|
1 |
|
00:00:21,160 --> 00:00:26,220 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ูุนูุฏ ุงูุขู ุฅูู ููุงูุฉ |
|
|
|
2 |
|
00:00:26,220 --> 00:00:29,920 |
|
ุงูู
ุญุงุถุฑุฉ ุงูู
ุงุถูุฉ ุงูู
ุญุงุถุฑุฉ ุงูู
ุงุถูุฉ ุจุฏุฃูุง ุจู
ูุถูุน ุงู |
|
|
|
3 |
|
00:00:29,920 --> 00:00:37,240 |
|
diagonalization ูููู ูุนู
ู ุงููู diagonalize ููู
ุตููุฉ |
|
|
|
4 |
|
00:00:37,240 --> 00:00:41,780 |
|
ุจู
ุนูู ุฎูููุง ู
ุตููุฉ ูุทุฑูุฉ ุงุจุชุฏูุง ุจุชุนุฑูู ุงู similar |
|
|
|
5 |
|
00:00:41,780 --> 00:00:47,180 |
|
matrix ููููุง ุงู ุงู similar matrix ุจุฅุฐุง ุฌุฏุฑุช ูุงุฌู |
|
|
|
6 |
|
00:00:47,180 --> 00:00:53,710 |
|
ู
ุตููุฉ ุชุงููุฉ Kุจุญูุซ ุงููู ูุฐู non zero matrix ูุนูู ุงู |
|
|
|
7 |
|
00:00:53,710 --> 00:00:57,610 |
|
non singular matrix ุงูุด ูุนูู ูุนูู ุงูู
ุนููุณ ุชุจุนูุง |
|
|
|
8 |
|
00:00:57,610 --> 00:01:02,470 |
|
ู
ูุฌูุฏ ุจุญูุซ ุงููู ุจูุจุฏุฃ ูุณูู ุงู K inverse ูู ุงู A ูู |
|
|
|
9 |
|
00:01:02,470 --> 00:01:06,750 |
|
ุงููู ุชู
ุงู
ุ ูุงุฎุฏูุง ุนูู ุฐูู ู
ุซุงูุง ูุงุญุฏุง ุจุนุฏ ู
ุง |
|
|
|
10 |
|
00:01:06,750 --> 00:01:11,440 |
|
ุฃุซุจุชูุงุฅู ุฅุฐุง ูุงูุช ุงู A similar ู B ูุฅู B similar ู |
|
|
|
11 |
|
00:01:11,440 --> 00:01:14,940 |
|
A ููู ููุณ ุงููุบุฉ ููู ููุณ ุงูููุช A is similar to |
|
|
|
12 |
|
00:01:14,940 --> 00:01:18,580 |
|
itself ุชู
ุงู
ูุจูู ูุฐุง ุงููู ุฎุฏูุงู ุงูู
ุญุงุถุฑุฉ ุงูู
ุงุถูุฉ ู |
|
|
|
13 |
|
00:01:18,580 --> 00:01:23,160 |
|
ุงูุขู ุจุฏูุง ูุถูู .. ุฃุฎุฏูุง ุทุจุนุง ู
ุซุงู ูุงุญุฏ ูุณู ูุงู
ุง |
|
|
|
14 |
|
00:01:23,160 --> 00:01:27,500 |
|
ูุงุฎุฏ ุฃู
ุซูุฉ ูุจุฏูุง ูุจุฏุฃ ูุญุท ุจุนุถ ุงูู
ุนููู
ุงุช ุงููุธุฑูุฉ |
|
|
|
15 |
|
00:01:27,500 --> 00:01:33,160 |
|
ุงูุฃุณุงุณูุฉ ุฃู ุงูุนู
ูุฏู ุงูููุฑู ูู ูุฐุง sectionุจูููู ูู |
|
|
|
16 |
|
00:01:33,160 --> 00:01:37,540 |
|
to show that the given n by n matrix is a is |
|
|
|
17 |
|
00:01:37,540 --> 00:01:41,120 |
|
similar to a diagonal matrix ู ุงู diagonal matrix |
|
|
|
18 |
|
00:01:41,120 --> 00:01:44,180 |
|
ูู ุจูุชูุจูุง ุจุงูุดูู ูุฐุง ู
ู ุญุฏ ู
ุง ุชุดููููุง ุฏู ูุนูู |
|
|
|
19 |
|
00:01:44,180 --> 00:01:49,800 |
|
ู
ุตููุฉ ูุทุฑูุฉ ุฌู
ูุน ุนูุงุตุฑูุง ุฃุตูุฑุง ู
ุนุงุฏุฉ ุนูุงุตุฑุงููุทุฑ |
|
|
|
20 |
|
00:01:49,800 --> 00:01:57,540 |
|
ุงูุฑุฆูุณู ูุฃุฎุฐ ุงููุธุฑูุฉ ุงูุชุงููุฉ ุทุจุนุง ู
ู ุงููู
ุฏุงุช ูุฐูู |
|
|
|
21 |
|
00:01:57,540 --> 00:02:00,400 |
|
ุงููู
ุฏุฉ ูุงุญุฏ ู ุงููู
ุฏุฉ ุงุชููู ู ุงููู
ุฏุฉ ุงู ูู ุงู eigen |
|
|
|
22 |
|
00:02:00,400 --> 00:02:07,440 |
|
values ู
ุด ุญูุงูู ู
ุด ุงู ุงุฑูุงู
ูุจูู ุงุฑูุงู
ู
ุญุฏุฏุฉุทูุจ |
|
|
|
23 |
|
00:02:07,440 --> 00:02:11,480 |
|
ุงููุธุฑูุฉ ุจุชููู ุฅููุ the n by n matrix A is similar |
|
|
|
24 |
|
00:02:11,480 --> 00:02:16,420 |
|
to a diagonal matrix ู
ูุงุญุธู ุงูู
ุฑุฉ ุงููู ูุงุชุช ุจุฏููุง |
|
|
|
25 |
|
00:02:16,420 --> 00:02:21,060 |
|
canvas A K ุทูุช ุนูู ู
ุตุฑููุฉ ูุทุฑูุฉ ูู ุงูุขุฎุฑุ ู
ุตุจูุท |
|
|
|
26 |
|
00:02:21,060 --> 00:02:24,920 |
|
ููุง ูุฃุ ุงูู
ุตุฑูู ุงููุทุฑูุฉ ุงูุนู
ูุฏู ุงูููุฑู ููู
ุฉ ุงู two |
|
|
|
27 |
|
00:02:24,920 --> 00:02:28,870 |
|
landers ุงููู ุทููุง ุนูุฏู ุจุงูุถุจุทูุจูู ููุง ูู
ุง ุฃููู ุงูู |
|
|
|
28 |
|
00:02:28,870 --> 00:02:32,650 |
|
A is similar to a diagonal matrix if and only if |
|
|
|
29 |
|
00:02:32,650 --> 00:02:36,350 |
|
it has a set of linearly independent eigenvectors |
|
|
|
30 |
|
00:02:36,350 --> 00:02:43,250 |
|
K1 ูK2 ูุบุงูุฉ KM ุงูููุงู
ูุฐุง ุจุฏู ุฃุนูุฏ ุตูุงุบุชู ู
ุฑุฉ |
|
|
|
31 |
|
00:02:43,250 --> 00:02:48,750 |
|
ุชุงููุฉ ุจุงุฌู ุจููู that is ูู ูุงู ุนูุฏ ุงูู
ุตููุฉ K ูุฐู |
|
|
|
32 |
|
00:02:48,750 --> 00:02:53,670 |
|
ู
ุตููุฉ K K1 ูู ุงูุนู
ูุฏ ุงูุฃูู K2 ุงูุนู
ูุฏ ุงูุชุงูุช KN |
|
|
|
33 |
|
00:02:53,670 --> 00:03:01,400 |
|
ุงูุนู
ูุฏ ุฑูู
Mููู eigen vector ูุฐุง ู
ูุงุธุฑ ูู
ูุ ู
ูุงุธุฑ |
|
|
|
34 |
|
00:03:01,400 --> 00:03:04,500 |
|
ูู eigen value ุงููู ูู ูุงูุฏุง ูุงุญุฏ ูุงูุชุงูู ูุงูุฏุง |
|
|
|
35 |
|
00:03:04,500 --> 00:03:08,920 |
|
ุงุชููู ูุงูุชุงูุชุฉ ูุงูุฏุง ุชูุงุชุฉ ูุงูุงุฎุฑ ูุงูุฏุง in them ุงู |
|
|
|
36 |
|
00:03:08,920 --> 00:03:14,340 |
|
K inverse A ูู ุงู K ุจุฏู ูุณุงูู ุงูู
ุตููุฉ ุงููู ุนูุฏูุง |
|
|
|
37 |
|
00:03:14,340 --> 00:03:18,880 |
|
ุฏู ูุนูู ุจุฏู ูุณุงูู ุงูู
ุตููุฉ ูุฌู
ูุน ุนูุงุตุฑูุง ุฃุตูุฑุง ู
ุง |
|
|
|
38 |
|
00:03:18,880 --> 00:03:25,450 |
|
ุนุฏุง ุนูุงุตุฑ ูุทุฉ ุงูุฑุฆูุณู ุจูููููุง ุนูู ุฃุณุฑูุง ูู ู
ูุูุฐู |
|
|
|
39 |
|
00:03:25,450 --> 00:03:29,090 |
|
ุงููุธุฑูุฉ ุจุชุญูู ุจุงููุงุฑุดุงูู ุงููุง ุฏู ูุจูู ูู ุงุนุทุงูู |
|
|
|
40 |
|
00:03:29,090 --> 00:03:35,010 |
|
ู
ุตูููุฉ ุงูู ุจุฏู ุงุฌูุจ ุงู diagonal matrix ุจุชุงุนูุง ุจุญูุซ |
|
|
|
41 |
|
00:03:35,010 --> 00:03:40,090 |
|
ุงูุนูุงุตุฑ ุชุจุน ุงู diagonal matrix ูููููุง ูู
ุงู eigen |
|
|
|
42 |
|
00:03:40,090 --> 00:03:46,120 |
|
values ูุจูู ุจุฏู ุงุญุงูู ุงุฌูุจุงููEigenvectors ุงููู |
|
|
|
43 |
|
00:03:46,120 --> 00:03:50,260 |
|
ุนูุฏูุง ูุงููEigenvectors ุจุณ ุจูุดุฑูููุง ูููู
linearly |
|
|
|
44 |
|
00:03:50,260 --> 00:03:54,260 |
|
independent ูุฃูู ุฌุงูู linearly independent ููู |
|
|
|
45 |
|
00:03:54,260 --> 00:03:58,420 |
|
ูุงุญุฏ ูุนุชู
ุฏ ุนูู ุงูุชุงูู ูููู
ู
ุณุชููุงุช ุนู ุจุนุถ ุชู
ุงู
|
|
|
|
46 |
|
00:03:58,420 --> 00:04:02,220 |
|
ุงูุงุณุชููุงู ูุจูู ุจุญุต ุงูุนุงูู
ูู ุนูู ุงู diagonal matrix |
|
|
|
47 |
|
00:04:03,840 --> 00:04:07,760 |
|
ุงูุงู ุจุฏุฃุฌู ููุนููุงู ุงููู ุงูุง ุฑุงูุนู ุงูู
ุฑุฉ ุงููู ูุงุชุช |
|
|
|
48 |
|
00:04:07,760 --> 00:04:11,780 |
|
ููุง ุจูุชููู
ุนู ุงู similar matrix ููุท ู ูู
ูุชููู
ุนู |
|
|
|
49 |
|
00:04:11,780 --> 00:04:15,460 |
|
ุงู diagonalization ุชู
ุงู
ุ ูุฐุง ุงูููุงู
ุงููู ุงุญูุง |
|
|
|
50 |
|
00:04:15,460 --> 00:04:19,140 |
|
ุจูุญูู ูู ุงู diagonalization ู ุงุญูุง ู
ุด ุฐุงุฑูู ุทูุน |
|
|
|
51 |
|
00:04:19,140 --> 00:04:20,120 |
|
ุงูุชุฑููุด ุจููู |
|
|
|
52 |
|
00:04:24,300 --> 00:04:28,980 |
|
ุงูุชุนุฑูู ุงููู ุฌุงุจูู if a is a similar to a diagonal |
|
|
|
53 |
|
00:04:28,980 --> 00:04:34,880 |
|
matrix ูุนูู ูุงูููุงู
ูุฐุง ุตุญูุญ then a is said to be |
|
|
|
54 |
|
00:04:34,880 --> 00:04:40,130 |
|
diagonalizableูุจูู ุงูู
ุตููุฉ ุงูู ุจููุฏุฑ ูุนู
ููุง ุนูู |
|
|
|
55 |
|
00:04:40,130 --> 00:04:46,770 |
|
ุดูู ู
ุตููุฉ ูุทุฑูุฉ ูุจูู ูู ูุงูุช ุงูู
ุตููุฉ similar to a |
|
|
|
56 |
|
00:04:46,770 --> 00:04:50,330 |
|
diagonal matrix automatic ุจููู ุงู ุงู a ุฏู |
|
|
|
57 |
|
00:04:50,330 --> 00:04:55,180 |
|
diagonalizableุทูุจ ุงูุชุนุฑูู ุงูุชุงูู ุจูููู ูู ูุงูุช ุงู |
|
|
|
58 |
|
00:04:55,180 --> 00:05:00,600 |
|
a diagonalizable matrix then it processes ูุชูุชุฑุถ |
|
|
|
59 |
|
00:05:00,600 --> 00:05:05,100 |
|
in linearly independent eigenvectors ูุจูู ุงู |
|
|
|
60 |
|
00:05:05,100 --> 00:05:08,140 |
|
eigenvectors ุงููู ุนูุฏูุง ุนุฏุฏูู
ูุณุงูู in ุจุฏูู
ูููููุง |
|
|
|
61 |
|
00:05:08,140 --> 00:05:15,240 |
|
linearly independentููุฐู ุงูุณุชุฉ ูุณู
ููุง complete set |
|
|
|
62 |
|
00:05:15,240 --> 00:05:20,380 |
|
of eigenvectors ูุจูู ูุฐู ุงูู
ุฌู
ูุนุฉ ุงููุงู
ูุฉ ูู
ูู ูู |
|
|
|
63 |
|
00:05:20,380 --> 00:05:24,040 |
|
eigenvectors ุงููู ุนูุฏูุง ุนูู ุฃู ุญุงู ุงูุชุนุฑูู |
|
|
|
64 |
|
00:05:24,040 --> 00:05:29,380 |
|
ุงูุฃููุงูู ุฏููู ุฌุฏุง ูุฃูู ูููููู ููู ุจุฏู ุชุฎูู ุงูู
ุตููุฉ |
|
|
|
65 |
|
00:05:29,380 --> 00:05:34,920 |
|
ุฏู diagonal matrix ุตุญ ุงูุณุคุงู ู
ู
ููุทูุน ููุง ูุทุฑุญ ุญุฏุซ |
|
|
|
66 |
|
00:05:34,920 --> 00:05:39,440 |
|
ู ูุญุงูู ุงูุฅุฌุงุจุฉ ุนููู ูู
ุดู ุฎุทูุงุช ู
ุญุฏุฏุฉ ุงูุขู ุจุนุฏ |
|
|
|
67 |
|
00:05:39,440 --> 00:05:44,080 |
|
ูููู ูุชุฌูุฌู ู
ุนุงูุง ุจููู how to diagonalize an n by |
|
|
|
68 |
|
00:05:44,080 --> 00:05:48,180 |
|
n matrix ุงูุง ุจุนุทูู ู
ุตูููุฉ ูู
ุง ุงุนุทูู ู
ุตูููุฉ ููู |
|
|
|
69 |
|
00:05:48,180 --> 00:05:55,500 |
|
ุงูู
ุตูููุฉ ุฏูุจุชูุชุจ ุนูููุง ุนูู ุดูู ูุทุฑู ููุท ูุจุญูุซ |
|
|
|
70 |
|
00:05:55,500 --> 00:06:00,480 |
|
ุนูุงุตุฑ ุงููุทุฑ ุงูุฑุฆูุณู ูู
ุง ุงููEigenvalues ููุท ูุง ุบูุฑ |
|
|
|
71 |
|
00:06:00,480 --> 00:06:04,360 |
|
ุจููู ููุง ุจุฏู ุฃู
ุดู ุชูุช ุฎุทูุงุช ุงููู ุนูุฏูุง ุฎุทูุฉ ุงูุฃููู |
|
|
|
72 |
|
00:06:06,680 --> 00:06:10,320 |
|
Find in linearly independent eigenvectors of the |
|
|
|
73 |
|
00:06:10,320 --> 00:06:15,720 |
|
matrix A,C,K1,K2 ูุบุงูุฉ KN ููุฐุง ุงูููุงู
ุจุฌููุงู ุงุญูุง |
|
|
|
74 |
|
00:06:15,720 --> 00:06:20,020 |
|
ุจููุฌุฏู ูู ุงูุฃู
ุซูุฉ ุงูุณุงุจูุฉ ูู ุฃุฑุจุน section ูุงุญุฏ ูุงู |
|
|
|
75 |
|
00:06:20,020 --> 00:06:24,310 |
|
ุงู eigenvalues ู ุงู eigenvectorsุฅุฐุง ุงูุฎุทูุฉ ุงูุฃููู |
|
|
|
76 |
|
00:06:24,310 --> 00:06:30,090 |
|
ุชุญุตูู ุญุงุตู ูู ูู ุงูุฃู
ุซูุฉ ุงููู ูุงุชุช ุณูุงุก ูุงูุช |
|
|
|
77 |
|
00:06:30,090 --> 00:06:33,530 |
|
complex ุงููู ุงููู ูุนููุง ูุงูุช complex ุฃู real ุตุญูุญ |
|
|
|
78 |
|
00:06:33,530 --> 00:06:37,830 |
|
ููุง ูุง ูุฌุจ ุงูุฎุทูุฉ ุงูุฃููู ูู
ูุฃุชู ุจุฌุฏูุฏ ูุฌู ุงูุฎุทูุฉ |
|
|
|
79 |
|
00:06:37,830 --> 00:06:42,690 |
|
ุงูุชุงููุฉ finally matrix Kุงููู ูู ุนูุงุตุฑ ูู
ุงููู ุนู
ูุฏ |
|
|
|
80 |
|
00:06:42,690 --> 00:06:48,090 |
|
ุงูุฃูู ููุงุญุฏ ูุชููู ูุงู
ูุจุฌู ูุฐู ุจุฑุถู ููุง ุจููุชุจูุง |
|
|
|
81 |
|
00:06:48,090 --> 00:06:50,930 |
|
ุงููู ูู ุงูุนูุงุตุฑ ุงููู ุนูุฏูุง ูุฐู ุชุจุนุช ุงู |
|
|
|
82 |
|
00:06:50,930 --> 00:06:54,870 |
|
eigenvectors ูู
ุง ูููู ุงูุณุช ูุฐู ุชูุณู
ูุช ุงู bases ูู |
|
|
|
83 |
|
00:06:54,870 --> 00:07:00,260 |
|
eigen spaces ุชู
ุงู
ุ ูุจุฌูุ ุฅูู ุงูู
ุตุฑูู ูู ูุฐูุWhere |
|
|
|
84 |
|
00:07:00,260 --> 00:07:04,840 |
|
ุงูููุงุช ูุฐูู are called eigenvectors ูุจูู ุฌูุจูุง ูู |
|
|
|
85 |
|
00:07:04,840 --> 00:07:09,820 |
|
ุงูู
ุตููุฉ ุชุญุตูู ุญุงุตู ูู
ุงู ูุฐู ูุนูู ุงู eigenvectors |
|
|
|
86 |
|
00:07:09,820 --> 00:07:13,560 |
|
ุงููู ุฌูุจูุงูู
ุจุฏู ุชูุชุจูู
ุจุณ ุนูู ุดูู ุงูู
ุตููุฉ ูู ุงููู |
|
|
|
87 |
|
00:07:13,560 --> 00:07:17,900 |
|
ุจุชูููู ู
ููู
ุงูุฎุทูุฉ ุงูุซุงููุฉูุจูู ุงูุฎุทูุฉ ุงูุฃููู ุจุฏู |
|
|
|
88 |
|
00:07:17,900 --> 00:07:21,100 |
|
ุฃุฌูุจ ุงู eigenvalues ู ุงู eigenvectors ุงูุฎุทูุฉ |
|
|
|
89 |
|
00:07:21,100 --> 00:07:24,660 |
|
ุงูุชุงููุฉ ุจุฏู ุฃูุชุจ ุงู eigenvectors ุนูู ุดูู ู
ุตูููุฉ |
|
|
|
90 |
|
00:07:24,660 --> 00:07:30,820 |
|
ุงูุฎุทูุฉ ุงูุชุงูุชุฉ ุฏู matrix ุงูู
ุตููุฉ ูุฅููุฑุณ A ูู ูุงูุจ |
|
|
|
91 |
|
00:07:30,820 --> 00:07:35,080 |
|
A ุฏูุงุฌููุงู matrix ุญุฏููุง ุงูุฑู
ุฒ ุฏู ูุจูู ุจุชุทูุน ุนูุฏู |
|
|
|
92 |
|
00:07:35,080 --> 00:07:39,180 |
|
ุงู diagonal ูุนูู ุจุฏู ุฃุถุฑุจู
ุนููุณ ุงูู
ุตูููุฉ K ุงููู |
|
|
|
93 |
|
00:07:39,180 --> 00:07:43,240 |
|
ุทูุนุช ููุง ููุง ูู ุงุชููู ูู ุงูู
ุตูููุฉ A ุงูุฃุตูู ุงููู |
|
|
|
94 |
|
00:07:43,240 --> 00:07:48,180 |
|
ุนูุฏู ูู ุงูู
ุตูููุฉ K ุงููุชุฌ ูุงุฒู
ูุทูุน ุงูู
ุตูููุฉ ุงููู |
|
|
|
95 |
|
00:07:48,180 --> 00:07:51,460 |
|
ุนูุฏูุง ูุฐู where lambda I the eigenvector the |
|
|
|
96 |
|
00:07:51,460 --> 00:07:56,580 |
|
eigenvalue corresponding to Ki ูุงูI ู
ู ูุงุญุฏ ูุบุงูุฉ |
|
|
|
97 |
|
00:07:56,580 --> 00:08:01,200 |
|
ู
ูู ูุบุงูุฉ ุงู N ุทุจ ุญุฏ ูููู
ุจุชุญุจ ุชุณุฃู ุฃู ุณุคุงู ูู |
|
|
|
98 |
|
00:08:01,200 --> 00:08:05,120 |
|
ุงูููู
ุชูู ุงูุง ุงุถุบุทูู ูุจู ุงู ูุฐูุจ ููุชุทุจูู ุงูุนุงู
ูู |
|
|
|
99 |
|
00:08:05,120 --> 00:08:11,690 |
|
ููุฐุง ุงูููุงู
ุญุฏุซ ููููุง ุชุญุจ ุชุณุฃููุง ุงู ุณุคุงูุ ุฌุงูุฒููุ |
|
|
|
100 |
|
00:08:11,690 --> 00:08:16,010 |
|
ุทูุจ ุทุจุนุง ุชุนุฑููุง ุงูุงู
ุชุญุงู ูุฌู ุงูููู
24 ุงููู ูู ููู
|
|
|
|
101 |
|
00:08:16,010 --> 00:08:20,750 |
|
ุงูุซูุงุซุงุก ู
ุด ุจูุฑุง ุงูุซูุงุซุงุก ุงููู ุจุนุฏูุง ุงูุฃุฑุจุนุฉ ููุง |
|
|
|
102 |
|
00:08:20,750 --> 00:08:25,470 |
|
ุงูุซูุงุซุฉุ ุงูุฃุฑุจุนุฉ ุงูุฃุฑุจุนุฉ ู
ุงููุด ู
ุดููุฉ ุนุงุฏู ุฌุฏุง ูุจูู |
|
|
|
103 |
|
00:08:25,470 --> 00:08:29,910 |
|
ุงูุงู
ุชุญุงู ููู
ุงูุฃุฑุจุนุงุก ุงููู ูู ุงููุงุฏู
ุณุงุนุฉ ูุฏ ุฃูุดุ |
|
|
|
104 |
|
00:08:29,910 --> 00:08:35,140 |
|
ุณุงุนุชูู ุชุงููุฉ ุจุนุฏ ู
ุง ูุฎูุต ู
ุญุงุถุฑุชูุงุจุณ ุนูุฏ ุงูุทูุงุจ ู
ุด |
|
|
|
105 |
|
00:08:35,140 --> 00:08:41,920 |
|
ุนูุฏูู
. ุทูุจ ุนูู ุฃู ุญุงู ู
ุง ุนูููุง ูุจูู ุงูุงู
ุชุญุงู ูู
ุง |
|
|
|
106 |
|
00:08:41,920 --> 00:08:47,280 |
|
ูู ูู chapter 3 ู ุจุงูู chapter 2 ู
ุด ููุถูู ุฒูุงุฏุฉ |
|
|
|
107 |
|
00:08:47,280 --> 00:08:53,290 |
|
ููู
ุชุญุงู ุงูุทุจุนู ุฌุงูุฒ.ูุฐุง ูู ุงูู
ุซุงู ุงููู ุนูุฏูุง ุจูููู |
|
|
|
108 |
|
00:08:53,290 --> 00:08:57,430 |
|
ุฎุฏ ุงูู
ุตููุฉ ูุธุงู
ูุง ุงุชููู ูู ุงุชููู ุฒู ู
ุง ุงูุช ุดุงูู |
|
|
|
109 |
|
00:08:57,430 --> 00:09:01,190 |
|
ูุงุชู ุงู eigen value ู ุงู eigen vectors ูุจูู ูุฐุง |
|
|
|
110 |
|
00:09:01,190 --> 00:09:04,070 |
|
ุงููู ููุง ุจูุฌูุจู ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ ูู ุงู section ุงุฑุจุนุฉ |
|
|
|
111 |
|
00:09:04,070 --> 00:09:08,510 |
|
ูุงุญุฏ ุจุนุฏูู ุชุจููู ุงู ุงู a is diagonalizable ูุจูู |
|
|
|
112 |
|
00:09:08,510 --> 00:09:15,340 |
|
ุจุนุฏูู ุชุจููู ุงู ุงูู
ุตููุฉ aุจูุฏุฑ ุงุณุชุจุฏููุง ุจู
ุตูููุฉ |
|
|
|
113 |
|
00:09:15,340 --> 00:09:21,180 |
|
ูุทุฑูุฉ ุนูุงุตุฑูุง ูู
ุง ุนูุงุตุฑ ู
ู ุงูู eigenvalues ุฅุฐุง ุจุฏู |
|
|
|
114 |
|
00:09:21,180 --> 00:09:28,300 |
|
ุฃุจุฏุฃ ุฒู ู
ุง ููุช ุจุจุฏุฃ ููุงู ุจุฏู ุฃุฎุฏ lambda I ูุงูุต |
|
|
|
115 |
|
00:09:28,300 --> 00:09:36,080 |
|
ุงูู
ุตูููุฉ A ูุชุณุงูู I Lambda ู ููุง Zero Zero Lambda |
|
|
|
116 |
|
00:09:36,080 --> 00:09:38,540 |
|
ูุงูุต ุงูู
ุตูููุฉ A |
|
|
|
117 |
|
00:09:41,740 --> 00:09:46,140 |
|
ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุง ูุฐู ุจุชุตุจุญ ุนูู ุงูุดูู ุงูุชุงูู |
|
|
|
118 |
|
00:09:46,140 --> 00:09:53,160 |
|
ููุง ููุฏู ู
ุงููุด ุบูุฑูุง ู ููุง ูุงูุต ูุงุญุฏ ู ููุง ูุงูุต |
|
|
|
119 |
|
00:09:53,160 --> 00:09:59,820 |
|
ุงุชููู ู ููุง ููุฏู ูุงูุต ูุงุญุฏ ุจุงูุดูู ุงููู ุนูุฏูุง ููุง |
|
|
|
120 |
|
00:10:00,650 --> 00:10:04,650 |
|
ุจุนุฏ ุฐูู ุณุฃุญุตู ุนูู determinant ู
ู ุฎูุงู ุงูู |
|
|
|
121 |
|
00:10:04,650 --> 00:10:08,250 |
|
determinant ุฃู ุงูู
ุญุฏุฏ ุณุฃุญุตู ุนูู ููู
ุงูู |
|
|
|
122 |
|
00:10:08,250 --> 00:10:14,090 |
|
eigenvalues ูุจูู ุณุฃุญุตู ุนูู determinant ูู
ู ู |
|
|
|
123 |
|
00:10:14,090 --> 00:10:20,330 |
|
lambda I ูุงูุต ุงูู A ู ุฃุณูู ุจุงูุฒูุฑู ูุจูู ูุฐุง ู
ุนูุงู |
|
|
|
124 |
|
00:10:20,330 --> 00:10:26,570 |
|
ุงู ุงูู
ุญุฏุฏ lambda ุณุงูุจ ูุงุญุฏ ุณุงูุจ ุงุชููู lambda ุณุงูุจ |
|
|
|
125 |
|
00:10:26,570 --> 00:10:33,390 |
|
ูุงุญุฏ ุณูุณููุจุชูู ูุฐุง ูุจูู ูุงูุฏุง ูู ูุงูุฏุง ูุงูุต ูุงุญุฏ |
|
|
|
126 |
|
00:10:33,390 --> 00:10:39,450 |
|
ูุงูุต ุงุชููู ูุณุงูู ู
ููุ ูุณุงูู Zero ูุจูู ุงูู
ุญุฏุฏ ูุฐุง |
|
|
|
127 |
|
00:10:39,450 --> 00:10:46,370 |
|
ูู ูุงูุฏุง ุชุฑุจูุน ูุงูุต ูุงูุฏุง ูุงูุต ุงุชููู ูุณุงูู Zero |
|
|
|
128 |
|
00:10:46,370 --> 00:10:52,770 |
|
ุจุฏู ุงุญูู ูุฐุง ูุญุตู ุถุฑุจ ููุณูู ูุจูู ุงู ุญุตู ุถุฑุจ ุนุงู
ููู |
|
|
|
129 |
|
00:10:52,770 --> 00:11:00,050 |
|
ูุณุงูู Zeroููุง lambda ููุง lambda ููุง ูุงุญุฏ ููุง ุงุชููู |
|
|
|
130 |
|
00:11:00,050 --> 00:11:04,930 |
|
ููุง ูุงูุต ููุง ุฒุงุฆุฏ ูุจูู ุฒุงุฆุฏ lambda ุงู ูุงูุต ุงุชููู |
|
|
|
131 |
|
00:11:04,930 --> 00:11:08,190 |
|
lambda ุจูุจูู ูุงูุต lambda ูุงุญุฏุฉ ูู ู
ูุฌูุฏุฉ ุนูุฏูุง |
|
|
|
132 |
|
00:11:08,190 --> 00:11:13,730 |
|
ูุจูู ุชุญููููุง ุณููู
ูุจูู ุจูุงุก ุนููู lambda ุชุณุงูู ุณุงูุจ |
|
|
|
133 |
|
00:11:13,730 --> 00:11:17,910 |
|
ูุงุญุฏ ู lambda ุชุณุงูู ุงุชููู ู
ู ูุฐูู ุงูุจูุงุช |
|
|
|
134 |
|
00:11:21,730 --> 00:11:29,470 |
|
ูุจูู ูุฐูู are the eigenvalues |
|
|
|
135 |
|
00:11:29,470 --> 00:11:39,530 |
|
of the matrix A ูุจูู ูุฐูู ุงููู ูู
ุงู eigenvalues |
|
|
|
136 |
|
00:11:57,290 --> 00:12:02,270 |
|
ุจุนุฏ ุฐูู ูุฌูุจ ุงููEigenvectors ูุจูู ุงุญูุง ุญุชู ุงูุขู ูู |
|
|
|
137 |
|
00:12:02,270 --> 00:12:06,390 |
|
ุงูุฎุทูุฉ ุงูุฃููู ูุณู ุฌูุจูุง ุงููEigenvalues ูุจุนุฏ ุฐูู |
|
|
|
138 |
|
00:12:06,390 --> 00:12:09,930 |
|
ูุฌูุจ ุงููEigenvectors |
|
|
|
139 |
|
00:12:09,930 --> 00:12:16,490 |
|
ูุจูู ุจุงูุฏู ุฏู ููู
ุตููุฉ ุงู ูุญุงุตู ุงูุถุฑุจ ุงููู ูู ู
ูู |
|
|
|
140 |
|
00:12:18,900 --> 00:12:22,260 |
|
ูุฐุง ููู ู
ู ุฃูู ูู
ุจุชุฏุฃ ุงูุญููุฉ ุชุนุชุจุฑ ุงูููุทุฉ ุงูุฃููู |
|
|
|
141 |
|
00:12:22,260 --> 00:12:29,560 |
|
ูู
ุฑุฉ a ุงุญูุง ุงููุง lambda I ูุงูุต ุงู a ูู ุงู X ุจูุณุงูู |
|
|
|
142 |
|
00:12:29,560 --> 00:12:32,660 |
|
zero ูุฐู ุงูู
ุนุงุฏูุฉ ุงูุฃุตููุฉ ุงููู ุจูุดุชุบู ุนูููุง |
|
|
|
143 |
|
00:12:32,660 --> 00:12:40,440 |
|
ุงุจุชุฏุงุฆูุง ู
ู section 4-1 ูู ูู ู
ุงุบูุฑูุงุด ูุฐุง ู
ุนูุงูู
|
|
|
|
144 |
|
00:12:42,120 --> 00:12:47,200 |
|
ูุงูุฏ ุงู ูุงูุต ุงุชููู ูู ูุฌุงุฒุฉ ุงูู
ุตููุฉ ูุงููุง ูุงูุต |
|
|
|
145 |
|
00:12:47,200 --> 00:12:52,320 |
|
ูุงุญุฏ ูุงูุฏ ุงู ูุงูุต ุงุชููู ูุงูุฏ ุงู ูุงูุต ูุงุญุฏ ูุงูุฏ ุงู |
|
|
|
146 |
|
00:12:52,320 --> 00:12:54,480 |
|
ูุงูุต ุงุชููู ูุงูุฏ ุงู ูุงูุต ุงุชููู ูุงูุฏ ุงู ูุงูุต ุงุชููู |
|
|
|
147 |
|
00:12:54,480 --> 00:12:55,100 |
|
ูุงูุฏ ุงู ูุงูุต ุงุชููู ูุงูุฏ ุงู ูุงูุต ุงุชููู ูุงูุฏ ุงู ูุงูุต |
|
|
|
148 |
|
00:12:55,100 --> 00:12:55,320 |
|
ุงุชููู ูุงูุฏ ุงู ูุงูุต ุงุชููู ูุงูุฏ ุงู ูุงูุต ุงุชููู ูุงูุฏ |
|
|
|
149 |
|
00:12:55,320 --> 00:12:55,620 |
|
ุงู ูุงูุต ุงุชููู ูุงูุฏ ุงู ูุงูุต ุงุชููู ูุงูุฏ ุงู ูุงูุต |
|
|
|
150 |
|
00:12:55,620 --> 00:12:59,240 |
|
ุงุชููู ูุงูุฏ ุงู ูุงูุต ุงุชููู ูุงูุฏ ุงู ูุงูุต ุงุชููู |
|
|
|
151 |
|
00:12:59,350 --> 00:13:05,730 |
|
ุจุชุงุฎุฏ ุงูุญุงูุฉ ุงูุฃููู ูู ูุงูุช Lambda ุชุณุงูู ุณุงูุจ ูุงุญุฏ |
|
|
|
152 |
|
00:13:05,730 --> 00:13:09,410 |
|
ู
ุงููุด ุงููู ุจุฏู ูุตูุฑ ูุจูู ุจุฏู ุฃุดูู ูู Lambda ู ุฃุญุท |
|
|
|
153 |
|
00:13:09,410 --> 00:13:14,570 |
|
ู
ูุงููุง ุณุงูุจ ูุงุญุฏ ูุจูู ุจุตูุฑ ุนูู ููุง ุณุงูุจ ูุงุญุฏ ุณุงูุจ |
|
|
|
154 |
|
00:13:14,570 --> 00:13:22,530 |
|
ูุงุญุฏ ู ููุง ุณุงูุจ ุงุชููู ุณุงูุจ ุงุชููู ูู X ูุงุญุฏ X ุงุชููู |
|
|
|
155 |
|
00:13:22,530 --> 00:13:27,650 |
|
ููู ุจุฏู ูุณุงูู ู
ู Zero ู Zeroูุฐุง ุงูู
ุนุงุฏู ูุฌุจ ุฃู |
|
|
|
156 |
|
00:13:27,650 --> 00:13:32,270 |
|
ุฃููุฑ ุงูู
ุนุงุฏูุฉ ูุฐู ู ุฃุญูููุง ุฅูู ู
ุนุงุฏูุงุช ูุนูู |
|
|
|
157 |
|
00:13:32,270 --> 00:13:35,070 |
|
ุงูู
ุนุงุฏูุฉ ุงูู
ุตููููุฉ ูุฌุจ ุฃู ุฃุถุฑุจูุง ู ุฃุญูููุง ุฅูู |
|
|
|
158 |
|
00:13:35,070 --> 00:13:41,890 |
|
ู
ุนุงุฏูุชูู ูุฃููู ูู ูุงูุต X1 ูุงูุต X2 ุณูููู Zero ูููุง |
|
|
|
159 |
|
00:13:41,890 --> 00:13:49,210 |
|
ูุงูุต 2 X1 ูุงูุต 2 X2 ุณูููู Zero ูุฐู ูุงูุช ู
ุนุงุฏูุฉ ูุง |
|
|
|
160 |
|
00:13:49,210 --> 00:13:54,000 |
|
ุจูุงุชู
ุนุงุฏูุฉ ูุงุญุฏุฉ ุชูุชูู ูู ูู ุงูุญูููุฉ ู
ุนุงุฏูุฉ ูุงุญุฏุฉ |
|
|
|
161 |
|
00:13:54,000 --> 00:14:00,860 |
|
ุฅุฐุง ูุฐู ุงูู
ุนุงุฏูุฉ ุงููุงุญุฏุฉ X1 ุฒุงุฆุฏ X2 ุจุฏู ูุณุงูู Zero |
|
|
|
162 |
|
00:14:00,860 --> 00:14:08,820 |
|
ูู
ููุง X1 ุจุฏู ูุณุงูู ู
ู ุณุงูุจ X2 ุฃู X2 ุจุฏู ูุณุงูู ุณุงูุจ |
|
|
|
163 |
|
00:14:08,820 --> 00:14:17,060 |
|
X1ูุจูู ุจุงุฌู ุจูููู ูู ูุงูุช ุงู X2 ุจุฏู ุณุงูู A then X1 |
|
|
|
164 |
|
00:14:17,060 --> 00:14:25,760 |
|
ุจุฏู ู
ูู ุณุงูุจ A ูุฐุง ุจุฏู ูุนุทููู the eigen vectors |
|
|
|
165 |
|
00:14:26,750 --> 00:14:37,190 |
|
are in the form ุนูู ุงูุดูู ุงูุชุงูู ุงููู ูู
ุง ู
ู X1 X2 |
|
|
|
166 |
|
00:14:37,190 --> 00:14:47,310 |
|
ุจุฏู ูุณุงูู X1 ุงููู ูู ูุงูุต A ู X2 ุงููู ูู A ุจุงูุดูู |
|
|
|
167 |
|
00:14:47,310 --> 00:14:51,590 |
|
ุงููู ุนูุฏูุง ุงู A ูู ุณุงูุจ ูุงุญุฏ ูุงุญุฏ |
|
|
|
168 |
|
00:14:54,310 --> 00:15:00,330 |
|
ูุจูู ุทุงูุน ุนูุฏู ูุฐุง ูู ูู
ุซู mean bases ูู eigen |
|
|
|
169 |
|
00:15:00,330 --> 00:15:06,510 |
|
vector space ุงูู
ูุงุธุฑ ูู eigen value ูู
ู lambda |
|
|
|
170 |
|
00:15:06,510 --> 00:15:08,590 |
|
ุชุณุงูู ุณุงูุจ ูุงุญุฏ |
|
|
|
171 |
|
00:15:17,540 --> 00:15:22,440 |
|
ุงูุงู ุจุฏูุง ูุฌู ูู
ููุ ูุงุฎุฏ ูุงู ุฏู ุงูุชุงููุฉ ูุจูู ุจุงุฌู |
|
|
|
172 |
|
00:15:22,440 --> 00:15:29,200 |
|
ุจูููู ููุง F ูุงู ุฏู ุชุฒุงูู ุงูุชุงููุฉ ุทูุช ู
ุนุงูุง ุงุชููู |
|
|
|
173 |
|
00:15:29,200 --> 00:15:34,970 |
|
ูุจูู thenูู
ุง ุทูุนุช ูุงูุฏุง ุชุณุงูู ุงุชููู ูุจูู ุงูู
ุนุงุฏูุฉ |
|
|
|
174 |
|
00:15:34,970 --> 00:15:39,390 |
|
ุงูู
ุตูููุฉ ูุชููู ุนููู ุงูุดูู ุงูุชุงูู ูุดูู ูู ูุงูุฏุง ู |
|
|
|
175 |
|
00:15:39,390 --> 00:15:45,330 |
|
ุงุญุท ู
ูุงููุง ุงุชููู ูุจูู ุงุชููู ูุงูุต ูุงุญุฏ ููุง ูุงูุต |
|
|
|
176 |
|
00:15:45,330 --> 00:15:50,690 |
|
ุงุชููู ู ุงุชููู ูุงูุต ูุงุญุฏ ุงููู ูุจูู ุฏุฑุฌุฉ ุงุจ ูุงุญุฏ |
|
|
|
177 |
|
00:15:50,690 --> 00:15:55,830 |
|
ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุง X ูุงุญุฏ X ุงุชููู ุจุฏูุง ุชุณุงูู |
|
|
|
178 |
|
00:15:55,830 --> 00:16:02,120 |
|
Zero Zeroูุฐูู ูุชุนุทููู ู
ุนุงุฏูุชูู ุงูู
ุนุงุฏูุฉ ุงูุฃููู |
|
|
|
179 |
|
00:16:02,120 --> 00:16:08,520 |
|
ุงููู ูู 2x1-x2 ุจุฏู ูุณูู zero ูุงูู
ุนุงุฏูุฉ ุงูุชุงููุฉ |
|
|
|
180 |
|
00:16:08,520 --> 00:16:16,600 |
|
ุงููุงูุตู 2x1 ุฒุงุฆุฏ x2 ุจุฑุถู ูุณูู zero ูุฐูู ูุงู
ู
ุนุงุฏูุฉ |
|
|
|
181 |
|
00:16:16,600 --> 00:16:21,210 |
|
ูุง ุจูุงุชุู
ุนุงุฏูุฉ ูุงุญุฏุฉ ูุฃู ูู ุถุฑุจุช ุงูุชุงููุฉ ูู ุณุงูุจ |
|
|
|
182 |
|
00:16:21,210 --> 00:16:26,270 |
|
ุจูุตูุฑ ูู ุงูู
ุนุงุฏูุฉ ุงูุฃููู ูุจูู ูุฐุง ู
ุนูุงู ุงูู ุงุชููู |
|
|
|
183 |
|
00:16:26,270 --> 00:16:31,910 |
|
ุงูุณ ูุงุญุฏ ูุงูุต ุงูุณ ุงุชููู ุจุฏู ูุณุงูู Zero ูุฐุง ู
ุนูุงู |
|
|
|
184 |
|
00:16:31,910 --> 00:16:36,970 |
|
ุงู ุงูุณ ุงุชููู ุจุฏู ูุณุงูู ุงุชููู ุงูุณ ูุงุญุฏ ูุจูู ูุฐุง |
|
|
|
185 |
|
00:16:36,970 --> 00:16:44,750 |
|
ู
ุนูุงู ุงู ูู ูุงูุช ุงู X ูุงุญุฏ ุชุณุงูู ุงูู ูุงููู ุจู ู
ุซูุง |
|
|
|
186 |
|
00:16:44,750 --> 00:16:57,200 |
|
thenุจุนุฏ ุฐูู X2 ูููู 2B ูุจุงูุชุงูู ุงุตุจุญุช ููุง ู
ู the |
|
|
|
187 |
|
00:16:57,200 --> 00:17:08,180 |
|
Eigen vectors are inthe form ุตุงุฑ ุนูู ุงูุดูู ุงูุชุงูู |
|
|
|
188 |
|
00:17:08,180 --> 00:17:16,540 |
|
ุงู X1 ุจ B ู ููุง ุจ 2B ูุนูู ุจูู ุจุฑุง ู ููุง ูุงุญุฏ ุงุชููู |
|
|
|
189 |
|
00:17:16,540 --> 00:17:23,720 |
|
ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุง ุทุจุนุง ูุฐุง ูู
ุซู bases ูู
ูู ูู |
|
|
|
190 |
|
00:17:23,720 --> 00:17:30,380 |
|
eigen vector space ุงููู ุนูุฏูุง ุทูุจ ุงูุขู ุฎูุตุช ุงููู |
|
|
|
191 |
|
00:17:30,380 --> 00:17:35,760 |
|
ูู ุงูู
ุทููุจ ุงูุฃููุงูู
ุทููุจ ุงูุชุงูู ุฌุงูู ูุชู ุงูู
ุตูููุฉ K |
|
|
|
192 |
|
00:17:35,760 --> 00:17:43,320 |
|
ุจุงุฌู ุจููููุง ุงูู
ุตูููุฉ K ูู ุนุจุงุฑุฉ ุนู ู
ููุ ูู ุนุจุงุฑุฉ |
|
|
|
193 |
|
00:17:43,320 --> 00:17:49,460 |
|
ุนู K ูุงุญุฏ ู K ุงุชููู ูู ุนูุฏู ุบูุฑูู
ุ ู
ุงุนูุฏูุด ุบูุฑูู
K |
|
|
|
194 |
|
00:17:49,460 --> 00:17:56,860 |
|
ูุงุญุฏ ุงููู ูู ู
ู ุณุงูุจ ูุงุญุฏ ู ูุงุญุฏ ู K ุงุชููู K ุงุชููู |
|
|
|
195 |
|
00:17:56,860 --> 00:18:03,570 |
|
ูู ุนุจุงุฑุฉ ุนู ุงูุนู
ูุฏ ูุงุญุฏ ู ุงุชููููุงุญุธ ุงู ุงุชููู ูุฏูู |
|
|
|
196 |
|
00:18:03,570 --> 00:18:07,870 |
|
linearly dependent ููุง linearly independent |
|
|
|
197 |
|
00:18:07,870 --> 00:18:14,010 |
|
ุงูุฏุจูุฏูุช ููุด ุงู ููุง ูุงุญุฏ ูููู
ู
ุถุงุนูุงุช ุงูุขุฎุฑ ูุจูู |
|
|
|
198 |
|
00:18:14,010 --> 00:18:21,290 |
|
ููุง ุจุงุฌู ุจูููู ุจูู ุฌุซูู ููุชthat ูุญุธุฉ ุฃู ุงูุณุงูุจ |
|
|
|
199 |
|
00:18:21,290 --> 00:18:29,110 |
|
ูุงุญุฏ ููุงุญุฏ and ุงูุชุงูู ูุงุญุฏ ูุงุชููู are linearly |
|
|
|
200 |
|
00:18:29,110 --> 00:18:30,390 |
|
independent |
|
|
|
201 |
|
00:18:34,060 --> 00:18:40,500 |
|
ุงูุฎุทูุฉ ุงูุชุงูุชุฉ ูู ุงูู
ุทููุจ ูู
ุฑ ุจูู ู
ู ุงูู
ุณุฃูุฉ ุจูููู |
|
|
|
202 |
|
00:18:40,500 --> 00:18:44,960 |
|
ุงู a is diagonalizable ูุนูู ุงุญูุง ุญุชู ุงููู ููุฌูุจูุง |
|
|
|
203 |
|
00:18:44,960 --> 00:18:48,640 |
|
ุงู eigenvalues ู ุงู eigenvectors ุงููู ุนูุฏูุง ู |
|
|
|
204 |
|
00:18:48,640 --> 00:18:54,840 |
|
ุญุทูุงูู
ุนูู ุดูู ู
ุตูููุฉ ุงุฐุง ุจูุฏุงุฌู ููู
ุฑ ุจูู ู
ู |
|
|
|
205 |
|
00:18:54,840 --> 00:19:00,110 |
|
ุงูุณุคุงูู
ุด ููุฌูุจ ูู
ุฑุฉ ุจูู ุจุฏู ุฃุฌู ููู
ุตูููุฉ K ู ุฃุฌูุจ |
|
|
|
206 |
|
00:19:00,110 --> 00:19:05,170 |
|
ู
ู ุงูู
ุนููุซ ุณุจุนูุง ู
ุด ููุฌูุจ ุงูู
ุนููุซ ุณุจุนูุง ุจุฏู ุฃุนุฑู |
|
|
|
207 |
|
00:19:05,170 --> 00:19:11,510 |
|
ูุฏุงุด ุงู determinant ูู K ุชู
ุงู
ูุจูู ุงูู
ุญุฏุฏ ุณุงูุจ |
|
|
|
208 |
|
00:19:11,510 --> 00:19:18,910 |
|
ูุงุญุฏ ูุงุญุฏ ุงุชููู ููุณุงูู ุณุงูุจ ุงุชููู ุณุงูุจ ูุงุญุฏ ููุณุงูู |
|
|
|
209 |
|
00:19:18,910 --> 00:19:24,870 |
|
ูุฏุงุด ุณุงูุจ ุชูุงุชุฉ ูุฒู ู
ุง ุงูุชูุง ุดุงูููููุง ูุณุงูู zero |
|
|
|
210 |
|
00:19:24,870 --> 00:19:31,350 |
|
ูุนูู ูุฐู ุงูู
ุตูููุฉ non singular matrix ูุจุฌู ูุฐุง |
|
|
|
211 |
|
00:19:31,350 --> 00:19:40,570 |
|
ู
ุนูุงู ุงูู is a non singular matrix |
|
|
|
212 |
|
00:19:41,270 --> 00:19:46,830 |
|
ู
ุง ุฏุงู
non singular matrix ุฅุฐุง ุฅูู ุงููู ูู ู
ุนููุณ |
|
|
|
213 |
|
00:19:46,830 --> 00:19:52,310 |
|
ุจุฏูุง ูุฑูุญ ูุฌูุจ ุงูู
ุนููุณ ุชุจุน ูุฐู ุงูู
ุตูููุฉ ู ูุถุฑุจู ูู |
|
|
|
214 |
|
00:19:52,310 --> 00:19:59,650 |
|
ุงูู
ุตูููุฉ A ู ูุฐูู ูู ุงูู
ุตูููุฉ K ุชุณูู
ูุจูู ุงูุงู K |
|
|
|
215 |
|
00:19:59,650 --> 00:20:05,730 |
|
inverse AK ุฅูุด ุจุฏู ุชุนู
ู ุฅูุด ุงููุงุชุฌ ูุง ุจูุงุช ุญุชู |
|
|
|
216 |
|
00:20:05,730 --> 00:20:07,450 |
|
ุจุชุฌุฑู ุชูููู ุฌุฏูุด ุงููุงุชุฌ |
|
|
|
217 |
|
00:20:09,990 --> 00:20:15,550 |
|
ูู
ุง ุงูู
ุตููุฉ ูุธุงู
ุงุชููู ูู ุงุชููู ุจุญูุซ ุงููุทุฑ ุงูุฑุฆูุณู |
|
|
|
218 |
|
00:20:15,550 --> 00:20:19,910 |
|
ูู ูุงูุต ูุงุญุฏ ูุงุชููู ูุงููุทุฑ ุงูุฑุฆูุณู ุงูุซุงููู ูุจูู |
|
|
|
219 |
|
00:20:19,910 --> 00:20:24,270 |
|
ุฃุณูุงุฑ ูุนูู ุฌุงุจ ุงูู
ุจุฏุฃ ูุฅู ูุฐู ุงูู
ุตููุฉ ูู ุงููู |
|
|
|
220 |
|
00:20:24,270 --> 00:20:28,830 |
|
ุจุชุนู
ูู ุงู diagonalization ููู
ูู
ููู
ุตููุฉ A ูุจุงูุชุงูู |
|
|
|
221 |
|
00:20:28,830 --> 00:20:34,850 |
|
ุจููู ุงู A is diagonalizable ุทูุจ ูุฐุง ู
ุนูุงู ุทุจุนุง |
|
|
|
222 |
|
00:20:34,850 --> 00:20:39,970 |
|
ูุชุนุฑููุด ู
ูู ูุง ุจูุงุชุุงููุชุฌ ุงูู
ุตููุฉ ุงููู ุจุชุทูุนูุด |
|
|
|
223 |
|
00:20:39,970 --> 00:20:44,610 |
|
ุจููู ุนูููุง similar to a ู
ุด ูุชุนุฑู ุงู similar ููุฃูู |
|
|
|
224 |
|
00:20:44,610 --> 00:20:48,850 |
|
ุงู similar ูู ู
ูุ ูู ุงู diagonalization ูู ููุณ |
|
|
|
225 |
|
00:20:48,850 --> 00:20:53,350 |
|
ุงูุนู
ููุฉ ุจุณ ููุง ุญุทูุง ููุง ุดุบู ู ูุฏู ููุงู ู
ุงููุงุด |
|
|
|
226 |
|
00:20:53,350 --> 00:20:57,190 |
|
ุจูุนุฑู ูุฐุง ุงูููุงู
ูู ุงูู
ุซุงู ุงููู ุงุทุฑุญูุงู ุงูู
ุญุงุถุฑุฉ |
|
|
|
227 |
|
00:20:57,190 --> 00:21:02,010 |
|
ุงูู
ุงุถูุฉูุจูู ูุฐุง ุงูููุงู
ูุณุงูู ุจุงูุฏุงุฎู ูู
ุนููุณ |
|
|
|
228 |
|
00:21:02,010 --> 00:21:08,010 |
|
ุงูู
ุตููุฉ K ุจูุจุฏู ุนูุงุตุฑ ุงููุทุฑ ุงูุฑุฆูุณู ู
ูุงู ุจุนุถ |
|
|
|
229 |
|
00:21:08,010 --> 00:21:14,130 |
|
ูุจูุบูุฑ ุฅุดุงุฑุงุช ุนูุงุตุฑ ุงููุทุฑ ุงูุซุงููู ูุจูุฌุณู
ุนูู ู
ุญุฏุฏ |
|
|
|
230 |
|
00:21:14,130 --> 00:21:19,730 |
|
ูุฐู ุงูู
ุตููุฉ ุงูู
ุญุฏุฏ ูุฐุง ูุฏูุ ุณุงูุจ ุชูุงุชุฉ ูุจูู ูุงู |
|
|
|
231 |
|
00:21:19,730 --> 00:21:26,640 |
|
ูุงุญุฏ ุนูู ุณุงูุจ ุชูุงุชุฉุจุชุฏุงุฌู ููุง ูุฐุง ุงุชููู ูููุง ุณุงูุจ |
|
|
|
232 |
|
00:21:26,640 --> 00:21:32,020 |
|
ูุงุญุฏ ูููุง ุณุงูุจ ูุงุญุฏ ูููุง ุณุงูุจ ูุงุญุฏ ุบูุฑุช ุงุดุงุฑุงุช |
|
|
|
233 |
|
00:21:32,020 --> 00:21:36,060 |
|
ุนูุงุตุฑ ุงููุทุฑ ุงูุซุงููู ูุจุฏูุช ุนูุงุตุฑ ุงููุทุฑ ุงูุฑุฆูุณู ู
ูุงู |
|
|
|
234 |
|
00:21:36,060 --> 00:21:43,500 |
|
ุจุนุถ ุงู a ุจุงุฌู ุจูุฒููุง ูู
ุง ูุงูุช ูู zero ูุงุญุฏ ุงุชููู |
|
|
|
235 |
|
00:21:43,500 --> 00:21:52,120 |
|
ูุงุญุฏ ู
ุตููุฉ ู ูู
ุง ูู ูุงุญุฏ ุงุชููู ููุณุงููุณุงูุจ ุชูุช |
|
|
|
236 |
|
00:21:52,120 --> 00:21:57,980 |
|
ุฎูููู ุจุฑุง ุชู
ุงู
ุ ุจูุถู ูุฅู ููุง ุจุฏู ุฃุฏุฑุจ ุงูู
ุตูุชูู |
|
|
|
237 |
|
00:21:57,980 --> 00:22:04,800 |
|
ู
ุซูุง ูุฐุง ุงุชููู ุณุงูุจ ูุงุญุฏ ุณุงูุจ ูุงุญุฏ ุณุงูุจ ูุงุญุฏ ููู |
|
|
|
238 |
|
00:22:04,800 --> 00:22:09,880 |
|
ุจุฏู ุฃุถุฑุจ ูุฏูู ุงูู
ุตูุชูู ูู ุจุนุถ ูุจูู Zero ูุงุญุฏ ุงููู |
|
|
|
239 |
|
00:22:09,880 --> 00:22:15,740 |
|
ูู ุจูุงุญุฏ ูุจูู Zero ูุงุชููู ูุจูู ูู ุงุชููููุจูู ุณุงูุจ |
|
|
|
240 |
|
00:22:15,740 --> 00:22:21,440 |
|
ุงุชููู ู ูุงุญุฏ ูุจูู ุณุงูุจ ูุงุญุฏ ุงุชููู ู ุงุชููู ูุจูู ูุฏู |
|
|
|
241 |
|
00:22:21,440 --> 00:22:26,040 |
|
ุงุดุ ุงุฑุจุนุฉ ุจุงูุดูู ุงููู ุนูุฏูุง ููุง ูุจูู ูุฐุง ุงูููุงู
|
|
|
|
242 |
|
00:22:26,040 --> 00:22:32,080 |
|
ุจุฏู ูุณุงูู ุณุงูุจ ุทูู ููู ูุถุฑุจ ุงูู
ุตูุชูู ูุฏูู ูู ุจุนุถ |
|
|
|
243 |
|
00:22:32,080 --> 00:22:39,630 |
|
ูุจูู ููุง ุงุชููู ู ููุง ูุงุญุฏ ูุจูู ุชูุงุชุฉููุง ุฃุฑุจุนุฉ |
|
|
|
244 |
|
00:22:39,630 --> 00:22:46,750 |
|
ููุงูุต ุฃุฑุจุนุฉ ูุจูู zero ุชู
ุงู
ููุง ุตู ุซุงูู ุณุงูุจ ูุงุญุฏ |
|
|
|
245 |
|
00:22:46,750 --> 00:22:51,510 |
|
ูู
ูุฌุจ ูุงุญุฏ ูุจูู zero ุงูุตู ุงูุซุงูู ูู ุงูุนู
ูุฏ ุงูุชุงูู |
|
|
|
246 |
|
00:22:51,510 --> 00:22:57,610 |
|
ุณุงูุจ ุงุชููู ูุณุงูุจ ุฃุฑุจุนุฉ ูุจูู ุณุงูุจ ุณุชุฉ ุจุงูุดูู ุงููู |
|
|
|
247 |
|
00:22:57,610 --> 00:23:03,690 |
|
ุนูุฏูุง ุฏูุจุฏู ุงุถุฑุจ ูู ุงูุนูุงุตุฑ ูู ุณุงูุจ ุทูู ูุจูู ูุฐุง |
|
|
|
248 |
|
00:23:03,690 --> 00:23:08,970 |
|
ุจูุนุทูููุง ุฌุฏุงุด ุณุงูุจ ูุงุญุฏ ู ููุง zero ู ููุง zero ุณุงูุจ |
|
|
|
249 |
|
00:23:08,970 --> 00:23:14,230 |
|
ู
ุน ุณุงูุจ ู
ูุฌุจ ู ููุง ุจุงุชููู ุงุทูุนูู ุนูุงุตุฑ ุงููุทุฑุฉ |
|
|
|
250 |
|
00:23:14,230 --> 00:23:18,810 |
|
ุฑุฆูุณู ุณุงูุจ ูุงุญุฏ ู ุงุชููู ูู ููู
main ุงู eigen value |
|
|
|
251 |
|
00:23:18,810 --> 00:23:23,970 |
|
ุงูู
ุนูู ูุฐุง ุงูููุงู
ุงู ุงู a is diagonalizable ูุจูู |
|
|
|
252 |
|
00:23:23,970 --> 00:23:31,720 |
|
ููุงุงูู A is diagonalizable |
|
|
|
253 |
|
00:23:31,720 --> 00:23:34,040 |
|
ููู ุงูู
ุทููุจ |
|
|
|
254 |
|
00:24:01,920 --> 00:24:11,060 |
|
ูุงุฎุฏ ุงูู
ูุงุญุธุฉ ูุฐู remark it |
|
|
|
255 |
|
00:24:11,060 --> 00:24:22,540 |
|
should be noted that it should be noted that ูุฌุจ |
|
|
|
256 |
|
00:24:22,540 --> 00:24:29,060 |
|
ู
ูุงุญุธุฉ ุงู not every square matrix not every |
|
|
|
257 |
|
00:24:32,360 --> 00:24:45,100 |
|
square matrix ู
ุด ูู ู
ุตููุฉ ู
ุฑุจุนุฉ is similar to |
|
|
|
258 |
|
00:24:45,100 --> 00:24:51,880 |
|
a diagonal matrix |
|
|
|
259 |
|
00:24:51,880 --> 00:24:58,860 |
|
because ุงูุณุจุจ |
|
|
|
260 |
|
00:25:01,690 --> 00:25:11,770 |
|
ุจุณุจุจ ุงู ููุณ ูู ู
ูุงุทุน ูู ู
ูุงุทุนุฉ |
|
|
|
261 |
|
00:25:11,770 --> 00:25:19,870 |
|
ูุฏููุง |
|
|
|
262 |
|
00:25:19,870 --> 00:25:26,650 |
|
ู
ูุงุทุนุฉ ูุงู
ูุฉ ูู
ูุงุทุนุฉ |
|
|
|
263 |
|
00:25:26,650 --> 00:25:26,650 |
|
ูุงู
ูุฉ |
|
|
|
264 |
|
00:25:31,150 --> 00:25:38,230 |
|
complicit of eigenvectors |
|
|
|
265 |
|
00:25:38,230 --> 00:25:41,450 |
|
example |
|
|
|
266 |
|
00:25:41,450 --> 00:25:48,430 |
|
is |
|
|
|
267 |
|
00:25:48,430 --> 00:25:57,750 |
|
the matrix A ุชุณุงูู |
|
|
|
268 |
|
00:25:58,890 --> 00:26:07,490 |
|
ุงูุชููู ุชูุงุชุฉ ุฒูุฑู ุงุชููู Similar to |
|
|
|
269 |
|
00:26:07,490 --> 00:26:10,890 |
|
a diagonal matrix |
|
|
|
270 |
|
00:26:36,780 --> 00:27:04,360 |
|
ุงูุนู
ูุฏ ูุฐุง ูุงุฒู
ุฎูุงุต ุฎูู |
|
|
|
271 |
|
00:27:04,360 --> 00:27:10,490 |
|
ุจุงููู
ุงูู
ูุงุญุธุฉ ุงููู ูุชุจูุงูุง ุงูู
ุซุงู ุงููู ุฌุงุจ ูู ูุงู |
|
|
|
272 |
|
00:27:10,490 --> 00:27:13,810 |
|
ููุง ู
ุตุญูู ู
ุฑุจุน ูุธุงู
ุงุชููู ูู ุงุชููู ูููุงูุง |
|
|
|
273 |
|
00:27:13,810 --> 00:27:18,010 |
|
diagonalizable ูู
ุง ูุณุฃู ูู ุงูู
ุตุญูู ุฏู |
|
|
|
274 |
|
00:27:18,010 --> 00:27:22,370 |
|
diagonalizable ููุง ูุง ุงูุง ุจููู
ู
ููุง ุดุบูุชูู ุงูุดุบู |
|
|
|
275 |
|
00:27:22,370 --> 00:27:26,130 |
|
ุงูุงููู ูุฏ ุชููู diagonalizable ููุฏ ูุง ุชููู |
|
|
|
276 |
|
00:27:26,130 --> 00:27:31,060 |
|
diagonalizableุฅุฐุง ู
ุง ุจููุฏุฑ ูููู ู
ุด ูู ู
ุตูููุฉ |
|
|
|
277 |
|
00:27:31,060 --> 00:27:36,100 |
|
similar to ุงู ู
ุตูููุฉ ุฃุฎุฑู ููุณ ุจุงูุถุฑูุฑุฉ ุฃู ุจู
ุนูู |
|
|
|
278 |
|
00:27:36,100 --> 00:27:41,760 |
|
ุฃุฎุฑ ู
ุด ูู ู
ุตูููุฉ ุจุชููู diagonalizable ุทูุจ ููู ุจุฏูุง |
|
|
|
279 |
|
00:27:41,760 --> 00:27:46,300 |
|
ูุซุจุช ุตุญุฉ ูุฐุง ุงูููุงู
ุฃู ููู ุจุฏูุง ูุจูู ูุฐุง ุงูููุงู
ุ |
|
|
|
280 |
|
00:27:46,300 --> 00:27:49,120 |
|
ุฅูุด ุจูููู ููุง ูู ุงูู
ูุงุญุธุฉ ุฏูุ |
|
|
|
281 |
|
00:27:57,900 --> 00:28:07,700 |
|
ู
ุด ูู ู
ุตูููุฉ ู
ุฑุจุนุฉ ู
ุดููุฉ ู
ุด ูู ู
ุตูููุฉ |
|
|
|
282 |
|
00:28:07,700 --> 00:28:11,600 |
|
ู
ุฑุจุนุฉ ู
ุดููุฉ |
|
|
|
283 |
|
00:28:11,600 --> 00:28:12,280 |
|
ู
ุด ูู |
|
|
|
284 |
|
00:28:14,720 --> 00:28:18,640 |
|
square matrix ุงูู
ุตุญููุฉ ู
ุฑุจุนูุฉ ู complete set of |
|
|
|
285 |
|
00:28:18,640 --> 00:28:24,120 |
|
eigenvalues ุชุนุงูู ูุชุฑุฌู
ูุฐุง ุงูููุงู
ุนูู ุฃุฑุถ ุงููุงูุน |
|
|
|
286 |
|
00:28:24,120 --> 00:28:27,100 |
|
ุงูู
ุนุทููู ุงูู
ุตุญููุฉ ูุฌุงูู ูุดูู ูู ูู ูุฐู |
|
|
|
287 |
|
00:28:27,100 --> 00:28:32,180 |
|
diagonalizable ููุง not diagonalizable ุฅุฐุง ุจุฏู ุฃู
ุดู |
|
|
|
288 |
|
00:28:32,180 --> 00:28:35,940 |
|
ู
ุซู ู
ุง ู
ุดูุช ูู ุงูู
ุซุงู ุงููู ุทูู ุดูู ุญุงูู ุฅูู ููู |
|
|
|
289 |
|
00:28:35,940 --> 00:28:41,280 |
|
ุจุฏู ุฃูุตู ูู ุจูุฏุฑ ุฃูู
ู ููุง ุจูุฏุฑุด ุฃูู
ููุฅุฐุง ู
ุงูุฏุฑุด |
|
|
|
290 |
|
00:28:41,280 --> 00:28:45,360 |
|
ุฃูู
ู ุฅูุด ุงูุดูุก ุงููู ุฎูุงูู ู
ุงูุฏุฑุด ุฃูู
ู ุงูุญูู ุชุจุนู |
|
|
|
291 |
|
00:28:45,360 --> 00:28:52,280 |
|
ุจูููู ุจุณูุทุฉ ุฅุฐุง ุฃูุง ุจุฏู ุฃุจุฏุฃ ุจ lambda I ูุงูุต ุงู a |
|
|
|
292 |
|
00:28:52,280 --> 00:29:02,480 |
|
ูุจูู ุงููู ูู mean lambda 00 lambda ูุงูุต ุงู a 2302 |
|
|
|
293 |
|
00:29:02,480 --> 00:29:10,830 |
|
ููุณุงููููุง ูุงูุฏุง ูุงูุต ุงุชููู ูููุง ูุงูุต ุซูุงุซุฉ ู zero |
|
|
|
294 |
|
00:29:10,830 --> 00:29:16,590 |
|
ูุฒู ู
ุง ูู ูููุง ูุงูุฏุง ูุงูุต ุงุชููู ุจุดูู ุงููู ุนูุฏูุง |
|
|
|
295 |
|
00:29:16,590 --> 00:29:25,080 |
|
ูุฐุงุจุฏู ุงุฎุฏ ุงูู
ุญุฏุฏ ูุจูู determinant ูlanda i ูุงูุต |
|
|
|
296 |
|
00:29:25,080 --> 00:29:32,580 |
|
ุงู a ููุณูู ุงูู
ุญุฏุฏ landa ูุงูุต ุงุชููู ูุงูุต ุซูุงุซุฉ zero |
|
|
|
297 |
|
00:29:32,580 --> 00:29:39,270 |
|
landa ูุงูุต ุงุชููููุจูู ูุฐุง lambda ูุงูุต ุงุชููู ููู |
|
|
|
298 |
|
00:29:39,270 --> 00:29:45,470 |
|
ุชุฑุจูุน ูุงูุต ุงู zero ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู zero ูุจูู |
|
|
|
299 |
|
00:29:45,470 --> 00:29:51,210 |
|
ูุฐุง ู
ุนูุงู ุงู ุงู lambda ูุงูุต ุงุชููู ููู ุชุฑุจูุน ูุณุงูู |
|
|
|
300 |
|
00:29:51,210 --> 00:29:56,410 |
|
zero ูุฐู ู
ุนุงุฏูุฉ ู
ู ุงู ุฏุฑุฌุฉ ู
ู ุฏุฑุฌุฉ ุงู ูุจูู ููุง ูู
|
|
|
|
301 |
|
00:29:56,410 --> 00:30:00,890 |
|
ุญู ุญููู ูุจูู ูุฐู ุงูู
ุนุงุฏูุฉ ูู ุงูุญูุงู |
|
|
|
302 |
|
00:30:05,540 --> 00:30:12,540 |
|
ูุจูู ูุฐุง ุงูููุงู
ุจูุงุก ุนููู ุงู ูุงูุฏุง ูุงุญุฏ ุชุณุงูู |
|
|
|
303 |
|
00:30:12,540 --> 00:30:19,850 |
|
ูุงูุฏุง ุงุชููู ุชุณุงูู ุงุชูููุจูุงุก ุนููู ุณุฃุญุตู ุนูู |
|
|
|
304 |
|
00:30:19,850 --> 00:30:27,190 |
|
ุงููEigenvectors ุงูู
ูุงุธุฑุฉ ูู
ูุ ููLanda ุชุณุงูู ุงุชููู |
|
|
|
305 |
|
00:30:27,190 --> 00:30:32,930 |
|
ูุจูู ุจุงุฌู ุจููู ููุง ูู ุฃุฎุฏูุง ูุงูุฏุง ูุงุญุฏ ุชุณุงูู ุงุชููู |
|
|
|
306 |
|
00:30:32,930 --> 00:30:40,090 |
|
ุชู
ุงู
ุ ุจุฏู ุฃุฑูุญ ุฃุฎุฏ ู
ูุ ูุงูุฏุง I ูุงูุต ุงููA ูู ุงููX |
|
|
|
307 |
|
00:30:40,090 --> 00:30:47,130 |
|
ูู ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู Zero ูุฐุง ุจุฏู ูุนุทููุงูุงูุฏุง |
|
|
|
308 |
|
00:30:47,130 --> 00:30:52,150 |
|
ุงู ูุงูุต ูููุง ูุฐู ุงูู
ุตููุฉ ูุดูู ูุงูุฏุง ูุฐู ู ุงูุชุจ |
|
|
|
309 |
|
00:30:52,150 --> 00:30:58,540 |
|
ู
ูุงููุง ุฌุฏุงุดู ุงูุชุจ ู
ูุงููุง ุงุชููู ุจูุตูุฑ ูุงููุง ูุงู |
|
|
|
310 |
|
00:30:58,540 --> 00:31:02,240 |
|
ูุงูุฏุง ูุงูุต ุงุชููู ููุง ุดู ุชูููู ู
ู ููู ุงุฌุช ู ููุง |
|
|
|
311 |
|
00:31:02,240 --> 00:31:10,760 |
|
ูุงูุต ุชูุงุชุฉ ู ููุง zero ู ููุง ูุงูุฏุง ูุงูุต ุงุชููู ู ูุงุฏ |
|
|
|
312 |
|
00:31:10,760 --> 00:31:16,820 |
|
ุงู X ูุงุญุฏ X ุงุชููู ุจุฏูุง ุณุงูู zero ู zero ุจุงูุดูู |
|
|
|
313 |
|
00:31:16,820 --> 00:31:21,810 |
|
ุงููู ุนูุฏูุง ููุงูุจูู ูู
ุง ูุงูุฏุง ุชุณุงูู ุงุชููู ุจูุตูุฑ |
|
|
|
314 |
|
00:31:21,810 --> 00:31:26,970 |
|
ุงูู
ุตูููุฉ ูุงููุง ุชุจูู ูู
ุ Zero ููุฐู ุณุงูุจ ุชูุงุชุฉ ููุฐู |
|
|
|
315 |
|
00:31:26,970 --> 00:31:33,690 |
|
Zero ููุฐู Zero ูู X ูุงุญุฏ X ุงุชููู ุจุฏู ูุณุงูู Zero ู |
|
|
|
316 |
|
00:31:33,690 --> 00:31:39,730 |
|
Zero ูุจูู ุงูุตู ุงูุฃูู ูู ุงูุนู
ูุฏ ุงูุฃูู ุจูุนุทููุง ู
ููุ |
|
|
|
317 |
|
00:31:39,730 --> 00:31:45,130 |
|
ุจูุนุทููุง ุณุงูุจ ุชูุงุชุฉ X ุงุชููู ูุณุงูู Zero ูู ุบูุฑ ูู |
|
|
|
318 |
|
00:31:45,130 --> 00:31:51,940 |
|
ูุฏูุู
ุง ุงุนุทุงููุด ุงูุง ู
ุนุงุฏูุฉ ูุงุญุฏุฉ ุจู
ุฌููู ูุงุญุฏ ูู |
|
|
|
319 |
|
00:31:51,940 --> 00:31:57,060 |
|
ุงููู ุจูุฏุฑ ุงูููู ู
ู ูุฐู ุงูู
ุนุงุฏูุฉ ุงู ุงู X2 ุจุฏู ุณุงูู |
|
|
|
320 |
|
00:31:57,060 --> 00:32:05,550 |
|
ูุฏุงุด ุทุจ ู ุงู X1 ุงู ุฑูู
ุ ู
ูู ู
ูุงู ูููููุจูู ุจุงุฌู |
|
|
|
321 |
|
00:32:05,550 --> 00:32:14,170 |
|
ุจูููู and ุงูุณ ุงุชููู ุจุฏู ูุณูู ุงู a say ู
ุซูุง ูุนูู ุงู |
|
|
|
322 |
|
00:32:14,170 --> 00:32:17,270 |
|
ููุน ูููุ ุจุณู
ุน |
|
|
|
323 |
|
00:32:19,810 --> 00:32:31,730 |
|
ูุจูู X1 ูุจูู X1 ูุจูู X1 |
|
|
|
324 |
|
00:32:31,730 --> 00:32:40,890 |
|
ูุจูู X1 ูุจูู X1 ูุจูู X1 ูุจูู X1 ูุจูู X1 ูุจูู X1 |
|
|
|
325 |
|
00:32:40,890 --> 00:32:43,450 |
|
ูุจูู X1 ูุจูู |
|
|
|
326 |
|
00:32:46,580 --> 00:32:55,980 |
|
ุชู ูุงูุฏุง ูุงุญุฏ ูุณุงูู ุงุชููู are in the form ุนูู |
|
|
|
327 |
|
00:32:55,980 --> 00:33:04,040 |
|
ุงูุดูู ุงูุชุงูู X ูุงุญุฏ X ุงุชููู ูุณุงูู X ูุงุญุฏ ุงููู ูู ุจ |
|
|
|
328 |
|
00:33:04,040 --> 00:33:09,700 |
|
A ู X ุงุชููู ุงููู ูู ุจูุฏุงุด ุจ Zero ุงููู ูุณุงูู A ูู |
|
|
|
329 |
|
00:33:09,700 --> 00:33:14,260 |
|
ูุงุญุฏ Zero ุทุจ |
|
|
|
330 |
|
00:33:14,260 --> 00:33:21,480 |
|
ูุงูุฏุง ู
ูุฑุฑุฉูุจูู ุงูุชุงููุฉ ุฒููุง ุตุญ ููุง ูุฃ ูุจูู also |
|
|
|
331 |
|
00:33:21,480 --> 00:33:28,240 |
|
the eigenvectors |
|
|
|
332 |
|
00:33:28,240 --> 00:33:35,900 |
|
corresponding to |
|
|
|
333 |
|
00:33:35,900 --> 00:33:45,480 |
|
land ุงุชููู ุชุณุงูู ุงุชููู are in the four |
|
|
|
334 |
|
00:33:47,770 --> 00:33:54,870 |
|
ูุจูู ุฃุตุจุญุช ุนูู ุงูุดูู ุงูุชุงูู ุงููู ูู ุจู ู
ุซูุง ููู ูู |
|
|
|
335 |
|
00:33:54,870 --> 00:34:00,370 |
|
ูู ููุณูุง ู
ุงุชุบูุฑุชุด ูุจูู ููุณ ุจู ูุฅูู
ุง ุงูู ูู ูุงุญุฏ |
|
|
|
336 |
|
00:34:00,370 --> 00:34:01,070 |
|
ุฒูุฑู |
|
|
|
337 |
|
00:34:04,190 --> 00:34:09,650 |
|
ุทูุจ ุชุนุงูู ูุดูู ูู ูุฐู ุงูุญุงูุฉ ุดู ุดูู ุงูู
ุตููุฉ K |
|
|
|
338 |
|
00:34:09,650 --> 00:34:14,310 |
|
ุงูู
ุตููุฉ K ุจุญุท ูููุง ุงู Eigen vectors ู
ุธุจูุทุฉ ููุง ูุฃ |
|
|
|
339 |
|
00:34:14,310 --> 00:34:24,210 |
|
ูุจูู ุจูุงุก ุนููู ุงูู
ุตููุฉ K ุจุฏูุง ุชุณุงูู 1010 |
|
|
|
340 |
|
00:34:24,210 --> 00:34:26,070 |
|
ุชู
ุงู
|
|
|
|
341 |
|
00:34:28,060 --> 00:34:32,700 |
|
ูู ุฑุฌุนูุง ู a similar to b ูููููุง if there exists a |
|
|
|
342 |
|
00:34:32,700 --> 00:34:38,620 |
|
non singular matrix K such that ุชู
ุงู
ุ ุจุฏูุง ูุดูู ูู |
|
|
|
343 |
|
00:34:38,620 --> 00:34:42,220 |
|
ูุฐู singular ููุง non singular |
|
|
|
344 |
|
00:34:44,480 --> 00:34:49,600 |
|
ูุจูู ุงุญูุง ุจูุงุช ููุง ุทูุนูุง ุงูู
ุตููุฉ K ุชุจุนุช ุงู |
|
|
|
345 |
|
00:34:49,600 --> 00:34:54,480 |
|
eigenvectors ุนูู ุงูุดูู ุงููู ุนูุฏูุง ูุฐุง ุฌููุง ุงุฎุฏูุง |
|
|
|
346 |
|
00:34:54,480 --> 00:34:59,300 |
|
ุงูู
ุญุฏุฏ ุงููู ููุง ูุฌููุง ุงูู
ุญุฏุฏ ุงููู ูุณุงูู ู
ููุ Zero |
|
|
|
347 |
|
00:34:59,300 --> 00:35:03,780 |
|
ู
ุฏุงู
ุงูู
ุญุฏุฏ Zero ูุนูู ุงู K inverse does not exist |
|
|
|
348 |
|
00:35:03,780 --> 00:35:09,760 |
|
ูุฃู ุงูู
ุตููุฉ ุงููู ููุง ู
ุงููุณ ูู ุงูู
ุตููุฉ ุงููู ู
ุญุฏุฏูุง |
|
|
|
349 |
|
00:35:09,760 --> 00:35:15,700 |
|
ูุง ูุณุงูู Zero ุชู
ุงู
ุูุณุงูู ุฒู ุฑููุจ ุฌูุฏู ู
ุด ู
ูุฌูุฏุฉุ |
|
|
|
350 |
|
00:35:15,700 --> 00:35:20,980 |
|
ู
ุฏู ู
ุด ู
ูุฌูุฏุฉุ ุฅุฐุง ูุง ูู
ูู ุชุจูู ุงูู
ุตููุฉ similar to |
|
|
|
351 |
|
00:35:20,980 --> 00:35:24,560 |
|
a diagonal matrix ุฃู ุงูู
ุตููุฉ ุจููู ุนููุง ูู |
|
|
|
352 |
|
00:35:24,560 --> 00:35:29,160 |
|
diagonalizable ูุนุทูููุง ุงูุนุงููุฉ |
|
|
|
|