ ู…ุนุงุฏู„ุฉ ุฎุทูŠุฉ ู…ุงุฏุฉ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฎุทูŠุฉ ุฅุฐุง ุจุฏูŠ ุฃุฑูˆุญ
78
00:09:23,340 --> 00:09:30,280
ุฃุฌูŠุจ ุนุงู…ู„ ุงู„ุชูƒุงู…ู„ mu of t e ุฃุณ ุชูƒุงู…ู„ ุงุซู†ูŠู† ุนู„ู‰ t
79
00:09:30,280 --> 00:09:39,970
dt ูŠุจู‚ู‰ e ุฃุณ ุงุซู†ูŠู† ู„ุฃู† ุงู„ t ูŠุจู‚ู‰ ู‡ุฐู‡ t ุชุฑุจูŠุน ุฅุฐุง
80
00:09:39,970 --> 00:09:46,210
ุงู„ุญู„ ู‡ูˆ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ุงู„ู„ูŠ ู‡ูˆ t ุชุฑุจูŠุน ููŠ ุงู„ u
81
00:09:46,210 --> 00:09:53,810
ุจุฏู‡ ูŠุณุงูˆูŠ ุชูƒุงู…ู„ t ุชุฑุจูŠุน 1 ุนู„ู‰ t ุชุฑุจูŠุน dt ุฃูˆ t
82
00:09:53,810 --> 00:09:58,250
ุชุฑุจูŠุน u ุจุฏู‡ ูŠุณุงูˆูŠ ู‡ุฐูŠ ู…ุน ู‡ุฐูŠ ุงู„ู„ู‡ ูŠุณู‡ู„ ุนู„ูŠู‡ุง
83
00:09:58,250 --> 00:10:05,730
ูˆุจุงู„ุชุงู„ูŠ ุชูƒุงู…ู„ ู„ dt ูู‚ุท ู„ุบูŠุฑ ูŠุจู‚ู‰ t ุชุฑุจูŠุน u ุจุฏู‡
84
00:10:05,730 --> 00:10:13,230
ูŠุณุงูˆูŠ t ุฒุงุฆุฏ constant c ู†ู‚ุณู… ุนู„ู‰ t ุชุฑุจูŠุน ูŠุจู‚ู‰
85
00:10:13,230 --> 00:10:21,910
ุงู„ู€ u ุนู†ุฏู‡ุง ุจุฏู‡ ูŠุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰ t ุฒุงุฆุฏ c ุนู„ู‰ t
86
00:10:21,910 --> 00:10:28,740
ุชุฑุจูŠุน ุฃูˆ ุฎู„ูŠู‡ุง ู…ุฑุฉ ูˆุงุญุฏุฉ ู‡ูŠูƒ ู‡ุงูŠ t ุฒุงุฆุฏ c ุนู„ู‰ t
87
00:10:28,740 --> 00:10:36,260
ุชุฑุจูŠุน t ุฒุงุฆุฏ c ุนู„ู‰ t ุชุฑุจูŠุน ุงุญู†ุง ุนู†ุฏู†ุง u ุจู…ูŠู† v ุฃุณ
88
00:10:36,260 --> 00:10:42,140
minus ุงู„ one ูŠุจู‚ู‰ ุงู„ u ุชุณุงูˆูŠ v ุฃุณ minus ุงู„ one
89
00:10:42,140 --> 00:10:49,640
ูŠุนู†ูŠ ูˆุงุญุฏ ุนู„ู‰ v t ุฒุงุฆุฏ c ุนู„ู‰ t ุชุฑุจูŠุน ุฃูˆ ู„ูˆ ุฌู„ุจู†ุง
90
00:10:49,640 --> 00:10:58,700
ุจูŠุตูŠุฑ ุงู„ v ุจุฏู‡ ูŠุณุงูˆูŠ t ุชุฑุจูŠุน ุนู„ู‰ t ุฒุงุฆุฏ c ุทุจ ุงู„ v
91
00:10:58,700 --> 00:11:04,020
ุนู†ุฏ ู…ูŠู† ู‡ูŠ ุงู„ vุŸ ุจุฑุถูŠู†ู‡ุง ู…ู† ุงู„ุฃูˆู„ ูŠุจู‚ู‰ ุงู„ v ุงู„ู„ูŠ
92
00:11:04,020 --> 00:11:12,460
ุนู†ุฏ ุงู„ู‡ูŠู…ูŠู† dx ุนู„ู‰ dt ุฅุฐุง v ุงู„ู„ูŠ ุนุจุงุฑุฉ ุนู† dx ุนู„ู‰
93
00:11:12,460 --> 00:11:20,040
dt ุจุฏู‡ ูŠุณุงูˆูŠ t ุชุฑุจูŠุน ุนู„ู‰ t ุฒุงุฆุฏ c ุฅุฐุง ุจู†ุงุก ุนู„ูŠู‡
94
00:11:20,040 --> 00:11:27,380
ุจู‚ุฏุฑ ุฃู‚ูˆู„ ูŠุจู‚ู‰ dx ุจุฏู‡ ูŠุณุงูˆูŠ t ุชุฑุจูŠุน ุนู„ู‰ t ุฒุงุฆุฏ c
95
00:11:27,380 --> 00:11:36,070
ูƒู„ู‡ ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ dt ุทุจ ูƒูŠู ุจุฏู†ุง ู†ูƒุงู…ู„ ู‡ุฐู‡ ูŠุง ุจู†ุงุชูŠุŸ
96
00:11:36,070 --> 00:11:39,410
ุฏุฑุฌุฉ
97
00:11:39,410 --> 00:11:46,260
ุงู„ุจุงุต ุฃุนู„ู‰ ู…ู† ุฏุฑุฌุฉ ุงู„ู…ุบุงู…ุฑ ุดูˆ ู†ุนู…ู„ุŸ ู‚ุณู…ุฉ ู…ุทูˆู„ุฉ ุฅุฐุง
98
00:11:46,260 --> 00:11:53,420
ุจุชุฑูˆุญ ุชู‚ุณู… ุจุงู„ู‡ุง ู…ุด ู‡ูŠูƒ t ุชุฑุจูŠุน ุชู‚ุณูŠู… t ุฒุงุฆุฏ c
99
00:11:53,420 --> 00:12:02,500
ููŠู‡ุง t t ุชุฑุจูŠุน ุฒุงุฆุฏ ct ู‡ุฐูŠ ุฒุงุฆุฏ ุชุตูŠุฑ ู†ุงู‚ุต ูˆู‡ุฐู‡ ู†ุงู‚ุต
100
00:12:02,500 --> 00:12:12,300
ูˆุจู†ุฌู…ุน ุจุธู„ ู†ุงู‚ุต ct ู†ุงู‚ุต ct ุนู„ู‰ t ู†ุงู‚ุต c ูŠุจู‚ู‰ ู†ุงู‚ุต
101
00:12:12,300 --> 00:12:20,800
ct ู†ุงู‚ุต c ุชุฑุจูŠุน ู†ุนู…ู„ ู‡ุฐู‡ ุฒุงุฆุฏ ูˆู‡ุฐู‡ ุฒุงุฆุฏ ุจุชุฑูˆุญ ุจุธู„
102
00:12:20,800 --> 00:12:28,860
ุนู†ุฏู†ุง ูƒุฐุงุด c ุชุฑุจูŠุน ุฅุฐุง ุตุงุฑุช ุงู„ x ูŠุณุงูˆูŠ ุชูƒุงู…ู„ ุฎุงุฑุฌ
103
00:12:28,860 --> 00:12:34,380
ุงู„ู‚ุณู…ุฉ ู‡ูˆ t ู†ุงู‚ุต ุงู„ c ูˆู„ุณุฉ ุถุงูŠู‚ ุงู„ู„ูŠ ุนู†ุฏู†ุง c
104
00:12:34,380 --> 00:12:41,220
ุชุฑุจูŠุน ุจุฏูŠ ุฃู‚ุณู…ู‡ ุนู„ู‰ c ุฒุงุฆุฏ t ูƒู„ู‡ ุจุงู„ู†ุณุจุฉ ู„ู…ูŠู†
105
00:12:41,220 --> 00:12:50,020
ุฅู„ู‰ dt ุฅู† ูƒุงู…ู„ ุงู„ุทุฑููŠู† ู†ุญุตู„ ุนู„ู‰ ุงู„ุฅุฌุงุจุฉ ูŠุจู‚ู‰ ุจุงุฌูŠ
106
00:12:50,020 --> 00:12:55,820
ุจู‚ูˆู„ู‡ the solution of
107
00:12:55,820 --> 00:13:06,560
that differential equation a star is x
108
00:13:06,560 --> 00:13:07,520
ูŠุณุงูˆูŠ
109
00:13:11,030 --> 00:13:20,150
ุงู„ t ู‡ูˆ t ุชุฑุจูŠุน ุนู„ู‰ ุงุซู†ูŠู† ุชูƒุงู…ู„ู‡ ูˆุงู„ c ุจ c ููŠ t
110
00:13:20,150 --> 00:13:24,910
ูˆู‡ุฐุง ุงู„ุจุณุท ู‡ูˆ ุชูุถู„ ุงู„ู…ู‚ุงู… ุจุณ ุงู„ c ุชุฑุจูŠุน ู‡ุฐุง ู…ู‚ุฏุงุฑ
111
00:13:24,910 --> 00:13:31,290
ุซุงุจุช ุทู„ุนู‡ ุจุฑุง ูŠุจู‚ู‰ ุฒุงุฆุฏ c ุชุฑุจูŠุน ู„ู„ absolute value
112
00:13:31,290 --> 00:13:36,010
ุงู„ู„ูŠ t ุฒุงุฆุฏ c ุฒุงุฆุฏ constant c1
113
00:13:38,390 --> 00:13:45,370
ูŠุจู‚ู‰ ู‡ุฐุง ู‡ูˆ ุดูƒู„ ุงู„ุญู„ ู„ู…ูŠู†ุŸ ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุฑูˆุญ
114
00:13:45,370 --> 00:13:47,030
ู†ุงุฎุฐ ู…ุซุงู„ ุซุงู†ูŠ
115
00:13:54,350 --> 00:14:02,890
ุจู…ุซุงู„ ุฑู‚ู… 2 ุจูŠู‚ูˆู„ ุญู„ ุงู„ู…ุนุงุฏู„ุฉ x ุชุฑุจูŠุน ุฒุงุฆุฏ ูˆุงุญุฏ ููŠ
116
00:14:02,890 --> 00:14:12,870
d square x ุนู„ู‰ d t square ุจุฏูŠ ูŠุณุงูˆูŠ 2 x ููŠ dx ุนู„ู‰
117
00:14:12,870 --> 00:14:18,790
dt ู„ูƒู„ square ูˆู‡ุฐู‡ ู‡ูŠ ุงู„ู…ุนุงุฏู„ุฉ ุฑู‚ู… 6
118
00:14:21,640 --> 00:14:25,660
ุจู‚ูˆู„ ุญู„ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจุชุทู„ุน ููŠ
119
00:14:25,660 --> 00:14:33,140
ุงู„ู…ุนุงุฏู„ุฉ ู‡ู„ ููŠู‡ุง tุŸ ููŠู‡ุง xุŸ ุงู‡ ุงู„ x ู…ูˆุฌูˆุฏุฉ ุจุณ ุงู„ t
120
00:14:33,140 --> 00:14:41,660
ุงู„ู…ูู‚ูˆุฏุฉ ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ุนุจุงุฑุฉ ุนู† equation with
121
00:14:41,660 --> 00:14:56,890
ุฃูˆ equation star is is a differential equation
122
00:14:56,890 --> 00:15:07,410
with t missing ุงู„ู…ูู‚ูˆุฏุฉ ู‡ูŠ t ู…ุฏุงู… ู‡ูŠูƒ ุจุฏู†ุง ู†ุฑูˆุญ
123
00:15:07,410 --> 00:15:20,660
ู†ุญุท put dx ุนู„ู‰ dt ูŠุณุงูˆูŠ v ูŠุจู‚ู‰ d2x ุนู„ู‰ dt2 ูŠุณุงูˆูŠ dv
124
00:15:20,660 --> 00:15:30,210
ุนู„ู‰ dt ูŠุณุงูˆูŠ dv ุนู„ู‰ dx ููŠ dx ุนู„ู‰ dt ูŠุนู†ูŠ v ููŠ dv
125
00:15:30,210 --> 00:15:37,450
ุนู„ู‰ dx ูŠุจู‚ู‰ ุงุณุชุจุนุฏู†ุง dt ู„ุฃู† t is missing ู…ุด ู…ูˆุฌูˆุฏุฉ
126
00:15:37,450 --> 00:15:41,670
ููŠ ุงู„ู…ุณุฃู„ุฉ ุงู„ุขู† ุจุฏูŠ ุงุฎุฐ ู‡ุฐู‡ ุงู„ู…ุนู„ูˆู…ุงุช ูˆุฃุฑูˆุญ ูˆุฃุนูˆุถ
127
00:15:41,670 --> 00:15:47,250
ููŠ ุงู„ู…ุนุงุฏู„ุฉ ุฑู‚ู… star ูŠุจู‚ู‰ ู‡ุฐุง x ุชุฑุจูŠุน ุฒุงุฆุฏ ูˆุงุญุฏ
128
00:15:58,310 --> 00:16:02,350
ู…ุงุฐุง ุฑุงูŠูƒู… ููŠ ุงู„ู…ุนุงุฏู„ุฉุŸ
129
00:16:08,200 --> 00:16:16,640
ุจู‚ุฏุฑ ุงูุตู„ ุงู„ู…ุชุบูŠุฑุงุช ูŠุจู‚ู‰
130
00:16:16,640 --> 00:16:21,480
ู‡ุฐู‡ separable equation
131
00:16:22,060 --> 00:16:25,820
ูŠุนู†ูŠ ูŠุง ุจู†ุงุช ูƒุฃู†ู‡ ุงุญู†ุง ู‚ุงุนุฏูŠู† ุจู†ุฑุงุฌุน ุงู„ four
132
00:16:25,820 --> 00:16:30,900
sections ุฃูˆ ุงู„ five sections ุงู„ู…ุงุถูŠุฉ ูŠุจู‚ู‰ ู‡ุฐู‡ ุจู‚ุฏุฑ
133
00:16:30,900 --> 00:16:42,140
ุฃุฎู„ูŠู‡ุง ูƒุงู„ุชุงู„ูŠ v ุนู„ู‰ dv ุนู„ู‰ v ุชุฑุจูŠุน ูŠุจู‚ู‰ ู‡ุฐู‡ ุฃุฎุฏุช ุงู„
134
00:16:42,140 --> 00:16:50,540
v dv ุนู„ู‰ v ุชุฑุจูŠุน ุจุฏู‡ ูŠุณุงูˆูŠ 2x ุนู„ู‰ x ุชุฑุจูŠุน ุฒุงุฆุฏ ูˆุงุญุฏ
135
00:16:50,540 --> 00:17:00,140
ูƒู„ู‡ ููŠ dx ุชู…ุงู… ูŠุจู‚ู‰ v dv ู‡ูŠู‡ุง ุฌุณู…ุช ุนู„ู‰ v ุชุฑุจูŠุน ุถุงู„
136
00:17:00,140 --> 00:17:06,620
2x ุฌุณู…ุช ุนู„ู‰ x ุชุฑุจูŠุน ุฒุงุฆุฏ ูˆุงุญุฏ ูˆู‡ุฐู‡ dx ุฃุธู† ุงู„ุจุณุท
137
00:17:06,620 --> 00:17:13,540
ููŠ ูุถู„ ุงู„ู…ู‚ุงู… ุจุณ ุจุฏู‡ 2 ูŠุจู‚ู‰ ู‡ุฐู‡ ุจู‚ุฏุฑ ุฃู‚ูˆู„ ู‡ุฐู‡ ู†ุตู ูˆ
138
00:17:13,540 --> 00:17:21,240
ู‡ูŠ ุชูƒุงู…ู„ ูˆู‡ุฐุง 2 v dv ุนู„ู‰ v ุชุฑุจูŠุน ูŠุณุงูˆูŠ ุชูƒุงู…ู„
139
00:17:21,240 --> 00:17:27,840
2x ุนู„ู‰ x ุชุฑุจูŠุน ุฒุงุฆุฏ ูˆุงุญุฏ dx ูŠุจู‚ู‰ ูŠุง ุจู†ุงุช ู‡ู†ุง
140
00:17:27,840 --> 00:17:37,280
ุจู‚ูˆู„ ู†ุตู ln v ุชุฑุจูŠุน ู†ุตู ln v ุชุฑุจูŠุน ุจุฏูŠ ุฃูŠ ูˆู‚ุช
141
00:17:41,210 --> 00:17:47,050
ูƒู„ุงู…ูƒูˆุง ูƒูˆูŠุณ ูˆุงู„ู„ู‡ ูƒู„ุงู… ู…ุตุจูˆุญ ู‡ุฐู‡ ุฅุญุฏู‰ ุงู„ุฃุฎูˆุงุช ูƒุงู†ุช
142
00:17:47,050 --> 00:17:51,930
ุฃุฏู‚ ู…ู†ู‡ุง ู†ุธุฑูŠ ุดูˆูŠุฉ ูˆุฑุงุญุช ุฌุงู„ู‡ุง ู„ู‡ุฐู‡ ุจุฏู„ ู…ุง ุชุถุฑุจ
143
00:17:51,930 --> 00:17:58,590
ููŠ ู†ุตู ูˆุชุฌุณู… ุนู„ู‰ ู†ุตู ูŠุจู‚ู‰ ู‡ุฐู‡ ูˆุงุญุฏ ุนู„ู‰ v ู…ุจุงุดุฑุฉ
144
00:17:58,590 --> 00:18:05,690
ูู†ู‚ูˆู„ ู„ู‡ุง ูˆุงู„ู„ู‡ ูƒู„ุงู…ูƒ ู…ุธุจูˆุท ู…ุงุฆุฉ ุจุงู„ู…ุงุฆุฉ ุชู…ุงู… ูŠุจู‚ู‰ v
145
00:18:05,690 --> 00:18:10,800
ุนู„ู‰ v ุชุฑุจูŠุน ู‡ูŠ ุจูˆุงุญุฏ ุนู„ู‰ v ูˆุงู„ุจุงู‚ูŠ ุฒูŠ ู…ุง ู‡ูˆ ูŠุจู‚ู‰
146
00:18:10,800 --> 00:18:18,200
ุงู„ู†ุชูŠุฌุฉ ln absolute value ู„ v ุจูŠุณุงูˆูŠ ln x ุชุฑุจูŠุน
147
00:18:18,200 --> 00:18:23,260
ุฒุงุฆุฏ ูˆุงุญุฏ ุฒุงุฆุฏ constant c1 ู„ุง ุฏุงุนูŠ ู„ูƒุชุงุจุฉ ุงู„
148
00:18:23,260 --> 00:18:26,480
absolute ู„ุฃู† x ุชุฑุจูŠุน ูƒู…ูŠุฉ ู…ุฑุจุนุฉ ูˆุงู„ูˆุงุญุฏ ู…ูˆุฌุจุฉ
149
00:18:26,480 --> 00:18:30,380
ูˆุงู„ุงุซู†ูŠู† ุฌุงู…ุนุฉ ูŠุจู‚ู‰ ู‡ุฐู‡ ู‚ูŠู…ุฉ ู…ูˆุฌุจุฉ ูŠุจู‚ู‰ ู„ุง ุฏุงุนูŠ ู„ู„
150
00:18:30,380 --> 00:18:35,860
absolute value ุทูŠุจ ุฃู†ุง ุจุฏูŠ v ุจุฑูุน ูƒู„ู‡ ูƒุฃุณู„ ุงู„ุนุฏุฏ e
151
00:18:37,210 --> 00:18:43,710
ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ูŠุจู‚ู‰ ุงู„ v absolute value ู„ v ูŠุจู‚ู‰ e
152
00:18:43,710 --> 00:18:51,250
ุฃุณ ln x ุชุฑุจูŠุน ุฒุงุฆุฏ ูˆุงุญุฏ ุฒุงุฆุฏ constant c1 ู‡ุฐุง
153
00:18:51,250 --> 00:18:56,530
exponent ุงู„ุนู…ุฑู‡ ุจูŠุงุฎุฏ ู‚ูŠู…ุฉ ุณุงู„ุจุฉ ู„ุฃ ุฅุฐุง ู„ุง ุฏุงุนูŠ ู„ู„
154
00:18:56,530 --> 00:19:02,270
absolute value ูŠุจู‚ู‰ ุงู„ v ุงู„ู„ูŠ ุนู†ุฏู†ุง ุจุฏูˆู† absolute
155
00:19:02,270 --> 00:19:10,650
ุจุฏู‡ุง ุชุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ e ุฃุณ ln x ุชุฑุจูŠุน ุฒุงุฆุฏ ูˆุงุญุฏ ููŠ e
156
00:19:10,650 --> 00:19:12,030
ุฃุณ c one
157
00:19:16,240 --> 00:19:25,140
ูŠุจู‚ู‰ ุงู„ v ู‡ูŠ ุนุจุงุฑุฉ ุนู† dx ุนู„ู‰ dt ุงุญู†ุง ูุฑุถูŠู†ู‡ุง v ู‡ูŠ
158
00:19:25,140 --> 00:19:31,280
ุนุจุงุฑุฉ ุนู† dx ุนู„ู‰ dt ุจุฏู‡ุง ุชุณุงูˆูŠ ู‡ู†ุง ุงู„ e ูˆุงู„ ln ุนูƒุณ
159
00:19:31,280 --> 00:19:37,760
ุจุนุถ ูŠุจู‚ู‰ ุจุตูŠุฑ x ุชุฑุจูŠุน ุฒุงุฆุฏ ูˆุงุญุฏ ูˆู‡ุฐู‡ ูƒู„ู‡ุง ุจู…ู‚ุฏุงุฑ
160
00:19:37,760 --> 00:19:43,780
ุซุงุจุช ุจู‚ุฏุฑ ุฃู‚ูˆู„ ุนู„ูŠู‡ุง c ูŠุจู‚ู‰ ู†ุชูŠุฌุฉ c ููŠ x ุชุฑุจูŠุน
161
00:19:43,780 --> 00:19:52,320
ุฒุงุฆุฏ ูˆุงุญุฏ ุชู…ุงู… ุทูŠุจ ุจุฏู†ุง ู†ุฑูˆุญ ุงู„ุขู† ู†ูƒู…ู„ ุงู„ุทุฑููŠู† ุนุดุงู†
162
00:19:52,320 --> 00:19:56,980
ู†ุญุตู„ ุนู„ู‰ x as a function of t
163
00:20:14,960 --> 00:20:23,400
ุจู†ุงุก ุนู„ูŠู‡ ู‡ุฐูŠ ู‡ุชุตูŠุฑ ุฃู† ุงู„ x ูŠุณุงูˆูŠ ุชูƒุงู…ู„ ูˆูŠู† ุงู„ xุŸ
164
00:20:23,400 --> 00:20:28,600
ู‡ุฐูŠ dx ุนู„ู‰
165
00:20:28,600 --> 00:20:40,920
x ุชุฑุจูŠุน ุฒุงุฆุฏ ูˆุงุญุฏ ุจุฏู‡ ูŠุณุงูˆูŠ c dt ุฅู† ูƒุงู…ู„ ูŠุจู‚ู‰ tan
166
00:20:40,920 --> 00:20:46,600
ุงู†ูุฑุณ x ูŠุณุงูˆูŠ ct ุฒุงุฆุฏ constant c1
167
00:20:51,180 --> 00:20:57,260
tan ู„ู„ุทุฑููŠู† ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ู‡ุฐุง ุจุฏูŠ ูŠุนุทูŠู†ุง ุฃู† x
168
00:20:57,260 --> 00:21:05,280
ูŠุณุงูˆูŠ tan ู„ ct ุฒุงุฆุฏ c1 ู‡ุฐุง ู‡ูˆ ุญู„ ุงู„ู…ุนุงุฏู„ุฉ
169
00:21:05,280 --> 00:21:10,860
ุงู„ุชูุงุถู„ูŠุฉ ูŠุจู‚ู‰ ุงุญู†ุง ุงุฎุฐู†ุง ู…ุซุงู„ูŠู† ุงู„ู…ุซุงู„ ุงู„ุฃูˆู„ ูƒุงู†
170
00:21:10,860 --> 00:21:14,680
equation with x missing ุงู„ู…ุซุงู„ ุงู„ุซุงู†ูŠ ูƒุงู† equation
171
00:21:14,680 --> 00:21:21,460
with t missing ู†ุฃุฎุฐ ู…ุซุงู„ x missing ูˆ t missing ู„ูƒูŠ
172
00:21:21,460 --> 00:21:30,040
ู†ุบุทูŠ ู‡ุฐุง ุงู„ู…ูˆุถูˆุน ุฅุฐุง ู„ุง ุฑูˆุญู†ุง ู„ู…ุซุงู„ 3 ู…ุซุงู„ ุซู„ุงุซุฉ
173
00:21:30,040 --> 00:21:37,440
ุจูŠู‚ูˆู„ ุงู„ู…ุนุงุฏู„ุฉ d square x ุนู„ู‰ d t square ุฒุงุฆุฏ
174
00:21:37,440 --> 00:21:45,000
dx ุนู„ู‰ dt ูƒู„ู‡ ู„ูƒู„ ุชูƒุนูŠุจ ูŠุณุงูˆูŠ ุฒูŠุฑูˆ ูˆู‡ุฐุง
175
00:21:45,000 --> 00:21:51,920
ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ุนุงุฏู„ุฉ star ุจุนุฏูŠู†
176
00:21:51,920 --> 0
201
00:24:55,060 --> 00:25:03,070
ูˆุณุงูˆูŠุฉ 2T ุฒุงุฆุฏ ูƒูˆู†ุณุชุงู† C ู„ูˆ ุดู„ู†ุง ุงู„ุฌุฐุฑ ุจุตูŠุฑ V
202
00:25:03,070 --> 00:25:11,570
ุชุฑุจูŠุน ูŠุณุงูˆูŠ 1/2 T ุฒุงุฆุฏ constant C ู„ูˆ
203
00:25:11,570 --> 00:25:18,010
ุฃุฎุฏู†ุง ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠ ู„ู„ุทุฑููŠู† ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† V
204
00:25:18,010 --> 00:25:26,750
ูŠุณุงูˆูŠ DX/DT ุจูŠุณุงูˆูŠ ุฒุงุฆุฏ ุฃูˆ ู†ุงู‚ุต 1 ุนู„ู‰ ุงู„ุฌุฐุฑ
205
00:25:26,750 --> 00:25:35,670
ุงู„ุชุฑุจูŠุนูŠ ู„ู€ 2T ุฒุงุฆุฏ constant C ู†ูƒุงู…ู„ ูŠุจู‚ู‰
206
00:25:35,670 --> 00:25:36,550
ุงู„ุฑูˆุญ ู†ูƒุงู…ู„
207
00:25:53,750 --> 00:26:01,360
ุฌุฏู‘ุงุด ุชูุงุถู„ ุงู„ุฌุฐุฑ ูŠุง ุจู†ุงุชุŸ ุชูุงุถู„ ุจู€ 1/2
208
00:26:01,360 --> 00:26:07,660
ุงู„ุฌุฐุฑ ู…ุธุจูˆุท ุจู€ 1/2 ุงู„ุฌุฐุฑ ุทุจุนู‹ุง ุนู†ุฏูŠ 1
209
00:26:07,660 --> 00:26:12,720
ุนู„ู‰ ุงู„ุฌุฐุฑ ุฅุฐุง ุฃู†ุช ูƒุงู…ู„ ูˆ ุจุฏู‡ ูŠุฑุฌุน ูƒุฃู†ู‡ ู‡ุงุด 2
210
00:26:12,720 --> 00:26:17,740
ุงู„ุฌุฐุฑ ุตุญ ูˆู„ุง ู„ุฃุŸ ุทุจุนู‹ุง ู…ุด ู‡ูŠุฌูŠ ููŠ ุจุงู„ูƒ ูˆุฃู†ุช ุจุชุญู„ูŠ ู„ูˆ
211
00:26:17,740 --> 00:26:21,460
ุฌุงูƒูŠ ู‡ุฐุง ุงู„ุณุคุงู„ ููŠ ุงู„ุงู…ุชุญุงู† ู„ูƒู† ุจูŠู‚ุชุฑุญ ุชู‚ูˆู„ูŠ ุจุฏูŠ
212
00:26:21,460 --> 00:26:25,740
ุฃุญุท ุชุนูˆูŠุถุฉ ุจูŠู‚ูˆู„ ู„ูŠ ุฃุญุท ุชุนูˆูŠุถุฉ ู…ุง ุนู†ุฏู†ุงุด ู…ุดูƒู„ุฉ ูŠุจู‚ู‰ ู„ูŠู‡
213
00:26:25,740 --> 00:26:36,240
2T ุฒุงุฆุฏ C ูŠุณุงูˆูŠ ู…ุชุบูŠุฑ ุฏูŠ ูˆู„ูŠูƒู† W ุฅุฐุง ุฏูŠ W ุณุงูˆูŠ 2DT
214
00:26:36,240 --> 00:26:42,520
ูˆุจุงู„ุชุงู„ูŠ ุจูŠุตูŠุฑ ุงู„ุชูƒุงู…ู„ 1 ุนู„ู‰ ุฌุฐุฑ ุงู„ู€ W ุฏูŠ W ุจุณ
215
00:26:42,520 --> 00:26:46,870
ู…ุถุฑูˆุจ ูˆูŠู†ุŸ ููŠ ู†ุต ุชูุงุถู„ ุชุญุช ุงู„ letter ุจูŠุทู„ุน 2 ู…ุน
216
00:26:46,870 --> 00:26:53,350
ู†ุต ู…ุน ุงู„ุณู„ุงู…ุฉ ูŠุจู‚ู‰ ุงู„ุชูƒุงู…ู„ ุฏุบุฑูŠ automatic ุจุฏู‡ ูŠุทู„ุน
217
00:26:53,350 --> 00:27:00,710
ุฃู† ุงู„ู€ X ูŠุณุงูˆูŠ ุฒุงุฆุฏ ุฃูˆ ู†ุงู‚ุต ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠ ู„ู€ 2T ุฒุงุฆุฏ
218
00:27:00,710 --> 00:27:07,390
constant C ุฒุงุฆุฏ constant ุซุงู†ูŠ C2 ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง
219
00:27:07,390 --> 00:27:08,770
ุทูŠุจ
220
00:27:11,610 --> 00:27:16,910
ู„ูˆ ูˆุงุญุฏุฉ ูุงูƒุฑุฉ ุชุญู„ ุจุงู„ุทุฑูŠู‚ุฉ ุงู„ุซุงู†ูŠุฉ ุจุงู„ุทุฑูŠู‚ุฉ
221
00:27:16,910 --> 00:27:21,350
ุงู„ุซุงู†ูŠุฉ ูุจุชู‚ูˆู„ ู…ุซู„ู‹ุง ุฃู†ุง ู…ุง ุจุฏูŠุด ุฃุญู„ ุจุงู„ุทุฑูŠู‚ุฉ ู‡ุฐู‡
222
00:27:21,350 --> 00:27:26,090
ู‚ุจู„ ุฃู† ุฃุญู„ ุจุงู„ุทุฑูŠู‚ุฉ ุงู„ุซุงู†ูŠุฉ ูŠุนู†ูŠ ุจุฏูŠ ุฃุนุชุจุฑ ุฃู† ุงู„ู€
223
00:27:26,090 --> 00:27:33,130
term missing ุฅุฐุง ุจุฏู†ุง ู†ูŠุฌูŠ ู„ู‡ู†ุง another solution
224
00:27:33,130 --> 00:27:39,010
ุญู„ู‚ุฉ
225
00:27:40,030 --> 00:27:50,330
ูŠุจู‚ู‰ ู‡ุฐู‡ equation star is a differential equation
226
00:27:50,330 --> 00:27:58,920
ูˆุงู„ู€ T missing ุจูŠู‚ูˆู„ ุฃู† ุฃู†ุง ู…ุงุดูŠ ูŠู…ุณูƒ ูŠู…ุณูƒ ูŠู…ุณูƒ ูŠุจู‚ู‰
227
00:27:58,920 --> 00:28:05,600
part ุฃุนุทูŠู†ุง ุฃู† ุฏูŠ X ุนู„ู‰ ุฏูŠ T ุจุฏู‡ุง ุชุณุงูˆูŠ ุงู„ู€ V ูŠุจู‚ู‰
228
00:28:05,600 --> 00:28:12,040
ุฏูŠ square X ุนู„ู‰ ุฏูŠ T square ุจุฏู‡ุง ุชุณุงูˆูŠ ุฏูŠ V ุนู„ู‰ ุฏูŠ
229
00:28:12,040 --> 00:28:19,500
ุชูŠ ูŠุนู†ูŠ ุฏูŠ V ุนู„ู‰ ุฏูŠ X ููŠ ุฏูŠ X ุนู„ู‰ ุฏูŠ T ูŠุนู†ูŠ V ููŠ
230
00:28:19,500 --> 00:28:25,350
ุฏูŠ V ุนู„ู‰ ุฏูŠ X ูŠุจู‚ู‰ ุงู„ู…ุนุงุฏู„ุฉ ุณุชุฑู‡ุง ุชุตุจุญ ุจุงู„ุดูƒู„
231
00:28:25,350 --> 00:28:35,070
ุงู„ุชุงู„ูŠ V ููŠ DV/DX ุฒุงุฆุฏ V ุชูƒุนูŠุจ ูŠุณุงูˆูŠ ุฌุฏู‘ุงุด Zero
232
00:28:35,070 --> 00:28:45,390
ู‡ุฐู‡ ู…ู…ูƒู† ุฃุฎุฏ V ุนุงู…ู„ ู…ุดุชุฑูƒ ุจุธู„ DV/DX ุฒุงุฆุฏ V
233
00:28:45,390 --> 00:28:53,110
ุชุฑุจูŠุน ูŠุณุงูˆูŠ ุฌุฏู‘ุงุด ูŠุณุงูˆูŠ Zero ูŠุจู‚ู‰ ู‡ุฐู‡ ุฅู…ุง V ุชุณุงูˆูŠ Zero
234
00:28:53,110 --> 00:29:00,450
ุฃูˆ DV/DX ุจุฏู‡ุง ุชุณุงูˆูŠ ุณุงู„ุจ V ู†ุฑุฌุน ู‡ุฐู‡ ุชุณุงูˆูŠ
235
00:29:00,450 --> 00:29:04,010
Zero ูˆุจุงู„ุชุงู„ูŠ ู†ุฌู„ู†ุงู‡ุง ู„ูˆูŠู†ุŸ ุนู„ู‰ ุงู„ุดุฌุฑุฉ ุงู„ุซุงู†ูŠุฉ ูŠุจู‚ู‰
236
00:29:04,010 --> 00:29:13,450
ูŠุง ุจู†ุงุช ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูˆ DV/DX ุฃูˆ ูƒุฏุบุฑูŠ DV/DX ุจุฏู‡ุง
237
00:29:13,450 --> 00:29:21,950
ุชุณุงูˆูŠ Zero ูˆู‡ุฐู‡ ุจู‚ุฏุฑ ุฃุนู…ู„ ู„ู‡ุง ูุตู„ ู„ู„ู…ุชุบูŠุฑุงุช ู„ู…ุง
238
00:29:21,950 --> 00:29:30,470
ู†ุนู…ู„ ูุตู„ ู„ู„ู…ุชุบูŠุฑุงุช ุจุตูŠุฑ ุณุงู„ุจ DV ุนู„ู‰ V ุชุฑุจูŠุน ุจุฏู‡ุง
239
00:29:30,470 --> 00:29:38,530
ุชุณุงูˆูŠ ูƒุฏู‡ุŸ ุจุฏู‡ุง ุชุณุงูˆูŠ DX ุชู…ุงู… ู‡ุฐู‡ ู„ูˆ ุฌุช ูƒู…ู„ุชู‡ุง ูŠุจู‚ู‰
240
00:29:38,530 --> 00:29:47,030
ุงู„ู€ V ุจุฏู‡ุง ุชุณุงูˆูŠ ูƒูˆู†ุณุชุงู†ุณูŠุง ู…ุซู„ู‹ุง ุทูŠุจ ุงู„ู€ V ู‡ุฐู‡ ู‡ูŠ
241
00:29:47,030 --> 00:29:53,790
ุนุจุงุฑุฉ ุนู† .. ุงู‡ ู‡ุฐู‡ ู…ุด V ู‡ุฐู‡ DX/DT DX/DT
242
00:29:53,790 --> 00:29:58,410
ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู€ X ุจุฏู‡ุง ุชุณุงูˆูŠ ูƒูˆู†ุณุชุงู†ุณูŠุง ู†ุงุณู‡ุง ุฏู‡ ุญู„
243
00:29:58,410 --> 00:30:04,320
ุตุญูŠุญ ู…ุธุจูˆุท ู„ุฃู† ุงู„ู‡ุฏู‰ ู„ูˆ ุงุดุชู‚ุชู‡ ู…ุฑุฉ ูˆุงุชู…ู‡ู‰ ูˆุงุดุชู‚ุชู‡
244
00:30:04,320 --> 00:30:08,380
ู…ุฑุฉ ููŠ Zero ูˆูƒู…ุงู† ู…ุฑุฉ ููŠ Zero ูŠุจู‚ู‰ ุจุตูŠุฑ ุงู„ู€ Zero
245
00:30:08,380 --> 00:30:13,160
ุฒุงุฆุฏ Zero ูŠุณุงูˆูŠ Zero ูŠุจู‚ู‰ ู‡ุฏู‰ ุฃุญุฏ ุงู„ุญู„ูˆู„ ุญู„ ู…ู‚ุฏุงุฑ
246
00:30:13,160 --> 00:30:18,740
ุซุงู…ู† ู‡ุฏู‰ ุจู…ุฌุฑุฏ ุงู„ู†ุธุฑ ู…ู…ูƒู† ุฃุฌูŠุจู‡ ุฃุตู„ู‹ุง ู…ู† ู‡ู†ุงูƒ ู„ูƒู†
247
00:30:18,740 --> 00:30:22,800
ุงุญู†ุง ู…ุง ุจู†ู‚ุด ุงู„ุญู„ ุงู„ู„ูŠ ุจู…ุฌุฑุฏ ู†ุธุฑู‡ ู‡ุฐุง ุฃุญุฏ ุงู„ุญู„ูˆู„
248
00:30:22,800 --> 00:30:26,840
ู„ูƒู† ุฑูˆุญู†ุง ุฌุจู†ุง ุญู„ ุซุงู†ูŠ ู‡ูŠูˆ ุนู†ุฏู†ุง ู‡ู†ุง ุฅุฐุง ุงุญู†ุง
249
00:30:26,840 --> 00:30:31,820
ุจุฏู†ุง ู†ุฑูˆุญ ู†ุฏูˆุฑ ุนู„ู‰ ุงู„ุญู„ ุงู„ุซุงู†ูŠ ู‡ุฐุง ุจู‚ูˆู„ู‡ ุจุณูŠุทุฉ ุฅุฐุง
250
00:30:31,820 --> 00:30:37,920
ู‡ุฐู‡ ู„ูˆ ูƒู…ู„ุชู‡ุง ูŠุง ุจู†ุงุช ุชูƒู…ู„ู‡ุง ุจู€ -1 ุนู„ู‰ V ู…ุธุจูˆุทุŸ
251
00:30:37,920 --> 00:30:42,120
ุณุงู„ุจ 1 ุนู„ู‰ V ู…ุน ุณุงู„ุจ 1 ุนู„ู‰ V ุจูŠุตูŠุฑ 1 ุนู„ู‰ V
252
00:30:42,120 --> 00:30:46,520
ุจูŠุณุงูˆูŠ X ุฒุงุฆุฏ Constant C
253
00:30:53,400 --> 00:31:00,060
ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุจุฏูŠ ุฃุฌูŠุจู‡ุง ูŠุจู‚ู‰ ู„ูˆ ุฌูŠุจู†ุงู‡ุง
254
00:31:00,060 --> 00:31:06,220
ุฅูŠุด ุจุตูŠุฑุŸ ุจุตูŠุฑ ุงู„ู€ V ุชุณุงูˆูŠ 1 ุนู„ู‰ X ุฒุงุฆุฏ constant
255
00:31:06,220 --> 00:31:12,940
C ุงุญู†ุง ุจุฏู†ุง .. ุจุฏู†ุง ู†ุดูŠู„ V .. V ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† DX ุนู„ู‰
256
00:31:12,940 --> 00:31:21,260
DT ูŠุจู‚ู‰ DX/DT ูŠุณุงูˆูŠ 1 ุนู„ู‰ X ุฒุงุฆุฏ ู…ูŠู†ุŸ ุฒุงุฆุฏ C
257
00:31:21,260 --> 00:31:30,190
ูŠุจู‚ู‰ ุงู„ู€ X ุฒุงุฆุฏ C ูƒู„ู‡ ููŠ DX ุจุฏู‡ุง ุชุณุงูˆูŠ ู…ูŠู†ุŸ ุฅุฐุง ูƒู…ู„ุช
258
00:31:30,190 --> 00:31:38,510
ุงู„ุทุฑููŠู† ูŠุจู‚ู‰ ู‡ุฐูŠ ุจูŠุตูŠุฑ X ุชุฑุจูŠุน ุนู„ู‰ ุงู„ู€ 2 ุฒุงุฆุฏ CX
259
00:31:38,510 --> 00:31:44,830
ุจุฏู‡ุง ุชุณุงูˆูŠ T ุฒุงุฆุฏ constant C2 ู„ุฅู†ู‡ ุณู…ูŠู†ุง ู‡ู†ุง C1
260
00:31:44,830 --> 00:31:49,490
ูˆุณู…ูŠู†ุง ู‡ู†ุง C ุจุดุฃู† ุฃุบูŠุฑ ู‡ุฐุง ุงู„ุฑู…ุฒ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏู†ุง
261
00:31:49,890 --> 00:31:54,430
ู…ุถุฑูˆุจ ููŠ 2 ู…ุดุงู† ู†ุฑุชุงุญ ู…ู† ุงู„ูƒุซุฑุฉ ุฅุฐุง ุงู„ู…ุนุงุฏู„ุฉ
262
00:31:54,430 --> 00:32:00,370
ู‡ุงุฏู‰ ุทุจุนู‹ุง ู‡ุงุฏู‰ ุจุชู†ุฒู„ ุฒูŠ ู…ุง ู‡ูŠ X ูŠุณุงูˆูŠ C1 ูˆู‡ุงุฏู‰
263
00:32:00,370 --> 00:32:09,330
ุจูŠุตูŠุฑ X ุชุฑุจูŠุน ุฒุงุฆุฏ 2CX ูŠุณุงูˆูŠ 2T ุฒุงุฆุฏ
264
00:32:09,330 --> 00:32:16,890
2C2 ุดูˆ ุฑุฃูŠูƒ ู†ุนู…ู„ู‡ุง ู…ุนุงุฏู„ุฉ ุตูุฑูŠุฉ ูŠุจู‚ู‰ ู„ูˆ
265
00:32:16,890 --> 00:32:22,730
ุนู…ู„ู†ุงู‡ุง ู…ุนุงุฏู„ุฉ ุตูุฑูŠุฉ ู„ุฃู† ู‡ุฐุง ุญู„ ุถู…ู†ูŠ ู…ุง ููŠุด ููŠู‡ X
266
00:32:22,730 --> 00:32:27,250
ูŠุณุงูˆูŠ ุจุณ ู‡ู†ุง ุงุญู†ุง ุทู„ุนู†ุง X ูŠุณุงูˆูŠ ุฅุฐุง ุฃู†ุง ุจุฏูŠ ุฃุญุงูˆู„
267
00:32:27,250 --> 00:32:32,170
ุงู„ุญู„ ุงู„ุถู…ู†ูŠ ู‡ุฐุง ุฃุฌูŠุจ ู„ู‡ X as a function of T ุฒูŠ
268
00:32:32,170 --> 00:32:37,830
ุงู„ู„ูŠ ู‡ู†ุงูƒ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ ู„ู‡ ู‡ุฐุง X ุชุฑุจูŠุน ุฒุงุฆุฏ 2
269
00:32:37,830 --> 00:32:44,690
CX ู†ุงู‚ุต 2T ุฒุงุฆุฏ 2C2 ูƒู„ู‡ ุจุฏู‡ุง ุชุณุงูˆูŠ Zero
270
00:32:45,310 --> 00:32:52,290
ูŠุจู‚ู‰ ู‡ู†ุง ุงู„ู€ X ุชุณุงูˆูŠ ุงู„ู€ C1 ูˆู‡ู†ุง ุงู„ู€ X ุชุณุงูˆูŠ ู†ุงู‚ุต
271
00:32:52,290 --> 00:33:00,330
B ูŠุจู‚ู‰ ู†ุงู‚ุต 2CX ุฒุงุฆุฏ ุฃูˆ ู†ุงู‚ุต ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠ ู„ู€ B
272
00:33:00,330 --> 00:33:08,650
ุชุฑุจูŠุน 4C ุชุฑุจูŠุน X ุชุฑุจูŠุน ู†ุงู‚ุต 4 ุฃู„ู ุงู„ู„ูŠ ู‡ูˆ
273
00:33:08,650 --> 00:33:13,550
ุจูˆุงุญุฏ ุฌูŠู… ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ู‚ุฏุงุฑ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุชู…ุงู…
274
00:33:13,550 --> 00:33:20,150
ุจุงู„ู†ุงู‚ุต ู…ุน ุงู„ู†ุงู‚ุต ุจุตูŠุฑ ุงู„ุฒุงุฆุฏ ูˆู‡ู†ุง 2T ุฒุงุฆุฏ
275
00:33:20,150 --> 00:33:28,730
2C1 ูƒู„ ู‡ุฐุง ุงู„ูƒู„ุงู… ู…ู‚ุณูˆู…ู‹ุง ุนู„ู‰ 2 ููŠ 1
276
00:33:28,730 --> 00:33:35,330
ู†ูƒู…ู„ ููˆู‚ ุจุดูƒู„ ูƒู„ู‡ ูŠุดูˆู ูŠุจู‚ู‰ ู‡ุฐุง ุจุฑูˆุญ ู†ู…ุณุญ ู‡ุฐุง
277
00:33:35,330 --> 00:33:47,840
ุงู„ุฌุฒุก ูˆุจู†ุฎู„ูŠ ุงู„ุญู„ ุชุงุจุนู†ุง ู‡ุฐุง ุนุดุงู† ู†ู‚ุงุฑู†ู‡ ู…ุนุงู‡ ูŠุจู‚ู‰
278
00:33:47,840 --> 00:33:55,600
ุงู„ู…ุตูŠุฑ ุนู†ุฏู†ุง X ูŠุณุงูˆูŠ C1 ูˆ X ูŠุณุงูˆูŠ ูุงู„ุนูŠุงู„ ู‡ู†ุง
279
00:33:55,600 --> 00:34:02,360
4 ูˆ 4 ุชุทู„ุน ุจุฑู‡ ุจุฅุซู†ูŠู† ู…ุน ุฅุซู†ูŠู† ุงู„ู„ู‡ ูŠุณู‡ู„
280
00:34:02,360 --> 00:34:11,390
ุนู„ูŠู‡ุง ู…ุน ุฅุซู†ูŠู† ุงู„ู„ูŠ ุชุญุช ูŠุจู‚ู‰ ุงู„ุฏุนูˆุฉ ุชุตูŠุฑ CX ู…ุด X ู…ุด X
281
00:34:11,390 --> 00:34:13,310
ู…ุด X ู…ุด X ู…ุด X ู…ุด X ู…ุด X ู…ุด X ู…ุด X ู…ุด X ู…ุด X ู…ุด X
282
00:34:13,310 --> 00:34:16,950
ู…ุด X ู…ุด X ู…ุด X ู…ุด X ู…ุด X ู…ุด X ู…ุด X ู…ุด X ู…ุด X ู…ุด X
283
00:34:16,950 --> 00:34:25,290
ู…ุด X ู…ุด X ู…ุด X ู…ุด X ู…ุด X ู…ุด X ู…ุด X ู…ุด X ู…ุด X ู…ุด X
284
00:34:25,290 --> 00:34:27,170
ู…ุด X ู…ุด X ู…ุด X ู…ุด X ู…ุด X ู…ุด X ู…ุด X ู…ุด X ู…ุด X ู…ุด X
285
00:34:27,170 --> 00:34:27,410
ู…ุด X ู…ุด X ู…ุด X ู…ุด X ู…ุด X ู…ุด X ู…ุด X ู…ุด X ู…ุด X ู…ุด X
286
00:34:27,410 --> 00:34:35,270
ู…ุด X ู…ุด X ู…ุด X ู…ุด X ุชุฑุจูŠุน 2ZX ุฌูุจู†ุง ู‡ุฐู‡
287
00:34:35,270 --> 00:34:40,710
ุจุงู„ูƒุงู…ู„ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ุฒูŠ ุงู„ุชุฑุณูŠูƒูŠ ุชุนูˆูŠู†ูŠ ุงู„ู€ X
288
00:34:40,710 --> 00:34:44,850
ุทุงู„ูˆู† ุงู„ุนุงู… ุทุงู„ูˆู† ุงู„ุนุงู… ู‡ูŠ ุงู„ู…ุนุงุฏู„ุฉ ุนู†ุฏู†ุง ุจุดูƒู„ X
289
00:34:44,850 --> 00:34:52,730
ูŠุณุงูˆูŠ ู…ุง ุญุตู„ ุนู„ู‰ ู‡ุฐูŠ ุงู„ุดูŠุก ู…ุง ุฃุนุฑูู‡ ูˆุฏุงู„ูŠู‡ ู‚ุงู„ูˆุง ู‡ุฐูŠ
290
00:34:52,730 --> 00:34:58,190
ุงู„ุดูŠุก ุทุจุนู‹ุง ุทุจุนู‹ุง ูˆุงู„ู„ู‡ ุฃุตู„ู‹ุง ุชุจุฑุง ูˆุฃู‚ุทุนู‡ู… ุทุงู„ูˆู†
291
00:34:58,190 --> 00:35:03,010
ุงู„ุนุงู… ูŠุจู‚ู‰ 2 ุชุฃุฎุฐ ู…ู† ุงู„ู€ 4 ู…ู† ุงู„ู€ 4 ุชุทู„ุน
292
00:35:03,010 --> 00:35:07,530
ุทุจุนู‹ุง 2 ู…ุน 2 ู‡ุฐูŠ ุจุชุฑูˆุญ ู…ุน ุงู„ุณู„ุงู…ุฉ ูŠุจู‚ู‰ ุตูˆุฑุฉ
293
00:35:07,530 --> 00:35:19,370
X ูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ู†ุงู‚ุต C X ูŠุณุงูˆูŠ ู†ุงู‚ุต C ุฒุงุฆุฏ ุฃูˆ ู†ุงู‚ุต
294
00:35:19,370 --> 00:35:30,340
ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠ ู„ู€ C ุชุฑุจูŠุน ุงู„ู„ูŠ ู‡ูˆ ุฒุงุฆุฏ 2T ุฒุงุฆุฏ
295
00:35:30,340 --> 00:35:36,380
2C1 ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ูŠุงู‡ุง ูŠุนู†ูŠ ุงู…ุง ู…ุง ุงุชู‡ุง ุฏูŠ
296
00:35:36,380 --> 00:35:42,120
ู…ุงุฏุฉ ุจูƒุชุจู‡ุง X ูŠุณุงูˆูŠ C1 ูˆ X ูŠุณุงูˆูŠ ู†ู‚ุต C ุฒุงุฆุฏ ุฃูˆ
297
00:35:42,120 --> 00:35:50,260
ู†ุงู‚ุต ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠ ู‡ุฐุง 2T ูˆู‡ุฐู‡ C ุชุงุฑูŠุฎูŠุฉ ุฒุงุฆุฏ
298
00:35:50,260 --> 00:35:57,850
ุงู„ู„ูŠ ู‡ูˆ 2C1 ู‡ุฐุง ูƒู„ู‡ ู…ู‚ุฏุงุฑ ุซุงู†ูŠ ู…ุธุจูˆุทุŸ ูˆู‡ุฐุง
299
00:35:57,850 --> 00:36:05,290
ูƒู„ู‡ ูƒุฐู„ูƒ ู…ู‚ุฏุงุฑ ุซุงู†ูŠ ูŠุจู‚ู‰ ุจุฏู„ ุฃูƒุชุฑ ุจุงู„ู€ X ูŠุณุงูˆูŠ X
300
00:36:05,290 --> 00:36:12,370
ุฒุงุฆุฏ ุฃูˆ ู†ุงู‚ุต ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠ 2T ุฒุงุฆุฏ C ุซุงู†ูŠ ุดูŠู„ุช
301
00:36:12,370 --> 00:36:17,750
ู‡ุฐุง ูƒุชุฑ ุงู„ู…ู‚ุจู„ ูˆุญุทูŠุช ู…ุฏุงู„ู‡ ููŠุงู† C ุซุงู†ูŠ ูˆู‡ุฐุง ุจุฏู‡ุง
302
00:36:17,750 --> 00:36:24,200
ุฃุดูŠู„ู‡ ูˆุฃุชุจุนู‡ C4 ูŠุจู‚ู‰ ุตุงุฑ ุฅูŠุดุŸ ุงู„ู€ exercise ู‡ุฐุง
303
00:36:24,200 --> 00:36:28,320
ู…ู† ู†ุชูŠุฒ ุฒูŠ ุงู„ุทู„ูˆุณุฉ ูˆุฒูŠ ุงู„ุทู„ูˆุณุฉ ุงู„ุซุงู†ูŠ ุจู‚ู‰ ูˆู‡ุฐุง
304
00:36:28,320 --> 00:36:33,880
ู†ุชูŠุฒ ุฒูŠ ุงู„ุทู„ูˆุณุฉ ูˆุฒูŠ ุงู„ุทู„ูˆุณุฉ ุงู„ุซุงู†ูŠ ุจู‚ู‰ ุชู…ุงู…ุŸ ุฅุฐุง
305
00:36:33,880 --> 00:36:38,000
ุงู„ุญู„ ุงู„ู„ูŠ ููˆุถู‰ ูˆุงู„ุญู„ ุงู„ุซุงู†ูŠ ู‡ูˆ ู†ูุณ ู…ูŠู†ุŸ ุงู„ุญู„
306
00:36:38,000 --> 00:36:43,940
ุงู„ุฃูˆู„ ุจู„ุง ู…ู†ุงุฒู„ ู„ุง ุญุฏ ุฅู„ุง ู†ุณุชุทูŠุจ ุงู†ุชู‡ุงุกู†ุง ู…ู† ู‡ุฐุง
307
00:36:43,940 --> 00:36:49,380
ุงู„ู€ section ูˆุฅู„ู‰ ูŠูƒูˆู† ุฃุฑู‚ุงู… ุงู„ู…ุณุงุฆู„ ูŠุจู‚ู‰ ู‡ุฐุง
308
00:36:49,380 --> 00:36:55,800
exercises 1 2 ุงู„ู…ุฒุงุฏ ุฅู„ู‰ ุงู„ุซุงู†ูŠุฉ 3
309
00:36:55,800 --> 00:37:03,660
5 7 8 9 11 8 9 11 ุฑู‚ู…
310
00:37:03,660 --> 00:37:11,880
12 ุจุนุฏู‡ุง 15 17 15 17 18
311
00:37:11,880 --> 00:37:15,080
19 20
312
00:37:40,360 --> 00:37:48,520
ูˆุตู„ู†ุง ุงู„ุขู† ู„ู…ุณุงุฆู„ ุนุงู…ุฉ ุนู„ู‰ ู‡ุฐุง ุงู„ุดุฎุต ุณุฃุฎุจุฑูƒู… ู…ู†
313
00:37:48,520 --> 00:37:49,320
ุฎู„ุงู„ ูƒู„ู…ุฉ
314
00:37:52,080 --> 00:37:57,060
ุนู„ู‰ ุงู„ู€ additional exercises ูŠุจู‚ู‰ ุงู„ู€ additional
315
00:37:57,060 --> 00:38:05,820
exercises ูŠุณุชุฎุฏู… ุณุคุงู„ ุฑู‚ู… 9 ุณุคุงู„ ุฑู‚ู… 9 ุจูŠู‚ูˆู„
316
00:38:05,820 --> 00:38:13,960
solve the differential equation ูู‡ูŠ ุงู„ู…ุนุงู…ู„ุฉ
317
00:38:13,960 --> 00:38:24,230
ุงู„ู‚ูˆู„ูŠุฉ 3X ูˆู‚ุช ุชุฑุจูŠุน ุงู„ูˆุงู‡ูŠุฉ time ุจุชุณุงูˆูŠ 3
318
00:38:24,230 --> 00:38:33,510
ูˆู‚ุช ูƒูŠุจ ุฒุงุฆุฏ 2X ุฒุงุฆุฏ 3/2 ุงู„ุฏุฑุฌ
319
00:38:33,510 --> 00:38:40,030
ุงู„ุชุฑุจูŠุนูŠ ู„ู€ X ูƒุซูŠุฑ ุฒุงุฆุฏ ูˆู‚ุช ูƒูŠุจ
320
00:38:50,160 --> 00:38:57,040
ุนุดุงู† ุฃู†ุง ุจุดุชุบู„ุด ุนู„ู‰ section ู…ุญุฏุฏ ุฃู†ุง ุจุฏูŠ ุฃุดูˆู ู…ุง ู‡ูˆ
321
00:38:57,040 --> 00:39:04,860
ุงู„ู…ู†ุงุณุจ ู„ุญู„ ู‡ุฐุง ุงู„ุณุคุงู„ ู‚ุงุนุฏ ูŠุจู‚ู‰ ุจุทู„ุน ู‡ุฐุง ุจุฏูŠ ุฃุดูˆู
322
00:39:04,860 --> 00:39:09,260
ุฃู† ุณูŠ ูุฑุงุจูˆุฑุฏุŒ ู„ูŠู†ูŠุงุŒ ุงุฌุฒุงูƒุŒ ูƒูˆู…ูˆุฏูŠูŠู†ูŠุง ุงุณู…ู‡ุง
323
00:39:09,260 --> 00:39:15,330
ุงู„ู…ู†ุงุณุจ ุณุคุงู„ ุขุฎุฑ ุฃู†ู‡ุง ู„ูŠู†ูŠุง ูˆู„ูˆ ุนู…ุฑู‡ ุงู„ุฑู…ุถุงู†ูŠ ู„ุฃู†
324
00:39:15,330 --> 00:39:18,930
ุงู„ุฌูŠู„ ุงู„ู„ูŠ ู‚ุงุฏุฑ ูŠุญุชุชุฑู…ู‡ ุนู„ู‰ X 100 ู‡ูˆ ุงู„ู„ูŠ ุจูŠุญุท
325
00:39:18,930 --> 00:39:25,150
ุฏูŠู†ู‡ุง ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุขู† ู‡ุฐู‡ exact ุจู…ุนู†ู‰ ู…ุณุชู‚ุจู„ ุชุงู„ูŠ
326
00:39:25,150 --> 00:39:28,410
ุจุงู„ู†ุณุจุฉ ู„ูŠ ุงู„ูˆุงู‚ุนูŠ ูƒุซูŠุฑ ูˆู…ุณุชู‚ุจู„ ุชุงู„ูŠ ุจุงู„ู†ุณุจุฉ ู„ูŠ
327
00:39:28,410 --> 00:39:33,470
ุงู„ูˆุงู‚ุนูŠ ู…ุณุชู‚ุจู„ ุชุงู„ูŠ ุจุงู„ู†ุณุจุฉ ู„ูŠ ุงู„ูˆุงู‚ุนูŠ 3 ูˆู…ุณุชู‚ุจู„
328
00:39:33,470 --> 00:39:37,070
ุชุงู„ูŠ ุจุงู„ู†ุณุจุฉ ู„ูŠ ุงู„ูˆุงู‚ุนูŠ 3 ุนุถูˆุงุช ุชุงู„ูŠุฉ ูˆู†ูุณู‡ุง
329
00:39:37,070 --> 00:39:41,510
ุชูˆุตู„ูƒ ู„ูˆุงู‚ุน ุงู„ุนุฏูˆ ู„ู„ุฌูŠู„ ุงู„ู„ูŠ ุชูุถู„ ู…ู† ุชุญุช ุงู„ุฌูŠู„ูŠ ูŠุจู‚ู‰
330
00:39:41,510 --> 00:39:46,890
ุชุฌูŠ ุชู‚ุฑุน ูˆุชุฌุณู…ูŠ ููŠ ู†ู‡ุงูŠุฉ ุฃูˆ ููŠ ู…ู†ุชู‡ู‰ ุงู„ุชุนู‚ูŠุฏ ูŠุจู‚ู‰
331
00:39:46,890 --> 00:39:58,770
ูƒู…ุงู† ุงู„ู€ exact ุญุทูŠู‡ุง ุนู„ู‰ ุดูƒู„ ูุงู„ุชุงู„ู
332
00:39:58,770 --> 00:40:03,790
ู…ูˆุฌูˆุฏ ููŠ ู†ุดูˆุท ู‡ู„ ุจู‚ุฏุฑ ุฃุณุชุฎุฏู… ููƒุฑุฉ ุจุฏู„ุงู„ุฉ X ุนู„ู‰ Y
333
00:40:03,790 --> 00:40:08,150
ุฃูˆ Y ุนู„ู‰ X ูˆู„ุง ู„ุฃุŸ ุฅุฐุง ูƒู†ุช ุชุฑูˆุญ ุชู‚ุณู… ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰
334
00:40:08,150 --> 00:40:13,510
ุงู„ู…ุฎุชุงุฑ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุงู„ุขู† ู„ูˆ ุฏู‡ ุณู…ูŠู†ุง ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ุจุตูŠุฑ
335
00:40:13,510 --> 00:40:18,370
ุนู„ู‰ ุงู„ุดูƒู„ ู…ุซู„ู‹ุง why are you sad 3 ู…ุน 3 ุจุทูˆุญ
336
00:40:18,370 --> 00:40:24,710
why ุซุงู†ูŠุฉ ู…ุน ูˆุงูŠ ุซุงู†ูŠุฉ ุจุทูˆุญ ูˆุทูˆู„ why ุนู„ูŠูƒ why ุนู„ูŠูƒ
337
00:40:24,710 --> 00:40:31,170
ู‡ุฐุง ุงู„ุดูƒู„ ู…ุนุงุดุฑ ุนู„ู‰ ุงู„ู…ูˆุถูˆุน 2 2 2
338
00:40:31,170 --> 00:40:34,630
2 2 2 2 2 2 2 2
339
00:40:34,630 --> 00:40:37,450
2 2
340
00:40:53,360 --> 00:41:00,220
ูŠุณุชุฎุฏู… Y ุฃุณ 3/2 ูŠุณุชุฎุฏู… Y
341
00:41:00,220 --> 00:41:11,000
ุฃุณ
342
00:41:11,000 --> 00:41:17,000
3/2 ูŠุณุชุฎุฏู… Y ุฃุณ 3/2 ูŠุณุชุฎุฏู… Y ุฃุณ 3/2 ู‡ุฐู‡
343
00:41:17,000 --> 00:41:23,900
ูˆู‡ุฐู‡ ุจูŠุจู‚ู‰ ุงู„ู€ X ุฃุตู„ู‹ุง ู†ุต ูˆุชุญุช Y ุฃุตู„ู‹ุง ู†ุต ูŠุจู‚ู‰ X ุนู„ู‰ Y
344
00:41:23,900 --> 00:41:33,820
ุฃุตู„ู‹ุง ู†ุต ูŠุจู‚ู‰ ู‡ุฐู‡ X ุนู„ู‰ Y ุฃุตู„ู‹ุง ู†ุต ุชู…ุงู… ุชู…ุงู… ุทูŠุจ ูŠุง ุจู†ุงุช
345
00:41:33,820 --> 00:41:41,160
ู‡ุฐู‡ ู…ุด ูŠุนุชุจุฑ ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠ ู„ู€ Y ุชูƒุนูŠุจ ูŠุนู†ูŠ ูƒุฃู†ู‡ ู‡ุฐุง
346
00:41:41,160 --> 00:41:43,960
ูƒู„ ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠ
347
00:41:51,230 --> 00:41:56,570
ู…ุธุจูˆุท ู‡ูŠูƒ ุตุญ ุทูŠุจ ุชู…ุงู… ุฅูŠุด ุฑุฃูŠูƒ ู‡ุฐู‡ homogeneous
348
00:41:56,570 --> 00:42:02,930
ู…ุธุจูˆุท ู‚ุฏุฑุช ุฃูƒุชุจู‡ุง ูƒู„ู‡ุง ุนู„ู‰ ุดูƒู„ Y ุนู„ู‰ X ุฃูˆ X ุนู„ู‰ Y
349
00:42:02,930 --> 00:42:09,990
ูŠุจู‚ู‰ ู‡ุฐู‡ homogeneous differential equation ูŠุจู‚ู‰
350
00:42:09,990 --> 00:42:16,990
ู…ุดุงู† ุฃุญู„ ุงู„ู€ homogeneous ุจุฏุฃ ุฃุฌูŠุจ ู„ู‡ ุญู‚ ู„ู„ู€ V ุชุณุงูˆูŠ Y
351
00:42:17,340 --> 00:42:27,600
ุนู„ู‰ X ูŠุจู‚ู‰ Y ูŠุณุงูˆูŠ X V V ูŠุจู‚ู‰ DY/DX ูŠุจู‚ู‰ V ุฒุงุฆุฏ
352
00:42:27,600 --> 00:42:34,960
X ููŠ DV/DX ุฅุฐุง ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ุชุฃุฎุฐ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ
353
00:42:34,960 --> 00:42:47,110
V ุฒุงุฆุฏ X ููŠ DV/DX ูŠุจู‚ู‰ V ุฒุงุฆุฏ 2/3 ุดูˆ ุฑุฃูŠูƒ
354
00:42:47,110 --> 00:42:54,770
ููŠ ู‡ุฐู‡ V ูˆุงู„ู„ู‡ 1 ุนู„ู‰ V 1 ุนู„ู‰ V ูŠุนู†ูŠ 1 ุนู„ู‰
355
00:42:54,770 --> 00:43:01,970
ุฌุฐุฑ ุงู„ู€ V ู„ุฅู† 1 ุนู„ู‰ V ุฃุตู„ู‹ุง ู†ุต ูˆู‡ุฐุง ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠ
356
00:43:01,970 --> 00:43:14,290
ุฅู„ู‰ ู…ูŠู†ุŸ ู„ู€ 1 ุนู„ู‰ V ูƒุฐู„ูƒ ุงู„ูƒู„ ุชูƒุนูŠุจ ุฒุงุฆุฏ 1 ุทูŠุจ
357
00:43:14,870 --> 00:43:20,010
ู‡ุฐู‡ ุฃุธู† ุฃู† ุงู„ู€ V ุจุชุฑูˆุญ ู…ุน ุงู„ู€ V ุจุตูŠุฑ ุนู†ุฏู†ุง ู„ูˆ ูˆุฏูŠุชู‡ุง
358
00:43:20,010 --> 00:43:25,130
ุนู†ุง ุจุชุฌูŠ ุจุดุฑุณุงู„ ุจุชุฑูˆุญ ู…ุนุงู‡ ูŠุจู‚ู‰ ุงู„ู€ X ุฏูŠ V/ุฏูŠ X
359
00:43:25,130 --> 00:43:32,810
ูŠุณุงูˆูŠ ู‡ุงูŠ 2/3 ูˆู‡ุฐุง 1 ุนู„ู‰ ุฌุฐุฑ ุงู„ู€ V ููŠ ุงู„ุฌุฐุฑ
360
00:43:32,810 --> 00:43:41,350
ุงู„ุชุฑุจูŠุนูŠ ู„ู…ูŠู†ุŸ ู„ู€ 1 ุฒุงุฆุฏ V ุชูƒุนูŠุจ ูƒู„ู‡ ุนู„ู‰ V ุชูƒุนูŠุจ
361
00:43:41,350 --> 00:43:52,930
ุทูŠุจ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ 2/3 1 ุนู„ู‰ V ุฃุณ ู†ุต ูˆู‡ุฐุง ู‡ูˆ
362
00:43:52,930 --> 00:44:00,030
ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠ ู„ู€ 1 ุฒุงุฆุฏ V ุชูƒุนูŠุจ ูˆู‡ุฐุง V ุฃุณ
363
00:44:00,030 --> 00:44:05,410
3/2 ุชู†ูุนุŸ ุงู„ุฌุฐุฑ ุงู„ู„ูŠ ููˆู‚ ุนู„ู‰ ุงู„ุฌุฐุฑ
364
00:44:05,410 --> 00:44:13,750
ุงู„ู„ูŠ ุชุญุช ูŠุนู†ูŠ ุตุงุฑ ุนู†ุฏูŠ X ููŠ DV/DX ูŠุณุงูˆูŠ 2/3
365
00:44:14,080 --> 00:44:27,140
ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠ ู„ู€ 1 ุฒุงุฆุฏ V ุชูƒุนูŠุจ ุนู„ู‰ V ุชุฑุจูŠุน ูŠุจู‚ู‰
366
00:44:27,140 --> 00:44:33,780
ู†ูุณ ุงู„ู…ุชุบูŠุฑุงุช ู†ูุณ ุงู„ู…ุชุบูŠุฑุงุช ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† V
367
00:44:33,780 --> 00
401
00:49:06,580 --> 00:49:11,340
ุฃุตุนุจ ุฃูˆ ู…ู† ุฃุตุนุจ ุงู„ุฃุณุฆู„ุฉ ููŠู‡ู… ู‡ุฐุง ุงุญู†ุง ุนู„ู‰ ู†ู‡ู„ูƒ
402
00:49:11,340 --> 00:49:15,780
ูƒู…ุซุงู„ ุนู„ู‰ ู‡ูŠูƒ ุจูŠูƒูˆู† ุงู†ุชู‡ู‰ ุงู„ chapter ุชุจุน ุงู„ู…ุนุงุฏู„ุงุช
403
00:49:15,780 --> 00:49:22,800
ุงู„ ุชูุงุถู„ูŠุฉ ูˆุงู„ู…ุฑุฉ ุงู„ู‚ุงุฏู…ุฉ ุฅู† ุดุงุก ุงู„ู„ู‡ ุจู†ุฏุฎู„ ููŠ ุฃูˆู„
404
00:49:22,800 --> 00:49:26,360
section ุงู„ู„ูŠ ู‡ูˆ ุงู„ matrices ูˆุงู„ determinants
405
00:49:26,360 --> 00:49:30,360
ุงู„ู…ุตููˆูุงุช ูˆุงู„ู…ุญุฏุฏุงุช ูŠุนุทูŠูƒู… ุงู„ุนุงููŠุฉ