abdullah's picture
Add files using upload-large-folder tool
db9b795 verified
raw
history blame
47.5 kB
1
00:00:00,000 --> 00:00:01,260
ู…ูˆุณูŠู‚ู‰
2
00:00:19,490 --> 00:00:23,670
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ู†ุนูˆุฏ ุงู„ุฃู† ู„ุฅูƒู…ุงู„ ู…ุง ุงุจุชุฏู†ุงู‡
3
00:00:23,670 --> 00:00:28,950
ููŠ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู…ุงุถูŠุฉ ูˆู‡ูˆ section 5-7 ุงู„ุฐูŠ ูŠุชุญุฏุซ ุนู†
4
00:00:28,950 --> 00:00:32,350
ุงู„ undetermined coefficients ุงู„ู„ูŠ ู‡ูŠ ุทุฑูŠู‚ุฉ
5
00:00:32,350 --> 00:00:38,110
ุงู„ู…ุนุงู…ู„ุงุช ุงู„ู…ุฌู‡ูˆู„ุฉ ู„ุญู„ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉุจู†ุญู„ ุจู‡ุฐู‡
6
00:00:38,110 --> 00:00:42,370
ุงู„ุทุฑูŠู‚ุฉ ุฅุฐุง ุชุญู‚ู‚ ููŠ ุงู„ู…ุนุงุฏู„ุฉ ุฃู…ุฑุงู† ุงู„ุฃู…ุฑ ุงู„ุฃูˆู„
7
00:00:42,370 --> 00:00:48,210
ูƒุงู†ุช ุงู„ู…ุนุงู…ู„ุงุช ูƒู„ู‡ุง ุซูˆุงุจุช ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ ุงู„ุฃู…ุฑ
8
00:00:48,210 --> 00:00:53,450
ุงู„ุซุงู†ูŠ ุดูƒู„ ุงู„ F of X ุชุจู‚ู‰ ุนู„ู‰ ุดูƒู„ ู…ุนูŠู† ู…ุง ู‡ูˆ ู‡ุฐุง
9
00:00:53,450 --> 00:00:57,810
ุดูƒู„ ุฃุญุฏ ุซู„ุงุซุฉ ุฃู…ูˆุฑ ุงู„ุฃู…ุฑ ุงู„ุฃูˆู„ ุฃู† ูŠูƒูˆู† polynomial
10
00:00:57,810 --> 00:01:01,930
ุงู„ุฃู…ุฑ ุงู„ุซุงู†ูŠ polynomial ููŠ exponential ุงู„ุฃู…ุฑ
11
00:01:01,930 --> 00:01:07,170
ุงู„ุซุงู„ุซ polynomialููŠ exponential ููŠ sin x ุฃูˆ cos x
12
00:01:07,170 --> 00:01:12,390
ุฃูˆ ู…ุฌู…ูˆุนู‡ู…ุง ุฃูˆ ุงู„ูุฑู‚ ููŠู…ุง ุจูŠู†ู‡ู…ุง ูˆุนุทูŠู†ุง ุนู„ู‰ ุฐู„ูƒ ููŠ
13
00:01:12,390 --> 00:01:17,270
ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ู…ุซุงู„ูŠู† ูˆู‡ุฐุง ู‡ูˆ ุงู„ู…ุซุงู„ ุฑู‚ู… ุชู„ุงุชุฉ ูŠุจู‚ู‰
14
00:01:17,270 --> 00:01:21,270
ุจุฏู†ุง ู†ุญู„ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ุฐูƒุฑู†ุง
15
00:01:21,270 --> 00:01:24,830
ููŠ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุจู†ุฌุฒุฆู‡ุง ุฅู„ู‰ ุฌุฒุฆูŠู† ุจู†ุงุฎุฏ ุงู„
16
00:01:24,830 --> 00:01:28,730
homogeneous ูˆู…ู† ุซู… ุงู„ non homogeneous differential
17
00:01:28,730 --> 00:01:34,790
equationูŠุจู‚ู‰ ุจุฏุงุฌูŠ ุงู‚ูˆู„ู‡ ุงูุชุฑุถ ุงู† Y ุชุณุงูˆูŠ E ุฃูุณ RX
18
00:01:34,790 --> 00:01:45,450
ุจูŠู‡ solution of the homogeneous differential
19
00:01:45,450 --> 00:01:51,890
equation ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชุงู„ูŠุฉ Y W Prime ุฒุงุฆุฏ Y
20
00:01:51,890 --> 00:01:57,450
ูŠุณุงูˆูŠ Zero then the characteristic equation
21
00:02:12,070 --> 00:02:18,010
ุงู„ุญู„ ุงู„ู…ุชุฌุงู†ุณ ูŠุจู‚ู‰
22
00:02:22,280 --> 00:02:32,080
The Homogeneous Differential Equation is ูŠูุณุงูˆูŠ
23
00:02:32,080 --> 00:02:40,580
ูŠุงุณุงูˆูŠ ูŠุงุณุงูˆูŠ
24
00:02:40,580 --> 00:02:44,700
ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ
25
00:02:44,700 --> 00:02:45,880
ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ
26
00:02:45,880 --> 00:02:47,560
ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ
27
00:02:47,560 --> 00:02:47,560
ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ
28
00:02:47,560 --> 00:02:47,560
ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ
29
00:02:47,560 --> 00:02:47,620
ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ
30
00:02:47,620 --> 00:02:51,060
ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ
31
00:02:51,060 --> 00:02:56,550
ูŠุณุจุฏูŠ ุฃุฑูˆุญ ุฃุฏูˆุฑ ุนู„ู‰ particular solution ู„ุญู„
32
00:02:56,550 --> 00:03:01,730
ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ู‡ูŠ non homogeneous ูุจุงุฌูŠ ุจู‚ูˆู„ู‡ the
33
00:03:01,730 --> 00:03:07,970
particular solution
34
00:03:07,970 --> 00:03:17,010
of theDifferential equation start ูˆ ุจุฑูˆุญ ุงู„ู„ูŠ ููˆู‚
35
00:03:17,010 --> 00:03:24,150
ุงู„ุฃุณุงุณูŠุฉ ู‡ุฐูŠ ุจุณู…ูŠู‡ุง star S ู…ุฏูŠู„ู‡ ุงู„ุฑู…ุฒ YP ูˆ ุจุฏูŠ
36
00:03:24,150 --> 00:03:31,510
ุจู‚ูˆู„ ูƒุชุงู„ูŠ X to the power S VุจุฃุฌูŠ ุนู„ู‰ ุดูƒู„ ุงู„ู„ูŠ ู‡ูˆ
37
00:03:31,510 --> 00:03:35,650
ุงู„ุฏุงู„ุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ุฑู‚ู… ููŠ sign ูŠุนู†ูŠ polynomial
38
00:03:35,650 --> 00:03:39,790
ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุตูุฑูŠุฉ ู…ุถุฑูˆุจุฉ ููŠ sign ุฅุฐุง ุจุฏูŠ ุฃูƒุชุจ
39
00:03:39,790 --> 00:03:43,630
polynomial ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุตูุฑูŠุฉ ููŠ sign ุฒุงุฆุฏ
40
00:03:43,630 --> 00:03:49,090
polynomial ููŠ cosine ูŠุจู‚ู‰ ุจู‚ุฏุฑ ุฃู‚ูˆู„ ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† a
41
00:03:49,090 --> 00:03:55,610
ููŠ cosine ุงู„ x ุฒุงุฆุฏ b ููŠ sine ุงู„ x ุจุงู„ุดูƒู„ ุงู„ู„ูŠ
42
00:03:55,610 --> 00:04:04,280
ุนู†ุฏู†ุง ู‡ุฐุงุนู†ุฏู…ุง ุฃุจุญุซ ุนู† ู‚ูŠู…ุฉ S ู‡ู„ ู‡ูŠ 0 ุงูˆ 1 ุงูˆ 2 ุงูˆ
43
00:04:04,280 --> 00:04:06,980
3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ
44
00:04:06,980 --> 00:04:10,500
3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ
45
00:04:10,500 --> 00:04:10,560
3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ
46
00:04:10,560 --> 00:04:10,600
3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ
47
00:04:10,600 --> 00:04:11,400
3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ
48
00:04:11,400 --> 00:04:11,720
3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ
49
00:04:11,720 --> 00:04:21,600
3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ
50
00:04:24,720 --> 00:04:28,780
ุจูˆุงุญุฏ ูˆุดูˆู ู„ูˆ ุญุทูŠุชู‡ุง ุจูˆุงุญุฏ ุจูŠุธู„ ููŠู‡ ุชุดุจู‡ ูˆู„ุง ุจูŠูƒูˆู†
51
00:04:28,780 --> 00:04:34,980
ุงู†ุชู‡ู‰ ู‡ุฐุง ุงู„ุชุดุจู‡ ุฅุฐุง ู„ูˆ ุญุทูŠุช S ุจูˆุงุญุฏ ุจูŠุตูŠุฑ AX Cos
52
00:04:34,980 --> 00:04:41,400
ูˆู‡ู†ุง BX Sin ู‡ู„ ููŠ ุฃูŠ term ู‡ู†ุง ูŠุดุจู‡ ุฃูŠ term ู‡ู†ุง
53
00:04:41,400 --> 00:04:48,920
ุทุจุนุง ู„ุฃ ูŠุจู‚ู‰ ู‡ู†ุง hereู‡ู†ุง ุงู„ S ุชุณุงูˆูŠ ูˆุงุญุฏ ู„ู…ุง ุญุท ุงู„
54
00:04:48,920 --> 00:04:53,740
S ุชุณุงูˆูŠ ูˆุงุญุฏ ุจูŠูƒูˆู† ุฃุฒู„ู†ุง ุงู„ุดุจู‡ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุชู…ุงู…ุง ู…ุง
55
00:04:53,740 --> 00:04:56,880
ุจูŠู† ุงู„ complementary solution ูˆ ุงู„ particular
56
00:04:56,880 --> 00:05:02,600
solution ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ู‡ูŠุตุจุญ YP ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ
57
00:05:02,600 --> 00:05:12,510
AX ููŠ cosine X ุฒุงุฆุฏ BX ููŠ sine Xุงู„ุงู† ุจุฏู†ุง ู†ุญุฏุฏ
58
00:05:12,510 --> 00:05:19,010
ู‚ูŠู…ุชูŠู† ุซูˆุงุจุช ุงู„ A ูˆ ุงู„ B ู„ุฐู„ูƒ ุจุฏูŠ ุงุดุชู‚ ู…ุฑุฉ ูˆ ุงุชู†ูŠู†
59
00:05:19,010 --> 00:05:26,590
ูˆ ุงุนูˆุถ ููŠ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃุตู„ูŠุฉ ูŠุจู‚ู‰ ุจุฏูŠ ุงุฎุฏ Y P Prime
60
00:05:26,930 --> 00:05:34,310
ู‡ุฐู‡ ุงู„ู…ุดุชู‚ุฉ ุญุตู„ ุถุฑุจ ุฏุงู„ุชูŠู† ูŠุจู‚ู‰ a ููŠ cos x ู†ุงู‚ุต ax
61
00:05:34,310 --> 00:05:41,070
ููŠ sin x ุฒุงุฆุฏ ูƒู…ุงู† ู‡ุฐู‡ ุญุตู„ ุถุฑุจ ุฏุงู„ุชูŠู† ูŠุจู‚ู‰ b ููŠ
62
00:05:41,070 --> 00:05:50,100
sin x ุฒุงุฆุฏ bx ููŠ cos xูŠุจู‚ู‰ ุงุดุชู‚ู†ุง ูƒู„ู‡ ู…ู† X ูˆ Cos X
63
00:05:50,100 --> 00:05:56,040
ูˆ X ูˆ Sin X ูƒุญุงุตู„ ุถุฑุจ ุฏู„ุชูŠู… ู‡ุฐุง ุญุตู„ู†ุง ุนู„ู‰ Y' ุทุจุนุง
64
00:05:56,040 --> 00:06:00,020
ู…ุงููŠุด ูˆ ู„ุง term ุฒูŠ ุงู„ุชุงู†ูŠ ูŠุจู‚ู‰ ุจูŠุฎู„ูŠ ูƒู„ ุดูŠ ุฒูŠ ู…ุง
65
00:06:00,020 --> 00:06:06,500
ู‡ูˆ ุจุฏู†ุง ู†ุฑูˆุญ ู†ุฌูŠุจ YPW' ูŠุจู‚ู‰ ุจุฏู†ุง ุงุดุชู‚ ู‡ุฐู‡ ุจุงู„ุณุงู„ุจ
66
00:06:06,500 --> 00:06:16,830
A Sin X ูˆู‡ุฐู‡ ุงู„ุณุงู„ุจ A Sin Xุจุนุฏ ุฐู„ูƒ ุงุชุณุงู„ุจ ax ููŠ
67
00:06:16,830 --> 00:06:23,190
cos x ุงุดุชู‚ุช ู‡ุฐู‡ ุญุตู„ ุถุฑุจ ุฏู„ุชูŠู† ุจู†ุงู†ูŠุฌ ุงู„ู„ูŠ ุจุนุฏู‡ุง
68
00:06:23,190 --> 00:06:29,610
ูŠุจู‚ู‰ ุฒุงุฆุฏ b ููŠ cos x ุฎู„ุตู†ุง ู…ู†ู‡ุง ุจุฏุฃุช ุงุดุชู‚ ู‡ุฐู‡ ุญุตู„
69
00:06:29,610 --> 00:06:38,190
ุถุฑุจ ุฏู„ุชูŠู† ูŠุจู‚ู‰ ุฒุงุฆุฏ b ููŠ cos x ู†ุงู‚ุต bx ููŠ sin x
70
00:06:38,620 --> 00:06:42,780
ูŠุจู‚ู‰ ุงุดุชู‚ู†ุงู‡ ุญุตู„ ุถุฑุจ ุฏู„ุชูŠู† ู‡ู†ุง ููŠ ุจุนุถ ุงู„ุนู†ุงุตุฑ
71
00:06:42,780 --> 00:06:50,640
ู…ุชุดุงุจู‡ุฉ ู‡ูŠ ุนู†ุฏ ู‡ู†ุง ุณุงู„ุจ ุงุชู†ูŠู† a ููŠ sine ุงู„ X ูˆุนู†ุฏูŠ
72
00:06:50,640 --> 00:06:56,880
ูƒู…ุงู† ุฒุงุฆุฏ ุงุชู†ูŠู† b ููŠ cosine ุงู„ X ู‡ุฏูˆู„ ุงุชู†ูŠู† ู…ุน ุจุนุถ
73
00:06:56,880 --> 00:07:03,720
ูˆ ู‡ุฏูˆู„ ุงุชู†ูŠู† ู…ุน ุจุนุถ ุจุงู‚ูŠ ุนู†ุฏูŠ ู†ุงู‚ุต ax ููŠ cosine ุงู„
74
00:07:03,720 --> 00:07:10,180
X ูˆู†ุงู‚ุต bx ููŠ sine ุงู„ Xุจุนุฏ ุฐู„ูƒ ุงุฎุฐ ุงู„ู…ุนู„ูˆู…ุงุช ุงู„ู„ู‰
75
00:07:10,180 --> 00:07:15,040
ุญุตู„ุช ุนู„ูŠู‡ุง ูˆ ุงุนูˆุถ ููŠ ุงู„ู…ุนุงุฏู„ุฉ star ูŠุจู‚ู‰ ู‡ู†ุง
76
00:07:15,040 --> 00:07:23,320
substitute in
77
00:07:23,320 --> 00:07:33,740
the differential equation star we get ุจู†ุญุตู„ ุนู„ู‰ ู…ุง
78
00:07:33,740 --> 00:07:34,200
ูŠุฃุชูŠ
79
00:07:40,110 --> 00:07:43,630
ูŠุฌุจ ุงู† ุงุฒุงู„ุฉ ูˆูŠ ุฏุงุจู„ูŠ ุจุฑุงูŠู… ูˆุงุญุท ู‚ูŠู…ุชู‡ุง ูˆูŠ ุฏุงุจู„ูŠ
80
00:07:43,630 --> 00:07:48,950
ุจุฑุงูŠู… ู‡ูŠ ุญุตู„ู†ุง ุนู„ูŠู‡ุง ูŠุจู‚ู‰ ู†ุงู‚ุต ุงุชู†ูŠู† ุงู ุตูŠู†
81
00:07:48,950 --> 00:07:55,980
ุงู„ุฒุงูˆูŠุฉ ุซุชุง ุตูŠู† ุงู„ุฒุงูˆูŠุฉ Xุชู…ุงู…ุŸ ุงู„ู„ูŠ ุจุนุฏู‡ุง ุฒุงุฆุฏ
82
00:07:55,980 --> 00:08:04,340
ุงุชู†ูŠู† B ููŠ cosine ุงู„ X ุงู„ู„ูŠ ุจุนุฏู‡ุง ู†ุงู‚ุต ุงู„ AX ููŠ
83
00:08:04,340 --> 00:08:11,080
cosine ุงู„ X ู†ุงู‚ุต ุงู„ BX ููŠ sine ุงู„ X ู‡ุฐุง ูƒู„ู‡ ุงู„ู„ูŠ
84
00:08:11,080 --> 00:08:17,400
ุฃุฎุฏุชู‡ ู…ูŠู†ุŸ YW prime ุถุงูŠู‚ ู„ู†ุง ู…ูŠู†ุŸ Y ูˆูŠู† Y ู‡ุงูŠู‡ุงุŸ
85
00:08:17,400 --> 00:08:24,560
ุจุฏู‡ ุฃุฌู…ุนู‡ู… ู‡ุฏูˆู„ ูŠุจู‚ู‰ ุฒุงุฆุฏู‡ู‡ ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู† ax ููŠ cos
86
00:08:24,560 --> 00:08:33,520
x ูˆ ุจุนุฏ ู‡ูŠ ูƒุฏู‡ ุฒุงุฆุฏ bx ููŠ sin x ูƒู„ู‡ ุจูŠุณูˆูŠ ุงู„ุทุฑู
87
00:08:33,520 --> 00:08:40,300
ุงู„ู„ูŠ ูŠุชุจุน ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ู‡ูˆ 4 ููŠ sin xุจู†ุฌูŠ ู†ุฌู…ุน ุนู†ุง
88
00:08:40,300 --> 00:08:47,940
ax cos ุจุงู„ุณุงู„ุจ ูˆ ax cos ุจุงู„ู…ูˆุฌุจ ุนู†ุง bx sin ุจุงู„ุณุงู„ุจ
89
00:08:47,940 --> 00:08:53,220
ูˆ bx ุจูŠู…ูŠู† ุจุงู„ู…ูˆุฌุจ ูŠุจู‚ู‰ ุตูุฉ ุงู„ู…ุนุงุฏู„ุฉ ุนู„ู‰ ุงู„ุดูƒู„
90
00:08:53,220 --> 00:09:00,740
ุงู„ุชุงู„ูŠ ู†ุงู‚ุต ุงุชู†ูŠู† a sin x ุฒุงุฆุฏูŠ ุงุชู†ูŠู† b cos x ูƒู„ู‡
91
00:09:00,740 --> 00:09:07,540
ุจุฏู‡ ูŠุณูˆูŠ ุงุฑุจุน sin xุจุนุฏ ุฐู„ูƒ ู†ู‚ุฑุฑ ุงู„ู…ุนุงู…ู„ุงุช ููŠ
92
00:09:07,540 --> 00:09:13,340
ุงู„ุทุฑููŠู† ุฅุฐุง ู„ูˆ ู‚ุฑุฑู†ุง ุงู„ู…ุนุงู…ู„ุงุช ููŠ ุงู„ุทุฑููŠู† ุจุณู†ุง ู†ู‚ุต
93
00:09:13,340 --> 00:09:19,580
ุงุชู†ูŠู† a ุจุฏูŠ ุณุงูˆูŠ ู‚ุฏุงุด ุงุฑุจุนุฉ ูˆุนู†ุฏูƒ ุงุชู†ูŠู† b ุจุฏูŠ ุนู†ุฏูŠ
94
00:09:19,580 --> 00:09:26,520
cosine ู‡ู†ุง ู…ุงุนู†ุงุด ูŠุจู‚ู‰ ุจูŠู‡ zero ู‡ุฐุง ู…ุนู†ุงู‡ ุงู† ุงู„ a
95
00:09:26,520 --> 00:09:33,330
ุชุณุงูˆูŠ ุณุงู„ุจ ุงุชู†ูŠู† ูˆ ุงู„ b ุชุณุงูˆูŠ zeroูŠุจู‚ู‰ ุฃุตุจุญ ุดูƒู„ ุงู„
96
00:09:33,330 --> 00:09:46,570
YP ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ูŠุจู‚ู‰
97
00:09:46,570 --> 00:09:50,570
ุฃุตุจุญ ู‡ุฐุง ุดูƒู„ ุงู„ YP
98
00:10:01,840 --> 00:10:11,150
Y ูŠุณุงูˆูŠ YC ุฒุงุฆุฏ YPูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ูŠุตุจุญ y ูŠุณูˆูŠ yc ู‡ูŠ
99
00:10:11,150 --> 00:10:20,070
ุงู„ู…ูˆุฌูˆุฏ ุนู†ุฏู‰ ูŠุจู‚ู‰ c1 cos x ุฒุงุฆุฏ c2 ููŠ sin x ูˆุฒุงุฆุฏ
100
00:10:20,070 --> 00:10:28,010
yp ู†ุงู‚ุต 2x ููŠ cos x ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุญู„ ุงู„ู†ู‡ุงุฆูŠ ุชุจุน ู…ู†ุŸ
101
00:10:28,010 --> 00:10:32,990
ุชุจุน ุงู„ู…ุนุงุฏู„ุฉ ู„ุงุญุธู‰ ูˆู„ุง term ู…ู† ุงู„ุชู„ุงุช termุงุช ุฒู‰
102
00:10:32,990 --> 00:10:38,240
ุงู„ุชุงู†ู‰ ู…ุงููŠุด ุชุดุงุจู‡ุจูŠู† ุฃูŠ term ูˆุงู„term ุงู„ุซุงู†ูŠ
103
00:10:38,240 --> 00:10:46,440
ุงู„ู…ุซุงู„ ุฑู‚ู… ุฃุฑุจุน ูŠุจู‚ู‰ example ุฃุฑุจุน
104
00:10:46,440 --> 00:10:50,720
ุจู‚ูˆู„
105
00:10:50,720 --> 00:10:56,260
ุฏูŠ term a suitable
106
00:10:56,260 --> 00:11:03,480
form ุดูƒู„
107
00:11:03,480 --> 00:11:09,990
ู…ู†ุงุณุจFor the
108
00:11:09,990 --> 00:11:19,330
particular solution
109
00:11:19,330 --> 00:11:23,490
of the
110
00:11:23,960 --> 00:11:32,520
Differential equation ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ YW' ู†ุงู‚ุต
111
00:11:32,520 --> 00:11:49,540
4Y' ุฒุงุฆุฏ 4Y ูŠุณุงูˆูŠ 2X ุชุฑุจูŠุน ุฒุงุฆุฏ 4X E ุฃุณ 2Xุฒุงุฆุฏ ุงูƒุณ
112
00:11:49,540 --> 00:11:55,100
ููŠ ุตูŠู† ุงุชู†ูŠู† ุงูƒุณ ูˆู‡ุฐู‡ ุจุฏูŠ ุงุณู…ูŠู‡ุง ุงู„ู…ุนุงุฏู„ุฉ ู‡ูŠ ู…ู†
113
00:11:55,100 --> 00:12:00,960
ุงู„star ูˆุจูŠู† ุฌุณูŠู† don't
114
00:12:00,960 --> 00:12:07,800
don't evaluate the
115
00:12:07,800 --> 00:12:08,620
constants
116
00:12:38,460 --> 00:12:43,640
ู‚ุงู„ุจ ุงู„ูƒูˆูŠู†ุฉ ุชุงู†ูŠู†ู‚ุฑุฃ ุงู„ุณุคุงู„ ู…ุฑุฉ ุชุงู†ูŠุฉ ูˆู†ุดูˆู ุดูˆ
117
00:12:43,640 --> 00:12:51,120
ุงู„ู…ุทู„ูˆุจ ุจูŠู‚ูˆู„ู„ูŠ ุญุฏุฏ ุญู„ ููŠ ุดูƒู„ ู…ู†ุงุณุจ ู„ู„ particular
118
00:12:51,120 --> 00:12:54,400
solution y, z ุชุจุน ุงู„ differential equation ู‡ุฐุง
119
00:12:54,400 --> 00:12:57,020
ูŠุจู‚ู‰ ุงู„ู†ุงุณ ุจุชุญุฏุฏ ุดูƒู„ ุงู„ particular solution
120
00:12:57,020 --> 00:13:00,840
ูˆูŠู‚ูˆู„ู„ูŠ ู…ุง ุชุญุณุจุด ุงู„ุซูˆุงุจุช ุงุถุงูŠุน ุดูˆุงุฌุฏูƒ ูˆุงู†ุช ุจุชุฌูŠุจ
121
00:13:00,840 --> 00:13:04,120
ุงู„ู…ุดุชู‚ุฉ ุงู„ุฃูˆู„ู‰ ูˆุงู„ุชุงู†ูŠุฉ ูˆุงุชุนูˆุถ ููŠ ุงู„ู…ุนุงุฏู„ุฉ ูˆุงุชุฌูŠุจ
122
00:13:04,120 --> 00:13:07,940
ู„ูŠู‡ ุฌุฏูŠุด ู‚ูŠู…ุฉ a ูˆb ุงูˆ a ูˆb ูˆc ูˆู…ุง ุฅู„ุง ุจุชุฏูŠุด ู‚ูŠู…ุฉ
123
00:13:07,940 --> 00:13:11,650
ุซูˆุงุจุช ุจุณ ู‡ุชู„ูŠ ุดูƒู„ mainุงู„ู€ Particular solution ู„ูŠุณ
124
00:13:11,650 --> 00:13:15,790
ู„ุงุฒู… ูŠูƒูˆู† ู‚ูŠู…ุชู‡ ุซุงู…ุชู‡ ุจู‚ูˆู„ู‡ ูƒูˆูŠุณ ูŠุจู‚ู‰ ูŠุญุชุงุฌ
125
00:13:15,790 --> 00:13:20,350
ู„ู„ู…ุนุงุฏู„ุฉ ูŠุญุชุงุฌ ุฃู† ูŠุฃุฎุฐ ุงู„ู€Homogeneous differential
126
00:13:20,350 --> 00:13:24,550
equation ูŠุจู‚ู‰ ูŠุจุฏุฃ ูƒู…ุง ุจุฏุฃุช ููŠ ุงู„ู…ุซุงู„ ุงู„ู„ูŠ ู‚ุจู„ู‡
127
00:13:24,550 --> 00:13:29,290
let Y ุชุณุงูˆูŠ E ุฃูุณ RX ุจุฅูŠู‡ุŸ
128
00:13:41,220 --> 00:13:50,680
ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ the characteristicEquation is R
129
00:13:50,680 --> 00:13:56,060
ุชุฑุจูŠุน ู†ุงู‚ุต ุงุฑุจุนุฉ R ุฒุงุฆุฏ ุงุฑุจุนุฉ ูŠุณุงูˆูŠ Zero ุงูˆ ุงู†
130
00:13:56,060 --> 00:14:02,560
ุดุฆุชู… ูู‚ูˆู„ูˆุง R ู†ุงู‚ุต ุงุชู†ูŠู† ู„ูƒู„ ุชุฑุจูŠุน ุชุณุงูˆูŠ Zero ุงูˆ
131
00:14:02,560 --> 00:14:09,370
ุงู„ R ุชุณุงูˆูŠ ุงุชู†ูŠู† ูˆุงู„ุญู„ ู‡ุฐุง ู…ูƒุจุฑ ูƒู… ู…ุฑุฉุŸูŠุจู‚ู‰ ู…ุฑุชูŠู†
132
00:14:09,370 --> 00:14:12,850
ูŠุจู‚ู‰ of multiplicity two
133
00:14:19,800 --> 00:14:25,640
2 ูŠุนู†ูŠ ุงู„ุญู„ ู…ูƒุฑุฑ ู…ุฑุชูŠู† ุจู†ุงุก ุนู„ูŠู‡ ุจุฑูˆุญ ุจู‚ูˆู„ู‡ ู‡ู†ุง
134
00:14:25,640 --> 00:14:32,220
ูŠุจู‚ู‰ solution yc ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ุญู„ real ูˆ ู…ูƒุฑุฑ ู…ุฑุชูŠู†
135
00:14:32,220 --> 00:14:38,680
ูŠุจู‚ู‰ c1 ุฒุงุฆุฏ c2x e ุงุต r
136
00:14:44,740 --> 00:14:49,820
ุจู†ุจุฑูˆุฒ ู‡ุฐุง ุงู„ุญู„ ูˆ ุจู†ุณูŠุจู‡ ูˆ ุจู†ุฑูˆุญ ู†ุฑุฌุนู„ู‡ ุจุนุฏ ู‚ู„ูŠู„
137
00:14:49,820 --> 00:14:52,800
ุงู„ุงู† ุจุฏู†ุง ู†ูŠุฌูŠ ู„ู„ non homogeneous differential
138
00:14:52,800 --> 00:14:56,280
equation ุงู„ู„ูŠ ุงู„ star ุงู„ู„ูŠ ุนู†ุฏู†ุง ุจุฏู†ุง ู†ุชุทู„ุน ุนู„ู‰
139
00:14:56,280 --> 00:15:00,240
ุดูƒู„ ุงู„ F of X ุงู„ู„ูŠ ู‡ูˆ ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ู‡ู„ ู‡ูŠ
140
00:15:00,240 --> 00:15:05,740
polynomial ูู‚ุทุŸุฃูˆ polynomial ููŠ exponential ุฃูˆ
141
00:15:05,740 --> 00:15:09,360
polynomial ููŠ sin ุฃูˆ cos ุงู„ู…ุฌู…ูˆุนุฉ ุงู„ุญู…ุฏ ู„ู„ู‡ ุฌุงูŠุจุฉ
142
00:15:09,360 --> 00:15:13,720
ุงู„ุชู„ุช ุญุงู„ุงุช ูƒู„ู‡ู… ุจุณุคุงู„ ุงู†ูˆุงุนูŠ ู‡ูŠ polynomial ู…ู†
143
00:15:13,720 --> 00:15:17,180
ุงู„ุฏุฑุฌุฉ ุงู„ุซุงู†ูŠุฉ polynomial ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ููŠ
144
00:15:17,180 --> 00:15:21,820
exponential polynomial ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ููŠ sin ุฅุฐุง
145
00:15:21,820 --> 00:15:27,630
ุฅูŠุด ู‡ุนู…ู„ ููŠ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ุนู†ุฏูŠุŸู‡ุฌุฒู‚ู‡ุง ุฅู„ู‰ ุซู„ุงุซ
146
00:15:27,630 --> 00:15:31,690
ู…ุนุงุฏู„ุงุช ุชู…ุงู…ุŸ ูˆ ุฃุญู„ ูƒู„ ูˆุงุญุฏุฉ ููŠู‡ู… ูˆ ุฃุฌูŠุจ ุงู„
147
00:15:31,690 --> 00:15:35,390
particular solution ุชุจุนู‡ุง ูˆ ุฃุฌู…ุน ุงู„ุญู„ูˆู„ ุงู„ุชู„ุงุชุฉ
148
00:15:35,390 --> 00:15:38,810
ุจูŠุนุทูŠู†ูŠ ุงู„ particular solution ู„ู…ูŠู†ุŸ ู„ู„ู…ุนุงุฏู„ุงู†ุฉ
149
00:15:38,810 --> 00:15:43,970
ุทุจู‚ุง ู„ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ุฃุนุทุงู†ูŠู‡ุง ู„ูƒู… ููŠ ุฃูˆู„ section ููŠ
150
00:15:43,970 --> 00:15:46,970
ุงู„ non homogeneous differential equation ู‚ูˆู„ู†ุงู„ูƒูˆุง
151
00:15:46,970 --> 00:15:53,150
ู‡ุฐุง ุจูŠู„ุฒู…ู†ุง ู„ู…ูŠู†ุŸ ู„ู„ sections ุงู„ู‚ุงุฏู…ุฉ ุชู…ุงู…ุŸ ูŠุจู‚ู‰
152
00:15:53,150 --> 00:16:01,260
ุจุฏุงุฌูŠ ุฃู‚ูˆู„ู‡ ู‡ู†ุงdifferential equation star is
153
00:16:01,260 --> 00:16:08,360
written as ูŠู…ูƒู†ู†ุง ุฃู† ู†ูƒุชุจู‡ุง ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ุงู„ู€ y
154
00:16:08,360 --> 00:16:14,460
double prime ู†ุงู‚ุต ุฃุฑุจุนุฉ y prime ุฒุงุฆุฏ ุฃุฑุจุนุฉ y ูŠุณูˆู‰
155
00:16:14,460 --> 00:16:20,580
ูƒู…ุŸ ูŠุณูˆู‰ ุงุชู†ูŠู† x ุชุฑุจูŠุน ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุซุงู†ูŠุฉ ุงู„ู„ูŠ ู‡ูŠ
156
00:16:20,580 --> 00:16:33,690
ู…ูŠู†ุŸYW'-4Y'ุฒุงุฆุฏ 4Y ูŠุณุงูˆูŠ 4XE2X
157
00:16:33,690 --> 00:16:45,370
ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชุงู„ุชุฉ YW'-4Y'ุฒุงุฆุฏ 4Y ูŠุณุงูˆูŠ XSIN2X ูŠุณุงูˆูŠ
158
00:16:45,370 --> 00:16:50,350
X ููŠ SIN2X ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง
159
00:16:58,280 --> 00:17:03,840
ุทูŠุจุŒ ุงู„ุขู† ูŠุนู†ูŠ ูƒุฃู†ู‡ ุตุงุฑ ุนู†ุฏูŠ ู…ุด ู…ุณุฃู„ุฉ ูˆุงุญุฏุฉุŒ ุซู„ุงุซ
160
00:17:03,840 --> 00:17:07,120
ู…ุณุงุฆู„ุŒ ุจุฏูŠ ุฃุญู„ ูƒู„ ูˆุงุญุฏ ุฃุฌูŠุจ ุงู„ particle solution
161
00:17:07,120 --> 00:17:12,980
ูƒุฃู†ู‡ ู„ุง ุนู„ุงู‚ุฉ ู„ู‡ุง ุจู…ูŠู† ุจุงู„ุงุฎุฑู‰ุŒ ูŠุจู‚ู‰ ู‡ู†ุง ุจุฏูŠ ุฃุฌูŠุจ
162
00:17:12,980 --> 00:17:20,180
ุงู„ YP1 ูŠุจู‚ู‰ YP1 ูŠุณุงูˆูŠ X to the power S ููŠู‡ุŒ ู‡ุฐู‡
163
00:17:20,180 --> 00:17:21,740
polynomial ู…ู† ุงู„ุฏุฑุฌุฉ
164
00:17:34,810 --> 00:17:40,490
ู‡ู„ ุงูŠ term ู…ู† ู‡ู†ุง ูŠุดุจู‡
165
00:17:40,490 --> 00:17:42,250
ุงูŠ term ููˆู‚ุŸ
166
00:17:45,280 --> 00:17:52,060
ู…ุถุฑูˆูุฉ ูŠุนู†ูŠ ู‡ุฐุง C1 E2 X ูˆ C2 X E2 ููŠู‡ุŸ ู…ุงุนู†ุฏูŠุด
167
00:17:52,060 --> 00:17:56,020
exponential ู‡ู†ุงูƒ ุจู…ุงููŠุด ูŠุจุฌู‰ ู‡ู†ุง S ุจู‚ุฏุฑ ุงูŠู‡ุŸ ุจ
168
00:17:56,020 --> 00:18:03,680
Zero ูŠุจุฌู‰ here ุงู„ S ุชุณุงูˆูŠ Zero ูŠุจุฌู‰ ุฃุตุจุญ Y P1 ุจุฏู‡
169
00:18:03,680 --> 00:18:11,780
ูŠุณุงูˆูŠ A0 X ุชุฑุจูŠุน ุฒุงุฆุฏ A1 X ุฒุงุฆุฏ A2 ุณูŠุจูˆู†ุง ู…ู† ู‡ุฐุง
170
00:18:11,780 --> 00:18:20,370
ู†ู†ุชู‚ู„ ุนู„ู‰ ุงู„ู„ูŠ ุจุนุฏู‡ุงูŠุจู‚ู‰ ุจุฏูŠ ุฃูƒุชุจ ูŠุจู‚ู‰
171
00:18:20,370 --> 00:18:23,230
ุจุฏูŠ ุฃูƒุชุจ polynomial ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ููŠ ุงู„ู€
172
00:18:23,230 --> 00:18:26,990
exponential ูŠุจู‚ู‰ ุจุฏูŠ ุฃูƒุชุจ polynomial ู…ู† ุงู„ุฏุฑุฌุฉ
173
00:18:26,990 --> 00:18:32,070
ุงู„ุฃูˆู„ู‰ ููŠ ุงู„ู€ exponential ูŠุจู‚ู‰ ุจุฏูŠ ุฃูƒุชุจ polynomial
174
00:18:32,070 --> 00:18:34,410
ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ููŠ ุงู„ู€ exponential ูŠุจู‚ู‰ ุจุฏูŠ ุฃูƒุชุจ
175
00:18:34,410 --> 00:18:37,350
polynomial ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ููŠ ุงู„ู€ exponential
176
00:18:37,350 --> 00:18:37,350
ูŠุจู‚ู‰ ุจุฏูŠ ุฃูƒุชุจ polynomial ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ููŠ ุงู„ู€
177
00:18:37,350 --> 00:18:37,390
exponential ูŠุจู‚ู‰ ุจุฏูŠ ุฃูƒุชุจ polynomial ู…ู† ุงู„ุฏุฑุฌุฉ
178
00:18:37,390 --> 00:18:38,650
ุงู„ุฃูˆู„ู‰ ููŠ ุงู„ู€ exponential ูŠุจู‚ู‰ ุจุฏูŠ ุฃูƒุชุจ polynomial
179
00:18:38,650 --> 00:18:38,870
ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ููŠ ุงู„ู€ exponential ูŠุจู‚ู‰ ุจุฏูŠ ุฃูƒุชุจ
180
00:18:38,870 --> 00:18:39,870
polynomial ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ููŠ ุงู„ู€ exponential
181
00:18:39,870 --> 00:18:40,510
ูŠุจู‚ู‰ ุจุฏูŠ ุฃูƒุชุจ polynomial ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ููŠ ุงู„ู€
182
00:18:40,510 --> 00:18:42,530
exponential ูŠุจู‚ู‰ ุจุฏูŠ ุฃูƒุชุจ polynomial ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃ
183
00:18:42,560 --> 00:18:55,400
ู‡ูˆ ูŠุฌุจ ุฃู† ุฃุบุทูŠ X to the power S ูˆู‡ูˆ ูŠุฌุจ ุฃู† ุฃุบุทูŠ X
184
00:18:55,400 --> 00:18:56,780
to the power S ูˆู‡ูˆ ูŠุฌุจ ุฃู† ุฃุบุทูŠ X to the power S
185
00:18:56,780 --> 00:18:58,460
ูˆู‡ูˆ ูŠุฌุจ ุฃู† ุฃุบุทูŠ X to the power S ูˆู‡ูˆ ูŠุฌุจ ุฃู† ุฃุบุทูŠ X
186
00:18:58,460 --> 00:18:58,680
to the power S ูˆู‡ูˆ ูŠุฌุจ ุฃู† ุฃุบุทูŠ X to the power S
187
00:18:58,680 --> 00:18:58,680
ูˆู‡ูˆ ูŠุฌุจ ุฃู† ุฃุบุทูŠ X to the power S ูˆู‡ูˆ ูŠุฌุจ ุฃู† ุฃุบุทูŠ X
188
00:18:58,680 --> 00:18:58,680
to the power S ูˆู‡ูˆ ูŠุฌุจ ุฃู† ุฃุบุทูŠ X to the power S
189
00:18:58,680 --> 00:18:58,680
ูˆู‡ูˆ ูŠุฌุจ ุฃู† ุฃุบุทูŠ X to the power S ูˆู‡ูˆ ูŠุฌุจ ุฃู† ุฃุบุทูŠ X
190
00:18:58,680 --> 00:18:58,680
to the power S ูˆู‡ูˆ ูŠุฌุจ ุฃู† ุฃุบุทูŠ X to the power S
191
00:18:58,680 --> 00:18:59,380
ูˆู‡ูˆ ูŠุฌุจ ุฃู† ุฃุบุทูŠ X to the power S ูˆู‡ูˆ ูŠุฌุจ ุฃู† ุฃุบุทูŠ X
192
00:18:59,380 --> 00:19:03,500
to the power S ูˆู‡ูˆ ูŠุฌุจ ุฃู† ุฃุบุทูŠ X to the powerุทุจ
193
00:19:03,500 --> 00:19:10,940
ุจุฏู‡ ุงุญุท S ุจู‚ุฏุงุดุŸ ุจูˆุงุญุฏ ู„ูˆ ุญุทูŠุช S ุจูˆุงุญุฏ ุจุตูŠุฑ B0 X
194
00:19:10,940 --> 00:19:15,420
ุชุฑุจูŠุฉ ููŠ ุงู„ exponential ููŠู‡ ููˆู‚ ุฒูŠู‡ุง ุทูŠุจ ู†ุดูˆู ู‡ุฐู‡
195
00:19:15,420 --> 00:19:21,930
B1 X ููŠ ุงู„ exponentialููŠ ุฒูŠู‡ุง ูŠุจู‚ู‰ S ุชุณุงูˆูŠ ูˆุงุญุฏ ู…ุด
196
00:19:21,930 --> 00:19:26,830
ุตุญูŠุญุฉ ูŠุจู‚ู‰ ุงุญุท S ุจู‚ุฏุฑุด ุฅุฐุง ู„ูˆ ุญุทูŠุช ุงู„ S ุจุงุชู†ูŠู†
197
00:19:26,830 --> 00:19:31,210
ุจูŠุถู„ ููŠ ุงู†ุฏูŠ ุชุดุงุจู‡ ูŠุจู‚ู‰ ุงุชู‚ุงู„ู„ู‡ ูŠุจู‚ู‰ ุจู‚ูˆู„ู‡ here
198
00:19:31,210 --> 00:19:39,310
ู‡ู†ุง ุงู„ S ุชุณุงูˆูŠ ุงุชู†ูŠู† ูŠุจู‚ู‰ ุงุตุจุญ Y P2 ุจุฏู„ ุณุงูˆูŠ P0 X
199
00:19:39,310 --> 00:19:47,370
ุชูƒูŠุจ ุฒูŠ P1 X ุชุฑุจูŠุน ูƒู„ู‡ ููŠ ุงู„ E ุฃุณ ุงุชู†ูŠู† XูŠุนู†ูŠ ุดูŠู„ุช
200
00:19:47,370 --> 00:19:51,030
ุงู„ S ูˆ ุญุทูŠุช ู…ูƒุงู† ุงุชู†ูŠู† ุตุงุฑุช X ุชุฑุจูŠุน ุถุฑุจุช ู‡ูˆูŠู† ููŠ
201
00:19:51,030 --> 00:19:55,090
ุงู„ู„ูŠ ุฌูˆุง ูุตุงุฑุช ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุจุฏุงุฎู„ ุงู„ู…ุนุงุฏู„ุฉ
202
00:19:55,090 --> 00:20:08,900
ุงู„ุชุงู„ุชุฉุงู„ู€ YP3 ุจุฏูŠ ุฃูƒุชุจ
203
00:20:08,900 --> 00:20:12,180
polynomial ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ููŠ ุงู„ู€ cosine ุฒูŠ
204
00:20:12,180 --> 00:20:15,160
polynomial ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ููŠ ุงู„ู€ sine
205
00:20:18,960 --> 00:20:23,360
ูŠุจู‚ู‰ ุจุฏุฃ ูˆุงุฎุฏู†ุง ู‡ู†ุง ููŠ ุณูŠู‡ุงุช ูˆุงู„ุณูŠู‡ุงุช ู„ุฃ ูƒู…ุงู† ุจุฏูŠ
206
00:20:23,360 --> 00:20:28,860
ุงู‚ูˆู„ ุฏูŠ ุง ุจุฏูŠ ุงู‚ูˆู„ X to the power S ููŠ ุงู„ุฃูˆู„ X to
207
00:20:28,860 --> 00:20:34,700
the power S ููŠู‡ ุงู„ุขู† ุจุฏูŠ ุงู‚ูˆู„ ุฏูŠ ู†ุงุฏุฉ
208
00:20:37,040 --> 00:20:47,000
ูƒู„ ู‡ุฐุง ุงู„ูƒู„ุงู… ู…ุถุฑูˆุจ ููŠ cosine 2x ุฒุงุฆุฏ e node x
209
00:20:47,000 --> 00:20:53,980
ุฒุงุฆุฏ e1 ูƒู„ู‡ ู…ุถุฑูˆุจ ููŠ sin 2x ูˆ exponential ู…ุงุนู†ุฏูŠุด
210
00:20:56,240 --> 00:21:03,100
ู‡ู„ ุงูŠ term ู…ู† ุงู„ู…ุณุชุทูŠู„ ุงู„ู„ูŠ ููˆู‚ ู‡ุฐุง ูŠุดุจู‡ ุฃูŠ term
211
00:21:03,100 --> 00:21:07,720
ู…ู† ุงู„ู…ุณุชุทูŠู„ ุงู„ู„ูŠ ููˆู‚ ู‡ุฐุงุŸ ู„ุฃ ูˆู„ุง ููŠู‡ sign ูˆู„ุง ูƒูˆ
212
00:21:07,720 --> 00:21:08,120
ุณุงูŠู†
213
00:21:13,370 --> 00:21:20,650
ุงู„ู€ S ุจุฏู‡ุง ุชุณุงูˆูŠ 0 ูŠุจู‚ู‰ ุฃุตุจุญ YP3 ุจุฏู‡ุง ุชุณุงูˆูŠ D node
214
00:21:20,650 --> 00:21:32,590
X ุฒุงุฆุฏ D1 ููŠ Cos 2X ุฒุงุฆุฏ E node X ุฒุงุฆุฏ E1 ููŠ Sin
215
00:21:32,590 --> 00:21:38,120
2XูŠุจู‚ู‰ ุงู„ู€ Particular solution ุงู„ู„ูŠ ุจุฏู†ุง ูŠุง ุจู†ุงุช
216
00:21:38,120 --> 00:21:47,060
ูŠุจู‚ู‰ ูŠุณุงูˆูŠ YP1 ุฒุงุฆุฏ YP2 ุฒุงุฆุฏ YP3 ูŠุจู‚ู‰ ุฃุตุจุญ YP
217
00:21:47,060 --> 00:21:55,380
ูŠุณุงูˆูŠ YP1 ู‡ุงูŠ ูˆ ุจู†ุฒู„ู‡ ุฒูŠ ู…ุง ู‡ูˆ A0 X ุชุฑุจูŠุน A1X ุฒุงุฆุฏ
218
00:21:55,380 --> 00:21:57,580
A2 ุฒุงุฆุฏ
219
00:22:19,860 --> 00:22:21,260
YP2YP3YP4YP5YP6YP7
220
00:22:29,550 --> 00:22:36,330
ูŠุจู‚ู‰ ู‡ุฐุง ูƒู„ู‡ ูŠุนุชุจุฑ ู…ู† ุงู„ particular solution ุงู„ู„ูŠ
221
00:22:36,330 --> 00:22:41,990
ู…ุทู„ูˆุจ ุนู†ู‡ุง ุญุฏ ููŠูƒูˆุง ู„ุงูŠู‡ ุชุณุงุคู„ ู‡ู†ุง ููŠ ู‡ุฐุง ุงู„ุณุคุงู„ุŸ
222
00:22:41,990 --> 00:22:48,270
ููŠ ุงูŠ ุชุณุงุคู„ุŸุทูŠุจ ุนู„ู‰ ู‡ูŠูƒ ุงู†ุชู‡ู‰ ู‡ุฐุง ุงู„ section ูˆุฅู„ู‰
223
00:22:48,270 --> 00:22:55,590
ูŠูƒูˆู† ุฃุฑู‚ุงู… ุงู„ู…ุณุงุฆู„ ูŠุจู‚ู‰ exercises ุฎู…ุณุฉ ุณุจุนุฉ
224
00:22:55,590 --> 00:23:01,730
ุงู„ู…ุณุงุฆู„ ุงู„ุชุงู„ูŠุฉ ู…ู† ูˆุงุญุฏ ู„ุบุงูŠุฉ ุนุดุฑูŠู† ูˆู…ู† ุฎู…ุณุฉ
225
00:23:01,730 --> 00:23:08,730
ูˆุนุดุฑูŠู† ู„ุบุงูŠุฉ ุชู„ุงุชูŠู† ู…ุฑู†ูŠ
226
00:23:08,730 --> 00:23:13,530
ุฃุฏูŠูƒูŠ ู‚ุฏ ู…ุง ุชู‚ุฏุฑูŠ ุจุชุตูŠุฑ ู‡ุฐุง ุงู„ู…ูˆุถูˆุน ุจุตูŠุฑ ุฌุฏุง
227
00:23:26,290 --> 00:23:49,450
ุงู„ู„ูŠ ููˆู‚ ู‡ุฐุง ุงู†ุชู‡ูŠู†ุง ู…ู†ู‡ ุงุธู† ุฎู„ุงุตุŸ
228
00:23:49,450 --> 00:23:55,440
ุทูŠุจู„ู…ุง ู†ู†ุชู‚ู„ ุฅู„ู‰ ุงู„ section ุงู„ุฃุฎูŠุฑ ู…ู† ู‡ุฐุง ุงู„
229
00:23:55,440 --> 00:24:00,320
chapter ูˆู‡ูŠ ุงู„ุทุฑูŠู‚ุฉ ุงู„ุซุงู†ูŠุฉ ู…ู† ุทุฑู‚ ุญู„ ุงู„ non
230
00:24:00,320 --> 00:24:03,800
homogeneous differential equation ูˆู‡ูŠ ุทุฑูŠู‚ุฉ ุงู„
231
00:24:03,800 --> 00:24:11,280
variation of parameters ุชุบูŠูŠุฑ ุงู„ูˆุณูŠุทุงุช ูŠุจู‚ู‰ 85 ุฃูˆ
232
00:24:11,280 --> 00:24:19,340
58 ุงู„ู„ูŠ ู‡ูˆ variation of
233
00:24:20,530 --> 00:24:29,030
Parameters ู†ุณุชุฎุฏู…
234
00:24:29,030 --> 00:24:39,410
ู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉ ู†ุณุชุฎุฏู… ู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉ to find a
235
00:24:39,410 --> 00:24:45,850
particular solution to find a particular
236
00:24:54,020 --> 00:24:58,120
YP ุงู„ุฑู…ุฒ ู„ู„ุฅูŠู‚ุงุน
237
00:25:01,140 --> 00:25:07,280
Differential equation ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ a0 as a
238
00:25:07,280 --> 00:25:14,040
function of x ุฒุงุฆุฏ ุงู„ a1 as a function of x ู„ู„
239
00:25:14,040 --> 00:25:21,470
derivative n minus l1ุฒุงุฆุฏ ู†ุจู‚ู‰ ู…ุงุดูŠ ู„ุบุงูŠุฉ a n
240
00:25:21,470 --> 00:25:27,750
minus one as a function of x y prime ุฒุงุฆุฏ a n as a
241
00:25:27,750 --> 00:25:33,130
function of x ููŠ ุงู„ y ุจุฏู‡ ูŠุณุงูˆูŠ capital F of x
242
00:25:33,130 --> 00:25:36,790
ูˆู‡ุฐู‡ ุงู„ู„ูŠ ูƒู†ุง ุจู†ุทู„ู‚ ุนู„ูŠู‡ุง ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃุตู„ูŠุฉ ุงู„ู„ูŠ ู‡ูŠ
243
00:25:36,790 --> 00:25:46,210
starwhere ุญูŠุซ ุงู„ a node of x ูˆ ุงู„ a one of x ูˆ
244
00:25:46,210 --> 00:25:54,330
ู„ุบุงูŠุฉ ุงู„ a n of x ู‡ุฏูˆู„ ูƒู„ู‡ู… need not need not
245
00:25:54,330 --> 00:26:00,510
constants need
246
00:26:00,510 --> 00:26:09,410
not constants and no restrictionู…ุงุนู†ุฏูŠุด ู‚ูŠูˆุฏ
247
00:26:09,410 --> 00:26:24,010
ู…ุงุนู†ุฏูŠุด
248
00:26:24,010 --> 00:26:24,850
ู‚ูŠูˆุฏ ุนู„ูŠู‡ุง
249
00:26:33,720 --> 00:26:46,600
YC ูŠุจุฏูˆ ูŠุณุงูˆูŠ C1Y1 ุฒุงุฆุฏ C2Y2 ุฒุงุฆุฏ CNYN Assume that
250
00:26:46,600 --> 00:26:57,440
is a solution of the homo
251
00:27:10,960 --> 00:27:16,840
ุฒุงูŠุฏ ุฒุงูŠุฏ a n minus 1 as a function of x ููŠ ุงู„ y
252
00:27:16,840 --> 00:27:23,680
prime ุฒุงูŠุฏ a n of x y ุจุฏู‡ ูŠุณุงูˆูŠ ูƒุฏู‡ุŸ ุจุฏู‡ ูŠุณุงูˆูŠ 0
253
00:27:29,020 --> 00:27:32,880
to get a
254
00:27:32,880 --> 00:27:37,540
particular solution
255
00:27:37,540 --> 00:27:46,180
to get a particular solution yp of the
256
00:27:46,180 --> 00:27:56,140
differential equation star by the method
257
00:27:59,990 --> 00:28:07,590
of variation of
258
00:28:07,590 --> 00:28:20,570
parameters replace
259
00:28:20,570 --> 00:28:32,010
ุงุณุชุจุฏู„ replace the above constantsabove constants
260
00:28:32,010 --> 00:28:42,250
in
261
00:28:42,250 --> 00:28:48,930
the solution yc
262
00:28:48,930 --> 00:28:52,550
by the functions
263
00:28:55,020 --> 00:29:10,660
The functions C1 of X C2 of X ูˆ ู„ุบุงูŠุฉ CN of X That
264
00:29:10,660 --> 00:29:11,060
is
265
00:29:15,470 --> 00:29:25,490
YP ูŠุตุจุญ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ C1 of XY1 C2 of XY2 ุฒุงุฆุฏ
266
00:29:25,490 --> 00:29:29,470
CN of XYN
267
00:29:35,370 --> 00:29:44,010
ุงู„ู€ CM as a function of X ูŠุณูˆูŠ ุชูƒุงู…ู„ ุงู„ูˆุฑู†ุณูƒูŠู† M
268
00:29:44,010 --> 00:29:51,350
as a function of X ููŠ capital F1 of X ุนู„ู‰
269
00:29:51,350 --> 00:29:59,090
ุงู„ูˆุฑู†ุณูƒูŠู† of X ูƒู„ู‡ ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ DX ูˆุงู„ู€ M
270
00:30:02,270 --> 00:30:09,990
ูˆ ู„ุบุงูŠุฉ ุงู„ N ูˆ
271
00:30:09,990 --> 00:30:14,950
ู„ุบุงูŠุฉ
272
00:30:14,950 --> 00:30:21,750
ุงู„ N ูˆ ู„ุบุงูŠุฉ ุงู„ N ูˆ ู„ุบุงูŠุฉ ุงู„ N ูˆ ู„ุบุงูŠุฉ ุงู„ N
273
00:30:28,070 --> 00:30:34,350
is the determinant ุงู„ู…ุญุฏุฏ
274
00:30:34,350 --> 00:30:41,370
obtained from
275
00:30:41,370 --> 00:30:46,810
ุงู„ูˆุงู†ุณูƒูŠู†
276
00:30:46,810 --> 00:30:52,130
of X by replacing
277
00:30:58,290 --> 00:31:15,810
By replacing the M column By the column By
278
00:31:15,810 --> 00:31:26,730
the column Zero Zero ูˆู†ุธู„ ู…ุงุดูŠูŠู† ู„ุบุงูŠุฉ ุงู„ูˆุงุญุฏ and
279
00:31:30,230 --> 00:31:42,150
ุงู„ู€ F1 of X ุชุณุงูˆูŠ ุงู„ู€ F of X ู…ู‚ุณูˆู…ุฉ ุนู„ู‰ A0 of X
280
00:31:42,150 --> 00:31:45,550
Note
281
00:31:45,550 --> 00:31:50,310
When
282
00:31:50,310 --> 00:32:00,490
we use the method when weuse the method of
283
00:32:00,490 --> 00:32:05,590
variation
284
00:32:05,590 --> 00:32:15,910
of parameters ุนู†ุฏู…ุง
285
00:32:15,910 --> 00:32:23,110
ู†ุณุชุฎุฏู… ู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉ variation of parameters the
286
00:32:23,110 --> 00:32:23,850
coefficient
287
00:32:33,870 --> 00:32:45,010
ูŠุฌุจ ุงู† ูŠูƒูˆู† ูŠูˆู…ูŠ ูŠูˆู…ูŠ
288
00:32:45,010 --> 00:32:47,290
ูŠูˆู…ูŠ ูŠูˆู…ูŠ ูŠูˆู…ูŠ ูŠูˆู…ูŠ ูŠูˆู…ูŠ ูŠูˆู…ูŠ ูŠูˆู…ูŠ
289
00:32:58,790 --> 00:33:11,670
is of the second order
290
00:33:11,670 --> 00:33:14,970
that
291
00:33:14,970 --> 00:33:18,690
is
292
00:33:20,880 --> 00:33:30,340
ุงู„ู€ a0 of x yw prime a1 of x y prime a2 of x y
293
00:33:30,340 --> 00:33:35,420
ุจุฏู‡ุง ุชุณุงูˆูŠ f
294
00:33:35,420 --> 00:33:50,710
of x and f y1 and y2 are two solutionsare two
295
00:33:50,710 --> 00:33:57,990
solutions of
296
00:33:57,990 --> 00:34:12,570
the homogeneous equation a0 of x yw prime a1 of x
297
00:34:12,570 --> 00:34:18,570
y prime a2 of x y ุจุฏูˆ ูŠุณุงูˆูŠ zero then
298
00:34:23,050 --> 00:34:33,070
ุงู„ู€ C1 of X ู‡ูˆ ุชูƒุงู…ู„ ู„ู†ุงู‚ุต Y2 as a function of X
299
00:34:33,070 --> 00:34:39,550
ููŠ ุงู„ู€ F1 of X ุนู„ู‰ ุฑูˆู†ุณูƒูŠู† X DX
300
00:34:43,770 --> 00:34:51,950
ุงู„ู€ C2 as a function of X ุจุฏู‡ ูŠุณุงูˆูŠ ุชูƒุงู…ู„ ู„ู…ูŠู†ุŸ
301
00:34:51,950 --> 00:34:58,690
ุจุฏู‡ ูŠุณุงูˆูŠ ุชูƒุงู…ู„ ู„ู„ู€ Y1 as a function of X ููŠ ุงู„ู€
302
00:34:58,690 --> 00:35:05,170
F1 of X ูƒู„ู‡ ุนู„ู‰ ุงู„ู€ run skin of X ููŠ ุงู„ู€ DX
303
00:35:05,170 --> 00:35:10,030
example
304
00:35:10,030 --> 00:35:10,490
1
305
00:35:15,200 --> 00:35:26,200
Find the general solution of
306
00:35:26,200 --> 00:35:32,340
the differential equation ู„ู„ู…ุนุงุฏู„ุฉ
307
00:35:32,340 --> 00:35:38,340
ุงู„ุชูุงุถู„ูŠุฉ YW'-2Y
308
00:35:43,090 --> 00:35:51,990
ู„ู„ู…ุนุงู…ู„ุฉ ุงู„ุชุญูˆูŠ ุนุถู„ูŠุฉ y
309
00:35:51,990 --> 00:36:03,650
triple prime ุฒุงุฆุฏ y prime ุจุฏูŠ ูŠุณุงูˆูŠ ุณูƒู„ x ุจูŠุณุงูˆูŠ
310
00:36:03,650 --> 00:36:12,610
ุณูƒู„ x ูˆู†ุงู‚ุต y ุนู„ู‰ 2 ุฃู‚ู„ ู…ู† x ุฃู‚ู„ ู…ู† y ุนู„ู‰ 2
311
00:37:01,140 --> 00:37:06,600
ุงู„ุทุฑูŠู‚ุฉ ุงู„ุซุงู†ูŠุฉ ู…ู† ุญู„ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ ุบูŠุฑ
312
00:37:06,600 --> 00:37:11,260
ุงู„ู…ุชุฌุงู†ุณุฉ ู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉ ุณู…ู†ู‡ุง ุงู„ variation of
313
00:37:11,260 --> 00:37:14,940
parameters ูŠุจู‚ู‰ ุฃูˆู„ ุทุฑูŠู‚ุฉ ุทุฑูŠู‚ุฉ ุงู„ undetermined
314
00:37:14,940 --> 00:37:18,380
coefficients ูˆุงู„ุทุฑูŠู‚ุฉ ุงู„ุซุงู†ูŠุฉ ุงู„ุชูŠ ู‡ูŠ ุทุฑูŠู‚ุฉ ุงู„
315
00:37:18,380 --> 00:37:23,200
variation of parameters ุชุบูŠูŠุฑ ุงู„ูˆุณูŠุทุงุช ุชุชู„ุฎุต ู‡ุฐู‡
316
00:37:23,200 --> 00:37:26,740
ุงู„ุทุฑูŠู‚ุฉ ููŠู…ุง ูŠุฃุชูŠุทุจุนุง ุงู„ู€ Undetermined
317
00:37:26,740 --> 00:37:30,880
coefficients ู‚ู„ู†ุง ู…ุดุงู† ู†ุดุชุบู„ ุจู‡ุง ุจุฏู‘ูŠ ุดุฑุทูŠู† ุงู†
318
00:37:30,880 --> 00:37:34,860
ุงู„ู…ุนุงู…ู„ุฉ ุชุซูˆุงุจุช ูˆ ุงู„ F of X ุชุจู‚ู‰ ุนู„ู‰ ุดูƒู„ ู…ุนูŠู† ุญุณุจ
319
00:37:34,860 --> 00:37:37,660
ุงู„ุฌุฏูˆู„ ุงู„ู„ูŠ ุงุนุทุงู†ุงูƒูˆุง ูŠุนู†ู‰ุŒ ู…ุธุจูˆุทุŸ ู‡ู†ุง ุงู„
320
00:37:37,660 --> 00:37:41,460
variation ุจูŠู‚ูˆู„ูŠ ู„ุฃ ุงู„ู…ุนุงู…ู„ุฉ ุชุซูˆุงุจุช ูˆ ุงู„ู„ู‡ ู…ุชุบูŠุฑุฉ
321
00:37:41,460 --> 00:37:45,660
ู…ุงุนู†ุฏูŠุด ู…ุดูƒู„ุฉ ุงู„ F of X ุงู„ู„ูŠ ููŠ ุงู„ุทุฑู ุงู„ูŠู…ูŠู† ู‡ุฐู‡
322
00:37:45,660 --> 00:37:49,180
ุงู„ F of X ูƒุงู†ุช ุนู„ู‰ ุดูƒู„ ู…ุนูŠู† ูˆ ุงู„ู„ู‡ ุบูŠุฑ ุนู„ูŠู‡ุง ุดูƒู„
323
00:37:49,180 --> 00:37:53,590
ู…ุนูŠู† ู…ุงุนู†ุฏูŠุด ู…ุดูƒู„ุฉูŠุนู†ูŠ ุฃูŠุด ู…ุง ูŠูƒูˆู† ุดูƒู„ ุงู„ F ูŠูƒูˆู† ูˆ
324
00:37:53,590 --> 00:37:56,590
ุฃูŠุด ู…ุง ูŠูƒูˆู† ุงู„ู…ุนุงู…ู„ุฉ ุซูˆุฉ ุจุทูˆู„ุฉ ู…ุชุบูŠุฑุงุช ู…ุงุนู†ุฏูŠุด
325
00:37:56,590 --> 00:38:00,970
ู…ุดูƒู„ุฉ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุดูƒู„ ุงู„ุนุงู…ู„ ุงู„ู…ุนุงุฏู„ ุฃุณุทุงุฑ ุญูŠุซ ู‡ุฏูˆู„
326
00:38:00,970 --> 00:38:05,350
ุงู„ุฏูˆู„ ู†ูŠุฉ not ูƒู†ุตุฉ ู„ูŠุณ ุจุงู„ุถุฑูˆุฑุฉ ูŠูƒูˆู†ูˆุง ูƒู†ุตุฉ ูŠุนู†ูŠ
327
00:38:05,350 --> 00:38:08,470
ู…ู…ูƒู† ูŠูƒูˆู†ูˆุง ูƒู†ุตุฉ ูˆ ู…ู…ูƒู† ูŠูƒูˆู†ูˆุง ู…ุชุบูŠุฑุงุช ู…ุงุนู†ุฏูŠุด
328
00:38:08,470 --> 00:38:12,070
ู…ุดูƒู„ุฉ ููŠ ู‡ุฐู‡ ุงู„ุนุงู„ู… and
329
00:38:13,430 --> 00:38:18,250
and no restrictions
330
00:38:18,250 --> 00:38:23,170
ู…ุงุนู†ุฏูŠุด ู‚ูŠูˆุฏ ุนู„ู‰ ุดูƒู„ ุงู„ F of X ููŠ ุงู„ Undetermined
331
00:38:23,170 --> 00:38:25,650
ู‚ู„ุช ูŠุงุจูˆู„ูˆู†ูˆู…ูŠู„ ูŠุงุจูˆู„ูˆู†ูˆู…ูŠู„ ููŠ ุงู„ุงูƒุณุจูˆู†ูŠู†ุด
332
00:38:25,650 --> 00:38:28,830
ูŠุงุจูˆู„ูˆู†ูˆู…ูŠู„ ููŠ ุงูƒุณุจูˆู†ูŠู†ุด ููŠ ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ
333
00:38:28,830 --> 00:38:33,850
ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ
334
00:38:33,850 --> 00:38:35,710
ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ
335
00:38:35,710 --> 00:38:36,610
ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ
336
00:38:36,610 --> 00:38:37,770
ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ
337
00:38:37,770 --> 00:38:38,170
ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ
338
00:38:38,170 --> 00:38:40,250
ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ
339
00:38:40,250 --> 00:38:45,310
ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ ุงู„ุงูƒุณู‡ุฐุง ุงู„ุดุบู„ ุงู„ูˆุญูŠุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุญู„
340
00:38:45,310 --> 00:38:47,610
ุงู„ู€Complementary Solution ุจุฏูŠ ุฃุฏูˆุฑ ุนู„ู‰ ุงู„ู€
341
00:38:47,610 --> 00:38:51,270
Particular Solution ุชุจุน ุงู„ู…ุนุงุฏู„ุฉ ู…ูŠู†ุŸ ุชุจุน ุงู„ู…ุนุงุฏู„ุฉ
342
00:38:51,270 --> 00:38:55,570
Star ูุจุฌูŠ ุจู‚ูˆู„ ุจุฏูŠ ุฃูุชุฑุถ ุงู„ุญู„ ุจุทุฑูŠู‚ุฉ ุงู„ version of
343
00:38:55,570 --> 00:38:59,870
parameters ู‡ูˆ ู†ูุณ ุงู„ุญู„ ู‡ุฐุง ุจุณ ุจุฏูŠ ุฃุดูŠู„ู‡ ุซูˆุงุจุช ูˆ
344
00:38:59,870 --> 00:39:04,230
ุฃุถุน ุจุฏู„ู‡ู… ุฏูˆุงู„ ููŠ X ูŠุจู‚ู‰ Star ุดูƒู„ ุงู„ Particular
345
00:39:04,230 --> 00:39:09,490
Solution ู‡ูˆ C1 of X Y1 ุฒุงุฆุฏ C2 of X Y2 ุฒุงุฆุฏ ุฒุงุฆุฏ
346
00:39:09,490 --> 00:39:14,560
CN ูˆA of X YNุทูŠุจ ู…ูŠู† ู‡ูŠ ุงู„ู€C ู‡ุงุช ูƒูŠู ุจุฏู‰ ุฃุญุณุจู‡ุง
347
00:39:14,560 --> 00:39:19,980
ู‡ุฐู‡ุŸ ุจุนุฏ ุดูˆูŠุฉ ุญุณุงุจุงุช ู„ุฌูŠู†ุง ููŠ ู‚ุงุนุฏุฉ ุจูˆุงุณุทุชู‡ุง ุจุฌูŠุจ
348
00:39:19,980 --> 00:39:25,320
ูƒู„ ุฏุงู„ุฉ ู…ู† ู‡ุฐู‡ ุงู„ุฏูˆู„ุฉ ู…ูŠู† ู‡ูŠุŸ ู‚ุงุนุฏุฉ CM of XM ุทุจุนุง
349
00:39:25,320 --> 00:39:29,500
ุจูˆุงุญุฏ ูˆุงุซู†ูŠู† ู„ุบุงูŠุฉ ุงู„ N ูŠุนู†ูŠ ุจC ูˆุงุญุฏ ูˆC ุงุชู†ูŠู† ูˆC
350
00:39:29,500 --> 00:39:34,890
ุชู„ุงุชุฉ ูƒุฏู‡ ุงู„ุงุฎุฑูŠู†ูŠุณุงูˆูŠ ุงู„ู€ Ronschen M F1 of X ุนู„ู‰
351
00:39:34,890 --> 00:39:38,530
Ronschen of X DX ู†ุฌูŠ ุนู„ู‰ ุงู„ู€ Ronschen of X ุงู„ู€
352
00:39:38,530 --> 00:39:42,330
Ronschen ู‡ุฐุง ุงู„ุชุงุจุน ุงู„ุญู„ูˆู„ ุงู„ู„ูŠ ููŠ ุงู„ุญุงู„ุฉ ุงู„ุฃูˆู„ู‰
353
00:39:42,330 --> 00:39:46,190
Y1 ูˆ Y2 ูˆ YN ุจุฌูŠุจ ุงู„ู„ูŠ ู‡ู… ุงู„ู€ Ronschen ุจูŠูƒูˆู† ู‡ุฐุง
354
00:39:46,190 --> 00:39:50,140
ู‡ูˆ ุงู„ู€ Ronschen ุชุจุน ุญุตูˆู ุนู„ู‰ ุดุฌุฑุฉุจุฏูŠ ุฑูˆู†ุณูƒูŠู† 1 ูˆ
355
00:39:50,140 --> 00:39:54,760
ุฑูˆู†ุณูƒูŠู† 2 ูˆ ุฑูˆู†ุณูƒูŠู† 3 ู„ุบุงูŠุฉ ุฑูˆู†ุณูƒูŠู† N ู…ูŠู† ู‡ูˆ ู‡ุฐุงุŸ
356
00:39:54,760 --> 00:39:58,720
ู‡ุฐุง ุงู„ ุฑูˆู†ุณูƒูŠู† 1 ุจุงุฌูŠ ุนู„ู‰ ุงู„ ุฑูˆู†ุณูƒูŠู† ู† ุฏูŠ ุจุดูŠู„
357
00:39:58,720 --> 00:40:02,880
ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูˆ ุจุญุท ุจุฏุงู„ู‡ ุงู„ุนู…ูˆุฏ ู‡ุฐุง ูˆ ุจุญุณุจ ู‚ุฏุงุด
358
00:40:02,880 --> 00:40:07,890
ู‚ูŠู…ุฉ ุงู„ ุฑูˆู†ุณูƒูŠู† ุทุจ ุจุฏูŠ ุฑูˆู†ุณูƒูŠู† 2ุจุณูŠุจ ุงู„ุฑูˆู†ุณูƒูŠู† ู‡ุฐุง
359
00:40:07,890 --> 00:40:13,670
ุฒูŠ ู…ุง ู‡ูˆ ูˆ ุจุฌูŠ ุนู„ู‰ ุงู„ุนู…ูˆุฏ ุงู„ุซุงู†ูŠ ุจุดูŠู„ู‡ ูƒู„ู‡ ูˆ ุจุญุท
360
00:40:13,670 --> 00:40:16,810
ุจุฏุงู„ู‡ ุงู„ุนู…ูˆุฏ ู‡ุฐุง ูˆ ู‡ูƒุฐุง ุงู„ุฑูˆู†ุณูƒูŠู† ุซู„ุงุซุฉ ุฑูˆู†ุณูƒูŠู†
361
00:40:16,810 --> 00:40:21,210
ู„ุบุงูŠุฉ ุจูƒู…ู„ู‡ู… ูƒู„ู‡ู… ูŠุจู‚ู‰ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุฌุจุชู‡ุง ุทุจ ู…ูŠู†
362
00:40:21,210 --> 00:40:25,850
ู‡ูŠ ุงู„ F1 ู‡ุฐู‡ุŸ ุงู‡ ุงู„ F1 ู‡ุฐู‡ ู„ู…ุง ุชูŠุฌูŠ ุงู„ู…ุนุงุฏู„ุฉ ุจุฏ
363
00:40:25,850 --> 00:40:30,310
ุงู„ู…ุนุงุฏู„ุฉ ู‡ู†ุง ุงู„ู…ุนุงู…ู„ ุชุจุนูŠ ูŠูƒูˆู† ุฌุฏูŠุดู‡ุฐุง ูŠุนู†ูŠ ุฃู†ู†ูŠ
364
00:40:30,310 --> 00:40:36,110
ุฃุฌุณู… ุงู„ุทุฑููŠู† ุนู„ู‰ ู…ูŠู† ุนู„ู‰ a node of x ูŠุจู‚ู‰ ุงู„ F1 ู‡ูŠ
365
00:40:36,110 --> 00:40:42,270
ุนุจุงุฑุฉ ุนู† Fx ู…ู‚ุณูˆู…ุฉ ุนู„ู‰ ุงู„ a node of x ูŠุจู‚ู‰ ุงู„ F1
366
00:40:42,270 --> 00:40:47,270
of x ู‡ูŠ ุงู„ F of x ู…ู‚ุณูˆู…ุฉ ุนู„ู‰ ู…ูŠู† ุนู„ู‰ ุงู„ a node of
367
00:40:47,270 --> 00:40:52,490
x ุฃุตู„ุง ูˆุงุถุญ ูƒู„ุงู… ู‡ุฐุง ุทูŠุจ ุงู„ุขู† ููŠ ู…ู„ุงุญุธุฉ ุจุฏู†ุง ู†ุดูŠุฑ
368
00:40:52,490 --> 00:40:57,290
ุฅู„ูŠู‡ุง ุงู„ู…ู„ุงุญุธุฉ ูƒุงู†ุช ุชุงู„ูŠุฉู‚ู„ุชู‡ุง ุจุณ ุจุฏู†ุง ู†ุนูŠุฏู‡ุง ู‡ูŠุง
369
00:40:57,290 --> 00:41:00,590
ุนู†ุฏู…ุง ู†ุณุชุฎุฏู… ุงู„ variation of parameters ู„ุงุฒู… ูŠูƒูˆู†
370
00:41:00,590 --> 00:41:05,610
ุงู„ู…ุนุงู…ู„ ุชุจุน Y ุงู† ู‡ูˆ ู…ูŠู† ูˆ ุงู†ุณูŠุช ูˆ ุญุทูŠุช ุงู„ F of X
371
00:41:05,610 --> 00:41:11,110
ู‡ุฐู‡ ุจุฏู„ ู‡ุฐู‡ ุจุตูŠูƒ ูƒู„ุงู…ูƒ ุบู„ุท ุจุตูŠูƒ ุชุญู‚ู‚ุด ูˆ ู…ุงุชู‚ุฏุฑุด
372
00:41:11,110 --> 00:41:16,250
ุชุชูƒุงู…ู„ูŠ ุชู…ุงู… ูŠุจู‚ู‰ ุชุชุฃูƒุฏูŠ ุนู†ุฏู…ุง ุจุฏูƒ ุชุณุชุฎุฏู… ุงู„ุชูƒุงู…ู„
373
00:41:16,250 --> 00:41:20,390
ุจุชุฎู„ูŠ ุงู„ู…ุนุงู…ู„ ุชุจุน Y to the derivative ุงู† ู‡ูˆ ูˆุงุญุฏ
374
00:41:20,390 --> 00:41:24,610
ุตุญูŠุญ ุชู…ุงู… ู‡ูŠ ู‚ุทุจุฉ ุงู„ุฃูˆู„ู‰ ุจุนุฏูŠู† ููŠู†ุง ู…ู„ุงุญุธุฉ ุชุงู†ูŠุฉ
375
00:41:25,260 --> 00:41:28,720
ุจูŠู‚ูˆู„ ุงู„ equation star ู‡ุฐู‡ ู„ูˆ ูƒุงู†ุช ู…ู† ุงู„ุฑุชุจุฉ
376
00:41:28,720 --> 00:41:32,680
ุงู„ุซุงู†ูŠุฉ ูŠุจู‚ู‰ ุจุฏู„ ุงู„ุฑูˆู†ุณูƒูŠู† 1 ูˆ ู†ุต ูƒู†ุชูˆุง ู…ุญุณุจุฉ ูˆ
377
00:41:32,680 --> 00:41:38,320
ุฎุงู„ุตุฉ ูˆ ุฌุงู‡ุฒุฉ ุงูŠุดูŠ ุจูŠู‚ูˆู„ ุงู„ C 1 of X ุจุชุญุท ู„ู„ุญู„
378
00:41:38,320 --> 00:41:42,940
ุงู„ุชุงู†ูŠ ุจุฅุดุงุฑุฉ ุณุงู„ุจ ููŠ ุงู„ F 1 of X ุนู„ู‰ ุงู„ุฑูˆู†ุณูƒูŠู† of
379
00:41:42,940 --> 00:41:48,260
X ุทูŠุจ ูˆ ุงู„ C2ุŸ ูˆ ุงู„ C2 ู‡ูŠ ุงู„ุญู„ ุงู„ุฃูˆู„ ููŠ ุงู„ 1 of X
380
00:41:48,260 --> 00:41:51,850
ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ ุงู„ W of XูŠุจู‚ู‰ ูƒู…ุงู† ู„ุงุจุฏ ุชุญุณุจ
381
00:41:51,850 --> 00:41:54,950
ุงู„ู‡ูŠุฑูˆู†ูŠุณูƒูˆ ู„ุฃ ู‡ุฐุง ุฅู† ูƒุงู†ุช ู…ู† ุงู„ุฑุชุจุฉ ุงู„ุซุงู†ูŠุฉุŒ ู…ู†
382
00:41:54,950 --> 00:41:59,930
ุงู„ุฑุชุจุฉ ุงู„ุชุงู„ุชุฉุŒ ุจุฏูŠ ุฃุฑุฌุน ุนุงู„ู…ูŠุง ู„ู„ูƒู„ุงู… ุงู„ุฃูˆู„ุŒ ูˆุงุถุญ
383
00:41:59,930 --> 00:42:03,590
ูƒู„ุงู… ู‡ูŠูƒุŸ ุงู„ุฃู…ู† ุงู„ู„ูŠ ุญุทูˆู‡ ุนู„ู‰ ุฃุฑุถ ูˆุงู‚ุนุฉ ุฌุงู„ูŠ ูŠุญู„
384
00:42:03,590 --> 00:42:08,430
ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ุจู‚ูˆู„ู‡ ุชู…ุงู… ูŠุจู‚ู‰ ุงู†ุง ุจุฏูŠ ุงุจุฏุง ุจุญู„ ุงู„
385
00:42:08,430 --> 00:42:12,190
homogenous differential equation ูƒู…ุง ูƒู†ุง ู…ู† ู‚ุจู„
386
00:42:12,190 --> 00:42:19,470
ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ู‡ู†ุง let Y ุชุณุงูˆูŠ E ุฃูุณ RX ุจูŠู‡
387
00:42:19,470 --> 00:42:21,090
solution
388
00:42:27,760 --> 00:42:36,620
ูŠุจู‚ู‰ ู‡ู†ุง the characteristic equation is R ุชูƒุนูŠุจ
389
00:42:36,620 --> 00:42:42,820
ุฒุงุฆุฏ R ูŠุณุงูˆูŠ 0ูŠุจู‚ู‰ R ููŠ R ุชุฑุจูŠุน ุฒุงุฆุฏ ูˆุงุญุฏ ุจุฏู‡
390
00:42:42,820 --> 00:42:49,640
ูŠุณุงูˆูŠ Zero ูŠุจู‚ู‰ R ุชุณุงูˆูŠ Zero ูˆR ุชุณุงูˆูŠ ุฒุงุฆุฏ ุงูˆ ู†ุงู‚ุต
391
00:42:49,640 --> 00:42:54,680
I ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุจู‚ูˆู„ู‡ ุงู„ complementary solution
392
00:42:54,680 --> 00:43:06,080
YC ุจุฏู‡ ูŠุณุงูˆูŠ C ูˆุงุญุฏ ููŠ ุงู„ E ุงูˆ Zeroุฒุงุฆุฏ C2 Cos X
393
00:43:06,080 --> 00:43:12,420
ุฒุงุฆุฏ C3 Sin X ู„ุฃู†ู‡ ุฒุงุฏุฉ ูˆู†ู‚ุต I ุงู„ A ุจุงู„ุฒูŠุฑูˆ ูˆุงู„B
394
00:43:12,420 --> 00:43:18,860
ุจุงู„ู…ูŠู† ุจูˆุงุญุฏ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุดูƒู„ ุงู„ู…ุนุงุฏู„ุฉ
395
00:43:18,860 --> 00:43:24,210
ุงู„ุฃุตู„ูŠุฉ ุจู†ุงุชู‡ุง ุฏูŠ ุณู…ูŠู‡ุง ุงู„ starุงู„ุงู† ุงู†ุง ุจุฏูŠ ุงูƒุชุจ
396
00:43:24,210 --> 00:43:30,330
ุดูƒู„ ุงู„ particular solution ู„ู„ู…ุนุงุฏู„ุฉ star ูˆ ู„ุงุญุธูŠ
397
00:43:30,330 --> 00:43:34,890
ุงู† ุงู„ู…ุนุงู…ู„ ุชุจุน ุงู„ู…ุดุชู‚ุฉ ุงู„ุฃูˆู„ู‰ ู‡ูˆ ูˆุงุญุฏ ุตุญูŠุญ ุงู„ู…ุฑุฉ
398
00:43:34,890 --> 00:43:39,210
ู‡ุฐู‡ ูŠุนู†ูŠ ู„ุง ููŠ ู„ู ูˆู„ุง ุฏูˆุฑ ุนู† ุงู„ุดุบู„ ู…ุจุงุดุฑ ููŠ ู‡ุฐุง
399
00:43:39,210 --> 00:43:47,730
ุงู„ุณุคุงู„ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ the particular solution
400
00:43:47,730 --> 00:43:50,430
of
401
00:44:02,410 --> 00:44:12,710
ูŠุจู‚ู‰ C1 of X ุฒุงุฆุฏ C2 of X ููŠ Cos X ุฒุงุฆุฏ C3 of X ููŠ
402
00:44:12,710 --> 00:44:20,090
Sin Xุจุนุฏ ู‡ูŠูƒ ุจุชุฑูˆุญ ุงุฌูŠุจ ุงู„ุฑูˆู†ุณูƒูŠู† ูŠุจู‚ู‰ ู‡ุฐุง
403
00:44:20,090 --> 00:44:25,810
ุงู„ุฑูˆู†ุณูƒูŠู† as a function of x ู„ู…ูŠู† ุงู„ุฑูˆู†ุณูƒูŠู† ู„ู„ุญู„ูˆู„
404
00:44:25,810 --> 00:44:31,670
ุงู„ุชู„ุงุชุฉ ุงู„ุญู„ ุงู„ุฃูˆู„ ู‚ุฏุงุด ู‡ู†ุง ุจู†ุงุช ูˆุงุญุฏ ูˆุงู„ุญู„ ุงู„ุชุงู†ูŠ
405
00:44:31,670 --> 00:44:36,690
cosine ุงู„ X ูˆุงู„ุญู„ ุงู„ุชุงู„ุช sin X ูŠุจู‚ู‰ ู‡ูŠ ุซู„ุงุซุฉ ุญู„ูˆู„
406
00:44:36,690 --> 00:44:43,960
ูŠุจู‚ู‰ ู‡ูŠ ูˆุงุญุฏ ูˆุงู„ุชุงู†ูŠ cosine ุงู„ X ูˆุงู„ุชุงู„ุช sin XูŠุจู‚ู‰
407
00:44:43,960 --> 00:44:50,280
ุงู„ู…ุดุชู‚ุฉ Zero ุงู„ู…ุดุชู‚ุฉ ุณุงู„ุจ Sine X ุงู„ู…ุดุชู‚ุฉ Cos X
408
00:44:50,280 --> 00:44:58,140
ูƒู…ุงู† ู…ุฑุฉ Zero ู†ุงู‚ุต Cos X ู†ุงู‚ุต Sine X ุจุฏูŠ ุงููƒู‡
409
00:44:58,140 --> 00:45:05,170
ุจุงุณุชุฎุฏุงู… ุนู†ุงุตุฑ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ูŠุจู‚ู‰ ูˆุงุญุฏ ููŠู‡ ู‚ุดุท ุจุตูู‡
410
00:45:05,170 --> 00:45:11,630
ุนู…ูˆุฏู‡ ูŠุจู‚ู‰ sin ุชุฑุจูŠุน ุงู„ X ุฒุงุฆุฏ cosine ุชุฑุจูŠุน ุงู„ X
411
00:45:11,630 --> 00:45:16,650
ุงู„ู„ูŠ ู‡ูˆ ู‚ุฏุงุดุฑ ุงู„ูˆุงุญุฏ ุจุฏูŠ ุฃุฌูŠุจ ุงู„ุฑูˆู†ุณ ูƒูŠู† ูˆุงู† as a
412
00:45:16,650 --> 00:45:20,810
function of X ุจุฏูŠ ุฃุดูŠู„ ุงู„ุนู…ูˆุฏ ู‡ุฐุง ูˆ ุฃุณุชุจุฏู„ู‡
413
00:45:20,810 --> 00:45:31,390
ุจุงู„ุนู…ูˆุฏ 001ูˆุงู„ุงุชู†ูŠู† ู‡ุฏูˆู„ ุฒูŠ ู…ุง ู‡ู… cos x sin x-sin
414
00:45:31,390 --> 00:45:41,050
x cos x-cos x-sin x ูˆูŠุณุงูˆูŠุจูŠุฏููƒู‡ ุจุฑุถู‡ ุจุงุณุชุฎุฏุงู…
415
00:45:41,050 --> 00:45:46,830
ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูŠุจู‚ู‰ zero ู†ุงู‚ุต zero ุฒุงุฆุฏ ูˆุงุญุฏ ููŠ ุฃุดุท
416
00:45:46,830 --> 00:45:51,250
ุจุตูู‡ ุนู…ูˆุฏู‡ cosine ุชุฑุจูŠู‡ ุฒุงุฆุฏ sine ุชุฑุจูŠู‡ cosine
417
00:45:51,250 --> 00:45:57,430
ุชุฑุจูŠู‡ ุงู„ X ุฒุงุฆุฏ sine ุชุฑุจูŠู‡ ุงู„ X ูƒู„ู‡ ุจู‚ุฏุงุด ุจูˆุงุญุฏ
418
00:45:57,910 --> 00:46:02,810
ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุจุฏูŠ ุงุฌูŠุจ ุงู„ุฑูˆู†ุณูƒู† ุงุชู†ูŠู† as a
419
00:46:02,810 --> 00:46:05,910
function of x ูŠุจู‚ู‰ ุงู„ุนู…ูˆุฏูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ู‡ูˆ ุจุฏูŠ ุงุฑุฌุน
420
00:46:05,910 --> 00:46:09,970
ูƒู…ุง ูƒุงู† ูŠุง ุจู†ุงุช ุงูŠ ูˆุงุญุฏ zero zero ุงู„ุนู…ูˆุฏูŠ ุงู„ุชุงู†ูŠ
421
00:46:09,970 --> 00:46:13,550
ู‡ูˆ ุงู„ู„ูŠ ุจุฏูŠ ุงุณุชุจุฏู„ู‡ ุจ zero zero ูˆุงุญุฏ ูˆุงู„ุนู…ูˆุฏูŠ
422
00:46:13,550 --> 00:46:20,110
ุงู„ุชุงู„ุช ูƒู…ุง ูƒุงู† sine ุงู„ X cosine ุงู„ X ู†ุงู‚ุต sine ุงู„
423
00:46:20,110 --> 00:46:25,970
XูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ ุจุฏุง ููƒู‡ ุจุงุณุชุฎุฏุงู…
424
00:46:25,970 --> 00:46:31,590
ุนู†ุงุตุฑ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูŠุจู‚ู‰ ูˆุดุท ุจุตูู‡ ูˆุนู…ูˆุฏู‡ zero ู†ุงู‚ุต
425
00:46:31,590 --> 00:46:36,470
cosine ุงู„ X ูŠุจู‚ู‰ ู†ุงู‚ุต cosine ุงู„ X ุฎู„ูŠู†ุง ู†ุฌูŠุจ
426
00:46:36,470 --> 00:46:43,350
ุงู„ุฑูˆู†ุณูƒู†ูŠ 3 as a function of X ูŠุณุงูˆูŠ 1 0 0 ุงู„ุนู…ูˆุฏ
427
00:46:43,350 --> 00:46:50,590
ุงู„ุชุงู†ูŠ ูƒู…ุง ู‡ูˆ cosine ุงู„ X ู†ุงู‚ุต sine ุงู„ Xูˆู‡ู†ุง ู†ุงู‚ุต
428
00:46:50,590 --> 00:46:58,270
cosine ุงู„ X ูˆู‡ู†ุง 001 ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุงู‚ู†ุนู†ุงู‡ ุจุฏุง ุงููƒู‡
429
00:46:58,270 --> 00:47:02,590
ุจุงุณุชุฎุฏุงู… ุนู†ุงุตุฑ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ุจุฌูˆุดุท ุจุตู ูˆ ุนู…ูˆุฏู‡ ู†ุงู‚ุต
430
00:47:02,590 --> 00:47:11,780
sin Xุฎู„ู‘ุตู†ุง ู…ู†ู‡ุŒ ุณุฃุญุตู„ ุนู„ู‰ ุงู„ู€ C1 as a function of
431
00:47:11,780 --> 00:47:19,880
X ุงู„ุชูƒุงู…ู„ ู…ู† ุฃูŠู†ุŸ ุงู„ุชูƒุงู…ู„ ู„ู„ู€ Ronskin 1 of X ููŠ
432
00:47:19,880 --> 00:47:24,260
ุงู„ู€ F of X ู„ุง ูŠูˆุฌุฏ ููŠู‡ุง ุชุบูŠูŠุฑ ูƒู…ุง ู‡ูŠ ุนู„ู‰ ุงู„ู€
433
00:47:24,260 --> 00:47:30,180
Ronskin of X ูƒู„ู‡ ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ DX ูŠุณูˆู‰ ุชูƒุงู…ู„ Ronskin
434
00:47:30,180 --> 00:47:35,670
1 ุทู„ุนู†ุงู‡ ุจู‚ุฏุฑุด ุจูˆุงุญุฏูŠุจู‚ู‰ ู‡ุฐุง ูˆุงุญุฏ ููŠู‡ ุงู„ F of X
435
00:47:35,670 --> 00:47:41,410
ุงู„ู„ูŠ ูŠุจู‚ู‰ ุฏู‡ุดุฉ ุจู†ุงุช ุณูƒ ุงู„ X ุงุฒุงูŠู† ุนู„ู‰ ุณูƒ ุงู„ X ุนู„ู‰
436
00:47:41,410 --> 00:47:47,270
ุงู„ุฑูˆู†ุณูƒูŠู† of X ุงู„ุฃูˆู„ ุจุฑุถู‡ ูˆุงุญุฏ ูƒู„ู‡ DX ูŠุจู‚ู‰ ุชูƒุงู…ู„
437
00:47:47,270 --> 00:47:53,190
ุงู„ุณูƒ ู„ูŠู† absolute value ู„ุณูƒ ุงู„ X ุฒุงุฆุฏ ุชุงู†ูŠ ุงู„ X
438
00:47:53,190 --> 00:47:59,710
ุจุฏู†ุง ู†ุฌูŠุจ C2 as a function of XูŠุจู‚ู‰ ุชูƒุงู…ู„ ุฑู†ุณูƒูŠู† 2
439
00:47:59,710 --> 00:48:06,470
of x ูู‰ f of x ุนู„ู‰ ุฑู†ุณูƒูŠู† of x dx ูŠุณูˆู‰ ุชูƒุงู…ู„
440
00:48:06,470 --> 00:48:11,790
ุฑู†ุณูƒูŠู† 2 ู‡ูˆ ุจู†ุงู‚ุต cos x
441
00:48:22,510 --> 00:48:28,490
ูŠุจู‚ู‰ ุชูƒุงู…ู„ ู„ู†ุงู‚ุต DX ูŠุจู‚ู‰ ุจู†ุงู‚ุต X ูˆ ู„ุง ุชูƒุชุจูŠ
442
00:48:28,490 --> 00:48:33,650
Constants ู„ุฃู† ูƒู„ ุตู„ุงุฉ ูˆ ูƒุชุงุจ ูŠุนู…ู„ูˆุง ู„ูŠู‡ ุชูƒุฑุงุฑ ูŠุจู‚ู‰
443
00:48:33,650 --> 00:48:38,510
ุณูŠุจูŠู† ู…ู† ุงู„ุชูƒุฑุงุฑ ูŠุจู‚ู‰ ุจูƒุชุจู‡ุง ูู‚ุท ุฒูŠ ู‡ูŠูƒ ุจุฏุฃ ูŠุงุฎุฏ
444
00:48:38,510 --> 00:48:39,590
C3
445
00:48:46,760 --> 00:48:54,240
ูŠุจู‚ู‰ ุจูŠุฏูŠ C3A of X ูŠุจู‚ู‰ ูŠุณุงูˆูŠ ุชูƒุงู…ู„ ุฑูˆู†ุณูƒูŠู† 3 of X
446
00:48:54,240 --> 00:49:00,900
ููŠ F of X ุนู„ู‰ ุฑูˆู†ุณูƒูŠู† of X DX Y ูŠุณุงูˆูŠ ุงู„ุฑูˆู†ุณูƒูŠู† 3
447
00:49:00,900 --> 00:49:09,010
ู„ู‡ ุณุงู„ุจ ุตูŠู† Xูˆุงู„ุฏุงู„ุฉ ุณูƒ ุงู„ X ูˆุงู„ุฑู…ุฒ ูƒุงู† ูˆุงุญุฏ DX
448
00:49:09,010 --> 00:49:15,810
ูŠุจู‚ู‰ ูŠุณุงูˆูŠ ุชูƒุงู…ู„ ุณุงู„ู sin X ุงู„ุณูƒ ู…ู‚ู„ุจ ุงู„ cos X DX
449
00:49:15,810 --> 00:49:20,570
ุงุธู† ุงู„ุจุณุทุฉ ูุงุถู„ ุงู„ู…ู‚ุงู… ูŠุจู‚ู‰ ุงู„ุฌูˆุงุจ ู„ูŠู† absolute
450
00:49:20,570 --> 00:49:28,570
value ู„ cos X ูŠุจู‚ู‰ ุฌุจุช ุงู„ุณูŠู‡ุงุชูŠ ุชู„ุงุชุฉ ูŠุจู‚ู‰ ุณุงุฑ YP
451
00:49:28,570 --> 00:49:33,720
ูŠุณุงูˆูŠ ูˆูŠู† YP ูŠุง ุจู†ุงุชู‡ูŠู‡ุจุฏูŠ ุงุดูŠู„ ุงู„ู€ C1 ุงู„ู€ C1
452
00:49:33,720 --> 00:49:38,720
ุฌูŠุจู†ุงู‡ุง ุงู„ู„ูŠ ู‡ูŠ ู‚ุฏุงุด ุงู„ู„ูŠ ู‡ูŠ ุงู„ N absolute value
453
00:49:38,720 --> 00:49:47,480
ู„ุณูƒ ุงู„ X ุฒุงุฆุฏ ุชุงู†ูŠ ุงู„ X ุฒุงุฆุฏ C2 ูˆูŠู† C2 ู‡ูŠูˆ ุฒุงุฆุฏ
454
00:49:47,480 --> 00:49:52,280
ุงู„ู„ูŠ ู‡ูŠ ู†ุงู‚ุต X ููŠ ู…ูŠู†ุŸ ููŠ cosine ุงู„ X
455
00:50:04,270 --> 00:50:12,930
ูŠุจู‚ู‰ y ูŠุณูˆู‰ yc ู‡ูŠ
456
00:50:12,930 --> 00:50:23,580
ุชุญุช ูŠุจู‚ู‰ c ูˆุงุญุฏุฒุงุฆุฏ C2 Cos X ุฒุงุฆุฏ C3 Sin X ุฒุงุฆุฏ YP
457
00:50:23,580 --> 00:50:28,540
ู‡ุงูŠ ูˆ ุจุฏู‰ ู†ุฒู„ู‡ ุฒูŠ ู…ุง ู‡ูˆ ุจุณ ู„ูŠู‡ ุฎุงุทุฑ ุงุฑุชุจู‡ ูŠุจู‚ู‰ ู‡ุงูŠ
458
00:50:28,540 --> 00:50:36,820
Sin X ููŠ Lin absolute value ู„ Cos X ู†ุงู‚ุต X ููŠ Cos
459
00:50:36,820 --> 00:50:45,600
X ุฒุงุฆุฏ Lin absolute value ู„ุณูƒ Xุฒุงุฆุฏ ุชุงู† ุงู„ X ูˆูƒุงู†
460
00:50:45,600 --> 00:50:50,160
ุงู„ู„ู‡ ุจุงู„ุณุฑ ุนู„ูŠู†ุง ูŠุจู‚ู‰ ู‡ุฐุง ุญู„ ุงู„ุณุคุงู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง
461
00:50:50,160 --> 00:50:54,780
ุชู…ุงู… ูˆ ู‡ูƒุฐุง ูŠุนู†ูŠ ุงู„ุดุบู„ ุจู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉ ุทุจุนุง ู„ูˆ ุฌูŠุจู†ุงูƒ
462
00:50:54,780 --> 00:50:58,200
ุณุคุงู„ ููŠ ุงู„ุงู…ุชุญุงู† ู„ู† ูŠุฒูŠุฏ ุนู† ุงู„ุฑุชุจุฉ ุงู„ุชุงู„ุชุฉ ุงู†
463
00:50:58,200 --> 00:51:01,780
ุฏุฎู„ู†ุง ููŠ ุงู„ุฑุชุจุฉ ุงู„ุฑุงุจุนุฉุจุฏูƒ ู…ุญุฏุฏ ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฑุงุจุนุฉ
464
00:51:01,780 --> 00:51:05,760
ุจูŠุงุฎุฏ ูˆู‚ุช ูƒุชูŠุฑ ูˆ ุงู†ุช ุชุญู„ ููŠู‡ ูŠุจู‚ู‰ ูู‚ุท ู…ู† ุงู„ุฏุฑุฌุฉ
465
00:51:05,760 --> 00:51:11,260
ุงู„ุซุงู„ุซุฉ ุงูˆ ุงู„ุฏุฑุฌุฉ ุงู„ุซุงู†ูŠุฉ ุงู† ุดุงุก ุงู„ู„ู‡ ู„ุงุฒู„ู†ุง ููŠ
466
00:51:11,260 --> 00:51:15,600
ู†ูุณ ุงู„ section ูˆ ู„ู…ุง ู†ู†ุชู‡ูŠ ุจุนุฏ ููŠ ุนู†ุฏู‰ ุจุนุถ ุงู„ุฃู…ุซู„ุฉ
467
00:51:15,600 --> 00:51:20,060
ุนู„ู‰ ู†ูุณ ุงู„ู…ูˆุถูˆุน ุจุงู„ุงุถุงูุฉ ุงู„ู‰ ุงุฎุฑ ุทุฑูŠู‚ุฉ ุงู„ู„ู‰ ู‡ูŠ
468
00:51:20,060 --> 00:51:24,340
ุทุฑูŠู‚ุฉ reduction of order ู„ุงุฎุชุฒุงู„ ุงู„ุฑุชุจุฉ ู„ู„ู…ุญุงุถุฑุฉ
469
00:51:24,340 --> 00:51:26,760
ุงู„ูŠูˆู… ุจุนุฏ ุงู„ุธู‡ุฑ ุงู† ุดุงุก ุงู„ู„ู‡ ูˆ ุชุนุงู„ู‰